summaryrefslogtreecommitdiffstats
path: root/libglusterfs/src/fd.c
blob: c6b060c61a50cb9038920ed21505c279dc45bdfa (plain)
1
2
3
<p>
Convert a CD-ROM or DVD ISO to a tarball.
</p>

<p>
Usage is very simple:
</p>

<pre>
iso2tar.sh cd.iso output.tar.gz
</pre>
id='n24' href='#n24'>24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
/*
  Copyright (c) 2007-2009 Gluster, Inc. <http://www.gluster.com>
  This file is part of GlusterFS.

  GlusterFS is free software; you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published
  by the Free Software Foundation; either version 3 of the License,
  or (at your option) any later version.

  GlusterFS is distributed in the hope that it will be useful, but
  WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program.  If not, see
  <http://www.gnu.org/licenses/>.
*/

#include "fd.h"
#include "glusterfs.h"
#include "inode.h"
#include "dict.h"
#include "statedump.h"


#ifndef _CONFIG_H
#define _CONFIG_H
#include "config.h"
#endif


static uint32_t 
gf_fd_fdtable_expand (fdtable_t *fdtable, uint32_t nr);

static fd_t *
_fd_ref (fd_t *fd);

/* 
   Allocate in memory chunks of power of 2 starting from 1024B 
   Assumes fdtable->lock is held
*/
static inline uint32_t 
gf_roundup_power_of_two (uint32_t nr)
{
        uint32_t result = 1;

        if (nr < 0) {
                gf_log ("server-protocol/fd",
                                GF_LOG_ERROR,
                                "Negative number passed");
                return -1;
        }

        while (result <= nr)
                result *= 2;

        return result;
}

static int
gf_fd_chain_fd_entries (fdentry_t *entries, uint32_t startidx,
                        uint32_t endcount)
{
        uint32_t        i = 0;

        if (!entries)
                return -1;

        /* Chain only till the second to last entry because we want to
         * ensure that the last entry has GF_FDTABLE_END.
         */
        for (i = startidx; i < (endcount - 1); i++)
                entries[i].next_free = i + 1;

        /* i has already been incremented upto the last entry. */
        entries[i].next_free = GF_FDTABLE_END;

        return 0;
}


static uint32_t 
gf_fd_fdtable_expand (fdtable_t *fdtable, uint32_t nr)
{
	fdentry_t *oldfds = NULL;
	uint32_t oldmax_fds = -1;
  
	if (fdtable == NULL || nr < 0)
	{
		gf_log ("fd", GF_LOG_ERROR, "invalid argument");
		return EINVAL;
	}
  
	nr /= (1024 / sizeof (fdentry_t));
	nr = gf_roundup_power_of_two (nr + 1);
	nr *= (1024 / sizeof (fdentry_t));

	oldfds = fdtable->fdentries;
	oldmax_fds = fdtable->max_fds;

	fdtable->fdentries = CALLOC (nr, sizeof (fdentry_t));
	ERR_ABORT (fdtable->fdentries);
	fdtable->max_fds = nr; 

	if (oldfds) {
		uint32_t cpy = oldmax_fds * sizeof (fdentry_t);
		memcpy (fdtable->fdentries, oldfds, cpy);
	}

        gf_fd_chain_fd_entries (fdtable->fdentries, oldmax_fds,
                                fdtable->max_fds);

        /* Now that expansion is done, we must update the fd list
         * head pointer so that the fd allocation functions can continue
         * using the expanded table.
         */
        fdtable->first_free = oldmax_fds;
	FREE (oldfds);
	return 0;
}

fdtable_t *
gf_fd_fdtable_alloc (void) 
{
	fdtable_t *fdtable = NULL;

	fdtable = CALLOC (1, sizeof (*fdtable));
	if (!fdtable) 
		return NULL;

	pthread_mutex_init (&fdtable->lock, NULL);

	pthread_mutex_lock (&fdtable->lock);
	{
		gf_fd_fdtable_expand (fdtable, 0);
	}
	pthread_mutex_unlock (&fdtable->lock);

	return fdtable;
}

fdentry_t *
__gf_fd_fdtable_get_all_fds (fdtable_t *fdtable, uint32_t *count)
{
        fdentry_t       *fdentries = NULL;

        if (count == NULL) {
                goto out;
        }

        fdentries = fdtable->fdentries;
        fdtable->fdentries = calloc (fdtable->max_fds, sizeof (fdentry_t));
        gf_fd_chain_fd_entries (fdtable->fdentries, 0, fdtable->max_fds);
        *count = fdtable->max_fds;

out:
        return fdentries;
}

fdentry_t *
gf_fd_fdtable_get_all_fds (fdtable_t *fdtable, uint32_t *count)
{
        fdentry_t       *entries = NULL;
        if (fdtable) {
                pthread_mutex_lock (&fdtable->lock);
                {
                        entries = __gf_fd_fdtable_get_all_fds (fdtable, count);
                }
                pthread_mutex_unlock (&fdtable->lock);
        }

        return entries;
}

void 
gf_fd_fdtable_destroy (fdtable_t *fdtable)
{
        struct list_head  list = {0, };
        fd_t             *fd = NULL;
        fdentry_t        *fdentries = NULL;
        uint32_t          fd_count = 0;
        int32_t           i = 0; 

        INIT_LIST_HEAD (&list);

	if (!fdtable)
                return;

	pthread_mutex_lock (&fdtable->lock);
	{
                fdentries = __gf_fd_fdtable_get_all_fds (fdtable, &fd_count);
		FREE (fdtable->fdentries);
	}
	pthread_mutex_unlock (&fdtable->lock);

        if (fdentries != NULL) {
                for (i = 0; i < fd_count; i++) {
                        fd = fdentries[i].fd;
                        if (fd != NULL) {
                                fd_unref (fd);
                        }
                }

                FREE (fdentries);
		pthread_mutex_destroy (&fdtable->lock);
		FREE (fdtable);
	}
}

int32_t 
gf_fd_unused_get (fdtable_t *fdtable, fd_t *fdptr)
{
	int32_t         fd = -1;
        fdentry_t       *fde = NULL;
	int             error;
        int             alloc_attempts = 0;
  
	if (fdtable == NULL || fdptr == NULL)
	{
		gf_log ("fd", GF_LOG_ERROR, "invalid argument");
		return EINVAL;
	}
  
	pthread_mutex_lock (&fdtable->lock);
	{
fd_alloc_try_again:
                if (fdtable->first_free != GF_FDTABLE_END) {
                        fde = &fdtable->fdentries[fdtable->first_free];
                        fd = fdtable->first_free;
                        fdtable->first_free = fde->next_free;
                        fde->next_free = GF_FDENTRY_ALLOCATED;
                        fde->fd = fdptr;
		} else {
                        /* If this is true, there is something
                         * seriously wrong with our data structures.
                         */
                        if (alloc_attempts >= 2) {
                                gf_log ("server-protocol.c", GF_LOG_ERROR,
                                        "Multiple attempts to expand fd table"
                                        " have failed.");
                                goto out;
                        }
                        error = gf_fd_fdtable_expand (fdtable,
                                                      fdtable->max_fds + 1);
			if (error) {
				gf_log ("server-protocol.c",
					GF_LOG_ERROR,
					"Cannot expand fdtable:%s", strerror (error));
                                goto out;
			}
                        ++alloc_attempts;
                        /* At this point, the table stands expanded
                         * with the first_free referring to the first
                         * free entry in the new set of fdentries that
                         * have just been allocated. That means, the
                         * above logic should just work.
                         */
                        goto fd_alloc_try_again;
		}
	}
out:
	pthread_mutex_unlock (&fdtable->lock);

	return fd;
}


inline void 
gf_fd_put (fdtable_t *fdtable, int32_t fd)
{
	fd_t *fdptr = NULL;
        fdentry_t *fde = NULL;

	if (fdtable == NULL || fd < 0)
	{
		gf_log ("fd", GF_LOG_ERROR, "invalid argument");
		return;
	}
  
	if (!(fd < fdtable->max_fds))
	{
		gf_log ("fd", GF_LOG_ERROR, "invalid argument");
		return;
	}

	pthread_mutex_lock (&fdtable->lock);
	{
                fde = &fdtable->fdentries[fd];
                /* If the entry is not allocated, put operation must return
                 * without doing anything.
                 * This has the potential of masking out any bugs in a user of
                 * fd that ends up calling gf_fd_put twice for the same fd or
                 * for an unallocated fd, but thats a price we have to pay for
                 * ensuring sanity of our fd-table.
                 */
                if (fde->next_free != GF_FDENTRY_ALLOCATED)
                        goto unlock_out;
                fdptr = fde->fd;
                fde->fd = NULL;
                fde->next_free = fdtable->first_free;
                fdtable->first_free = fd;
	}
unlock_out:
	pthread_mutex_unlock (&fdtable->lock);

	if (fdptr) {
		fd_unref (fdptr);
	}
}


fd_t *
gf_fd_fdptr_get (fdtable_t *fdtable, int64_t fd)
{
	fd_t *fdptr = NULL;
  
	if (fdtable == NULL || fd < 0)
	{
		gf_log ("fd", GF_LOG_ERROR, "invalid argument");
		errno = EINVAL;
		return NULL;
	}
  
	if (!(fd < fdtable->max_fds))
	{
		gf_log ("fd", GF_LOG_ERROR, "invalid argument");
		errno = EINVAL;
		return NULL;
	}

	pthread_mutex_lock (&fdtable->lock);
	{
		fdptr = fdtable->fdentries[fd].fd;
		if (fdptr) {
			fd_ref (fdptr);
		}
	}
	pthread_mutex_unlock (&fdtable->lock);

	return fdptr;
}

fd_t *
_fd_ref (fd_t *fd)
{
	++fd->refcount;
	
	return fd;
}

fd_t *
fd_ref (fd_t *fd)
{
	fd_t *refed_fd = NULL;

	if (!fd) {
		gf_log ("fd", GF_LOG_ERROR, "@fd=%p", fd);
		return NULL;
	}

	LOCK (&fd->inode->lock);
	refed_fd = _fd_ref (fd);
	UNLOCK (&fd->inode->lock);
	
	return refed_fd;
}

fd_t *
_fd_unref (fd_t *fd)
{
	assert (fd->refcount);

	--fd->refcount;

	if (fd->refcount == 0){
		list_del_init (&fd->inode_list);
	}
	
	return fd;
}

static void
fd_destroy (fd_t *fd)
{
        xlator_t    *xl = NULL;
	int i = 0;
        xlator_t    *old_THIS = NULL;

        if (fd == NULL){
                gf_log ("xlator", GF_LOG_ERROR, "invalid arugument");
                goto out;
        }
  
        if (fd->inode == NULL){
                gf_log ("xlator", GF_LOG_ERROR, "fd->inode is NULL");
                goto out;
        }
	if (!fd->_ctx)
		goto out;

        if (S_ISDIR (fd->inode->st_mode)) {
		for (i = 0; i < fd->inode->table->xl->ctx->xl_count; i++) {
			if (fd->_ctx[i].key) {
				xl = (xlator_t *)(long)fd->_ctx[i].key;
                                old_THIS = THIS;
                                THIS = xl;
				if (xl->cbks->releasedir)
					xl->cbks->releasedir (xl, fd);
                                THIS = old_THIS;
			}
		}
        } else {
		for (i = 0; i < fd->inode->table->xl->ctx->xl_count; i++) {
			if (fd->_ctx[i].key) {
				xl = (xlator_t *)(long)fd->_ctx[i].key;
                                old_THIS = THIS;
                                THIS = xl;
				if (xl->cbks->release)
					xl->cbks->release (xl, fd);
                                THIS = old_THIS;
			}
		}
        }
        
        LOCK_DESTROY (&fd->lock);

	FREE (fd->_ctx);
        inode_unref (fd->inode);
        fd->inode = (inode_t *)0xaaaaaaaa;
        FREE (fd);
        
out:
        return;
}

void
fd_unref (fd_t *fd)
{
        int32_t refcount = 0;

        if (!fd) {
                gf_log ("fd.c", GF_LOG_ERROR, "fd is NULL");
                return;
        }
        
        LOCK (&fd->inode->lock);
        {
                _fd_unref (fd);
                refcount = fd->refcount;
        }
        UNLOCK (&fd->inode->lock);
        
        if (refcount == 0) {
                fd_destroy (fd);
        }

        return ;
}

fd_t *
fd_bind (fd_t *fd)
{
        inode_t *inode = fd->inode;

        if (!fd) {
                gf_log ("fd.c", GF_LOG_ERROR, "fd is NULL");
                return NULL;
        }

        LOCK (&inode->lock);
        {
                list_add (&fd->inode_list, &inode->fd_list);
        }
        UNLOCK (&inode->lock);
        
        return fd;
}

fd_t *
fd_create (inode_t *inode, pid_t pid)
{
        fd_t *fd = NULL;
  
        if (inode == NULL) {
                gf_log ("fd", GF_LOG_ERROR, "invalid argument");
                return NULL;
        }
  
        fd = CALLOC (1, sizeof (fd_t));
        ERR_ABORT (fd);
  
	fd->_ctx = CALLOC (1, (sizeof (struct _fd_ctx) * 
			       inode->table->xl->ctx->xl_count));
        fd->inode = inode_ref (inode);
        fd->pid = pid;
        INIT_LIST_HEAD (&fd->inode_list);
        
        LOCK_INIT (&fd->lock);

        LOCK (&inode->lock);
        fd = _fd_ref (fd);
        UNLOCK (&inode->lock);

        return fd;
}

fd_t *
fd_lookup (inode_t *inode, pid_t pid)
{
        fd_t *fd = NULL;
        fd_t *iter_fd = NULL;

        LOCK (&inode->lock);
        {
                if (list_empty (&inode->fd_list)) {
                        fd = NULL;
                } else {
                        list_for_each_entry (iter_fd, &inode->fd_list, inode_list) {
                                if (pid) {
                                        if (iter_fd->pid == pid) {
                                                fd = _fd_ref (iter_fd);
                                                break;
                                        }
                                } else {
                                        fd = _fd_ref (iter_fd);
                                        break;
                                }
                        }
                }
        }
        UNLOCK (&inode->lock);
        
        return fd;
}

uint8_t
fd_list_empty (inode_t *inode)
{
        uint8_t empty = 0; 

        LOCK (&inode->lock);
        {
                empty = list_empty (&inode->fd_list);
        }
        UNLOCK (&inode->lock);
        
        return empty;
}

int
__fd_ctx_set (fd_t *fd, xlator_t *xlator, uint64_t value)
{
	int index = 0;
        int ret = 0;
        int set_idx = -1;

	if (!fd || !xlator)
		return -1;
        
        for (index = 0; index < xlator->ctx->xl_count; index++) {
                if (!fd->_ctx[index].key) {
                        if (set_idx == -1)
                                set_idx = index;
                        /* dont break, to check if key already exists
                           further on */
                }
                if (fd->_ctx[index].key == (uint64_t)(long) xlator) {
                        set_idx = index;
                        break;
                }
        }
	
        if (set_idx == -1) {
                ret = -1;
                goto out;
        }
        
        fd->_ctx[set_idx].key   = (uint64_t)(long) xlator;
        fd->_ctx[set_idx].value = value;

out:
	return ret;
}


int
fd_ctx_set (fd_t *fd, xlator_t *xlator, uint64_t value)
{
        int ret = 0;

	if (!fd || !xlator)
		return -1;
        
        LOCK (&fd->lock);
        {
                ret = __fd_ctx_set (fd, xlator, value);
        }
        UNLOCK (&fd->lock);

        return ret;
}


int 
__fd_ctx_get (fd_t *fd, xlator_t *xlator, uint64_t *value)
{
	int index = 0;
        int ret = 0;

	if (!fd || !xlator)
		return -1;
        
        for (index = 0; index < xlator->ctx->xl_count; index++) {
                if (fd->_ctx[index].key == (uint64_t)(long)xlator)
                        break;
        }
        
        if (index == xlator->ctx->xl_count) {
                ret = -1;
                goto out;
        }

        if (value) 
                *value = fd->_ctx[index].value;
        
out:
	return ret;
}


int 
fd_ctx_get (fd_t *fd, xlator_t *xlator, uint64_t *value)
{
        int ret = 0;

	if (!fd || !xlator)
		return -1;

        LOCK (&fd->lock);
        {
                ret = __fd_ctx_get (fd, xlator, value);
        }
        UNLOCK (&fd->lock);

        return ret;
}


int 
__fd_ctx_del (fd_t *fd, xlator_t *xlator, uint64_t *value)
{
	int index = 0;
        int ret = 0;

	if (!fd || !xlator)
		return -1;
        
        for (index = 0; index < xlator->ctx->xl_count; index++) {
                if (fd->_ctx[index].key == (uint64_t)(long)xlator)
                        break;
        }
        
        if (index == xlator->ctx->xl_count) {
                ret = -1;
                goto out;
        }
        
        if (value) 
                *value = fd->_ctx[index].value;		
        
        fd->_ctx[index].key   = 0;
        fd->_ctx[index].value = 0;

out:
	return ret;
}


int 
fd_ctx_del (fd_t *fd, xlator_t *xlator, uint64_t *value)
{
        int ret = 0;

	if (!fd || !xlator)
		return -1;
        
        LOCK (&fd->lock);
        {
                ret = __fd_ctx_del (fd, xlator, value);
        }
        UNLOCK (&fd->lock);

        return ret;
}


void
fd_dump (fd_t *fd, char *prefix)
{
        char        key[GF_DUMP_MAX_BUF_LEN];

        if (!fd)
                return;
    
        memset(key, 0, sizeof(key));
        gf_proc_dump_build_key(key, prefix, "pid");
        gf_proc_dump_write(key, "%d", fd->pid);
        gf_proc_dump_build_key(key, prefix, "refcount");
        gf_proc_dump_write(key, "%d", fd->refcount);
        gf_proc_dump_build_key(key, prefix, "flags");
        gf_proc_dump_write(key, "%d", fd->flags);
        if (fd->inode) {
                gf_proc_dump_build_key(key, prefix, "inode");
                gf_proc_dump_write(key, "%ld", fd->inode->ino);
        }
}


void
fdentry_dump (fdentry_t *fdentry, char *prefix)
{
        if (!fdentry)
                return;

        if (GF_FDENTRY_ALLOCATED != fdentry->next_free)
                return;

        if (fdentry->fd) 
                fd_dump(fdentry->fd, prefix);
}

void
fdtable_dump (fdtable_t *fdtable, char *prefix)
{
        char    key[GF_DUMP_MAX_BUF_LEN];
        int     i = 0;
        int     ret = -1;

        if (!fdtable)
                return;
    
	ret = pthread_mutex_trylock (&fdtable->lock);

        if (ret) {
		gf_log ("fd", GF_LOG_WARNING, "Unable to acquire lock");
                return;
        }

        memset(key, 0, sizeof(key));
        gf_proc_dump_build_key(key, prefix, "refcount");
        gf_proc_dump_write(key, "%d", fdtable->refcount);
        gf_proc_dump_build_key(key, prefix, "maxfds");
        gf_proc_dump_write(key, "%d", fdtable->max_fds);
        gf_proc_dump_build_key(key, prefix, "first_free");
        gf_proc_dump_write(key, "%d", fdtable->first_free);

        for ( i = 0 ; i < fdtable->max_fds; i++) {
                if (GF_FDENTRY_ALLOCATED == 
                                fdtable->fdentries[i].next_free) {
                        gf_proc_dump_build_key(key, prefix, "fdentry[%d]", i);
                        gf_proc_dump_add_section(key);
                        fdentry_dump(&fdtable->fdentries[i], key);
                }
        }

        pthread_mutex_unlock(&fdtable->lock);
}