summaryrefslogtreecommitdiffstats
path: root/tapset-utrace.cxx
blob: 8e2573abf5dc4188c9ae581fbaa1a56a6ce53b8b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
// utrace tapset
// Copyright (C) 2005-2010 Red Hat Inc.
// Copyright (C) 2005-2007 Intel Corporation.
// Copyright (C) 2008 James.Bottomley@HansenPartnership.com
//
// This file is part of systemtap, and is free software.  You can
// redistribute it and/or modify it under the terms of the GNU General
// Public License (GPL); either version 2, or (at your option) any
// later version.


#include "session.h"
#include "tapsets.h"
#include "task_finder.h"
#include "translate.h"
#include "util.h"

#include <cstring>
#include <string>


using namespace std;
using namespace __gnu_cxx;


static const string TOK_PROCESS("process");
static const string TOK_BEGIN("begin");
static const string TOK_END("end");
static const string TOK_THREAD("thread");
static const string TOK_SYSCALL("syscall");
static const string TOK_RETURN("return");


// ------------------------------------------------------------------------
// utrace user-space probes
// ------------------------------------------------------------------------

// Note that these flags don't match up exactly with UTRACE_EVENT
// flags (and that's OK).
enum utrace_derived_probe_flags {
  UDPF_NONE,
  UDPF_BEGIN,				// process begin
  UDPF_END,				// process end
  UDPF_THREAD_BEGIN,			// thread begin
  UDPF_THREAD_END,			// thread end
  UDPF_SYSCALL,				// syscall entry
  UDPF_SYSCALL_RETURN,			// syscall exit
  UDPF_NFLAGS
};

struct utrace_derived_probe: public derived_probe
{
  bool has_path;
  string path;
  bool has_library;
  string library;
  int64_t pid;
  enum utrace_derived_probe_flags flags;
  bool target_symbol_seen;

  utrace_derived_probe (systemtap_session &s, probe* p, probe_point* l,
			bool hp, string &pn, int64_t pd,
			enum utrace_derived_probe_flags f);
  void join_group (systemtap_session& s);

  void emit_unprivileged_assertion (translator_output*);
  void print_dupe_stamp(ostream& o);
};


struct utrace_derived_probe_group: public generic_dpg<utrace_derived_probe>
{
private:
  map<string, vector<utrace_derived_probe*> > probes_by_path;
  typedef map<string, vector<utrace_derived_probe*> >::iterator p_b_path_iterator;
  map<int64_t, vector<utrace_derived_probe*> > probes_by_pid;
  typedef map<int64_t, vector<utrace_derived_probe*> >::iterator p_b_pid_iterator;
  unsigned num_probes;
  bool flags_seen[UDPF_NFLAGS];

  void emit_probe_decl (systemtap_session& s, utrace_derived_probe *p);

public:
  utrace_derived_probe_group(): num_probes(0), flags_seen() { }

  void enroll (utrace_derived_probe* probe);
  void emit_module_decls (systemtap_session& s);
  void emit_module_init (systemtap_session& s);
  void emit_module_exit (systemtap_session& s);
};


struct utrace_var_expanding_visitor: public var_expanding_visitor
{
  utrace_var_expanding_visitor(systemtap_session& s, probe_point* l,
			       const string& pn,
                               enum utrace_derived_probe_flags f):
    sess (s), base_loc (l), probe_name (pn), flags (f),
    target_symbol_seen (false), add_block(NULL), add_probe(NULL) {}

  systemtap_session& sess;
  probe_point* base_loc;
  string probe_name;
  enum utrace_derived_probe_flags flags;
  bool target_symbol_seen;
  block *add_block;
  probe *add_probe;
  std::map<std::string, symbol *> return_ts_map;

  void visit_target_symbol_arg (target_symbol* e);
  void visit_target_symbol_context (target_symbol* e);
  void visit_target_symbol_cached (target_symbol* e);
  void visit_target_symbol (target_symbol* e);
};



utrace_derived_probe::utrace_derived_probe (systemtap_session &s,
                                            probe* p, probe_point* l,
					    bool hp, string &pn, int64_t pd,
					    enum utrace_derived_probe_flags f):
  derived_probe (p, new probe_point (*l) /* .components soon rewritten */ ),
  has_path(hp), path(pn), pid(pd), flags(f),
  target_symbol_seen(false)
{
  if (s.kernel_config["CONFIG_UTRACE"] != string("y"))
    throw semantic_error ("process probes not available without kernel CONFIG_UTRACE");

  // Expand local variables in the probe body
  utrace_var_expanding_visitor v (s, l, name, flags);
  v.replace (this->body);
  target_symbol_seen = v.target_symbol_seen;

  // If during target-variable-expanding the probe, we added a new block
  // of code, add it to the start of the probe.
  if (v.add_block)
    this->body = new block(v.add_block, this->body);
  // If when target-variable-expanding the probe, we added a new
  // probe, add it in a new file to the list of files to be processed.
  if (v.add_probe)
    {
      stapfile *f = new stapfile;
      f->probes.push_back(v.add_probe);
      s.files.push_back(f);
    }

  // Reset the sole element of the "locations" vector as a
  // "reverse-engineered" form of the incoming (q.base_loc) probe
  // point.  This allows a user to see what program etc.
  // number any particular match of the wildcards.

  vector<probe_point::component*> comps;
  if (hp)
    comps.push_back (new probe_point::component(TOK_PROCESS, new literal_string(path)));
  else if (pid != 0)
    comps.push_back (new probe_point::component(TOK_PROCESS, new literal_number(pid)));
  else
    comps.push_back (new probe_point::component(TOK_PROCESS));

  switch (flags)
    {
    case UDPF_THREAD_BEGIN:
      comps.push_back (new probe_point::component(TOK_THREAD));
      comps.push_back (new probe_point::component(TOK_BEGIN));
      break;
    case UDPF_THREAD_END:
      comps.push_back (new probe_point::component(TOK_THREAD));
      comps.push_back (new probe_point::component(TOK_END));
      break;
    case UDPF_SYSCALL:
      comps.push_back (new probe_point::component(TOK_SYSCALL));
      break;
    case UDPF_SYSCALL_RETURN:
      comps.push_back (new probe_point::component(TOK_SYSCALL));
      comps.push_back (new probe_point::component(TOK_RETURN));
      break;
    case UDPF_BEGIN:
      comps.push_back (new probe_point::component(TOK_BEGIN));
      break;
    case UDPF_END:
      comps.push_back (new probe_point::component(TOK_END));
      break;
    default:
      assert (0);
    }

  // Overwrite it.
  this->sole_location()->components = comps;
}


void
utrace_derived_probe::join_group (systemtap_session& s)
{
  if (! s.utrace_derived_probes)
    {
      s.utrace_derived_probes = new utrace_derived_probe_group ();
    }
  s.utrace_derived_probes->enroll (this);

  enable_task_finder(s);
}


void
utrace_derived_probe::emit_unprivileged_assertion (translator_output* o)
{
  // Process end probes are allowed for unprivileged users, even if the process
  // does not belong to them. They are required to check is_myproc() from within
  // their probe script before doing anything "dangerous".
  if (flags == UDPF_END)
    return;

  // Other process probes are allowed for unprivileged users, but only in the
  // context of processes which they own.
  emit_process_owner_assertion (o);
}

void
utrace_derived_probe::print_dupe_stamp(ostream& o)
{
  // Process end probes are allowed for unprivileged users, even if the process
  // does not belong to them. They are required to check is_myproc() from within
  // their probe script before doing anything "dangerous".
  // Other process probes are allowed for unprivileged users, but only in the
  // context of processes which they own.
  if (flags == UDPF_END)
    print_dupe_stamp_unprivileged (o);
  else
    print_dupe_stamp_unprivileged_process_owner (o);
}


void
utrace_var_expanding_visitor::visit_target_symbol_cached (target_symbol* e)
{
      // Get the full name of the target symbol.
      stringstream ts_name_stream;
      e->print(ts_name_stream);
      string ts_name = ts_name_stream.str();

      // Check and make sure we haven't already seen this target
      // variable in this return probe.  If we have, just return our
      // last replacement.
      map<string, symbol *>::iterator i = return_ts_map.find(ts_name);
      if (i != return_ts_map.end())
	{
	  provide (i->second);
	  return;
	}

      // We've got to do several things here to handle target
      // variables in return probes.

      // (1) Synthesize a global array which is the cache of the
      // target variable value.  We don't need a nesting level counter
      // like the dwarf_var_expanding_visitor::visit_target_symbol()
      // does since a particular thread can only be in one system
      // calls at a time. The array will look like this:
      //
      //   _utrace_tvar_{name}_{num}
      string aname = (string("_utrace_tvar_")
		      + e->base_name.substr(1)
		      + "_" + lex_cast(tick++));
      vardecl* vd = new vardecl;
      vd->name = aname;
      vd->tok = e->tok;
      sess.globals.push_back (vd);

      // (2) Create a new code block we're going to insert at the
      // beginning of this probe to get the cached value into a
      // temporary variable.  We'll replace the target variable
      // reference with the temporary variable reference.  The code
      // will look like this:
      //
      //   _utrace_tvar_tid = tid()
      //   _utrace_tvar_{name}_{num}_tmp
      //       = _utrace_tvar_{name}_{num}[_utrace_tvar_tid]
      //   delete _utrace_tvar_{name}_{num}[_utrace_tvar_tid]

      // (2a) Synthesize the tid temporary expression, which will look
      // like this:
      //
      //   _utrace_tvar_tid = tid()
      symbol* tidsym = new symbol;
      tidsym->name = string("_utrace_tvar_tid");
      tidsym->tok = e->tok;

      if (add_block == NULL)
        {
	   add_block = new block;
	   add_block->tok = e->tok;

	   // Synthesize a functioncall to grab the thread id.
	   functioncall* fc = new functioncall;
	   fc->tok = e->tok;
	   fc->function = string("tid");

	   // Assign the tid to '_utrace_tvar_tid'.
	   assignment* a = new assignment;
	   a->tok = e->tok;
	   a->op = "=";
	   a->left = tidsym;
	   a->right = fc;

	   expr_statement* es = new expr_statement;
	   es->tok = e->tok;
	   es->value = a;
	   add_block->statements.push_back (es);
	}

      // (2b) Synthesize an array reference and assign it to a
      // temporary variable (that we'll use as replacement for the
      // target variable reference).  It will look like this:
      //
      //   _utrace_tvar_{name}_{num}_tmp
      //       = _utrace_tvar_{name}_{num}[_utrace_tvar_tid]

      arrayindex* ai_tvar = new arrayindex;
      ai_tvar->tok = e->tok;

      symbol* sym = new symbol;
      sym->name = aname;
      sym->tok = e->tok;
      ai_tvar->base = sym;

      ai_tvar->indexes.push_back(tidsym);

      symbol* tmpsym = new symbol;
      tmpsym->name = aname + "_tmp";
      tmpsym->tok = e->tok;

      assignment* a = new assignment;
      a->tok = e->tok;
      a->op = "=";
      a->left = tmpsym;
      a->right = ai_tvar;

      expr_statement* es = new expr_statement;
      es->tok = e->tok;
      es->value = a;

      add_block->statements.push_back (es);

      // (2c) Delete the array value.  It will look like this:
      //
      //   delete _utrace_tvar_{name}_{num}[_utrace_tvar_tid]

      delete_statement* ds = new delete_statement;
      ds->tok = e->tok;
      ds->value = ai_tvar;
      add_block->statements.push_back (ds);

      // (3) We need an entry probe that saves the value for us in the
      // global array we created.  Create the entry probe, which will
      // look like this:
      //
      //   probe process(PATH_OR_PID).syscall {
      //     _utrace_tvar_tid = tid()
      //     _utrace_tvar_{name}_{num}[_utrace_tvar_tid] = ${param}
      //   }
      //
      // Why the temporary for tid()?  If we end up caching more
      // than one target variable, we can reuse the temporary instead
      // of calling tid() multiple times.

      if (add_probe == NULL)
        {
	   add_probe = new probe;
	   add_probe->tok = e->tok;

	   // We need the name of the current probe point, minus the
	   // ".return".  Create a new probe point, copying all the
	   // components, stopping when we see the ".return"
	   // component.
	   probe_point* pp = new probe_point;
	   for (unsigned c = 0; c < base_loc->components.size(); c++)
	     {
	        if (base_loc->components[c]->functor == "return")
		  break;
	        else
		  pp->components.push_back(base_loc->components[c]);
	     }
	   pp->optional = base_loc->optional;
	   add_probe->locations.push_back(pp);

	   add_probe->body = new block;
	   add_probe->body->tok = e->tok;

	   // Synthesize a functioncall to grab the thread id.
	   functioncall* fc = new functioncall;
	   fc->tok = e->tok;
	   fc->function = string("tid");

	   // Assign the tid to '_utrace_tvar_tid'.
	   assignment* a = new assignment;
	   a->tok = e->tok;
	   a->op = "=";
	   a->left = tidsym;
	   a->right = fc;

	   expr_statement* es = new expr_statement;
	   es->tok = e->tok;
	   es->value = a;
           add_probe->body = new block(add_probe->body, es);

	   vardecl* vd = new vardecl;
	   vd->tok = e->tok;
	   vd->name = tidsym->name;
	   vd->type = pe_long;
	   vd->set_arity(0);
	   add_probe->locals.push_back(vd);
	}

      // Save the value, like this:
      //
      //   _utrace_tvar_{name}_{num}[_utrace_tvar_tid] = ${param}
      a = new assignment;
      a->tok = e->tok;
      a->op = "=";
      a->left = ai_tvar;
      a->right = e;

      es = new expr_statement;
      es->tok = e->tok;
      es->value = a;

      add_probe->body = new block(add_probe->body, es);

      // (4) Provide the '_utrace_tvar_{name}_{num}_tmp' variable to
      // our parent so it can be used as a substitute for the target
      // symbol.
      provide (tmpsym);

      // (5) Remember this replacement since we might be able to reuse
      // it later if the same return probe references this target
      // symbol again.
      return_ts_map[ts_name] = tmpsym;
      return;
}


void
utrace_var_expanding_visitor::visit_target_symbol_arg (target_symbol* e)
{
  if (flags != UDPF_SYSCALL)
    throw semantic_error ("only \"process(PATH_OR_PID).syscall\" support $argN or $$parms.", e->tok);

  if (e->base_name == "$$parms") 
    {
      // copy from tracepoint
      token* pf_tok = new token(*e->tok);
      pf_tok->content = "sprintf";
      print_format* pf = print_format::create(pf_tok);

      target_symbol_seen = true;

      for (unsigned i = 0; i < 6; ++i)
        {
          if (i > 0)
            pf->raw_components += " ";
          pf->raw_components += "$arg" + lex_cast(i+1);
          target_symbol *tsym = new target_symbol;
          tsym->tok = e->tok;
          tsym->base_name = "$arg" + lex_cast(i+1);
          tsym->saved_conversion_error = 0;
          pf->raw_components += "=%#x"; //FIXME: missing type info

	  functioncall* n = new functioncall; //same as the following
	  n->tok = e->tok;
	  n->function = "_utrace_syscall_arg";
	  n->referent = 0;
	  literal_number *num = new literal_number(i);
	  num->tok = e->tok;
	  n->args.push_back(num);

          pf->args.push_back(n);
        }
      pf->components = print_format::string_to_components(pf->raw_components);

      provide (pf);
     } 
   else // $argN
     {
        string argnum_s = e->base_name.substr(4,e->base_name.length()-4);
        int argnum = 0;
        try
          {
            argnum = lex_cast<int>(argnum_s);
          }
        catch (const runtime_error& f) // non-integral $arg suffix: e.g. $argKKKSDF
          {
           throw semantic_error ("invalid syscall argument number (1-6)", e->tok);
          }

        e->assert_no_components("utrace");

        // FIXME: max argnument number should not be hardcoded.
        if (argnum < 1 || argnum > 6)
           throw semantic_error ("invalid syscall argument number (1-6)", e->tok);

        bool lvalue = is_active_lvalue(e);
        if (lvalue)
           throw semantic_error("utrace '$argN' variable is read-only", e->tok);

        // Remember that we've seen a target variable.
        target_symbol_seen = true;

        // We're going to substitute a synthesized '_utrace_syscall_arg'
        // function call for the '$argN' reference.
        functioncall* n = new functioncall;
        n->tok = e->tok;
        n->function = "_utrace_syscall_arg";
        n->referent = 0; // NB: must not resolve yet, to ensure inclusion in session

        literal_number *num = new literal_number(argnum - 1);
        num->tok = e->tok;
        n->args.push_back(num);

        provide (n);
     }
}

void
utrace_var_expanding_visitor::visit_target_symbol_context (target_symbol* e)
{
  string sname = e->base_name;

  e->assert_no_components("utrace");

  bool lvalue = is_active_lvalue(e);
  if (lvalue)
    throw semantic_error("utrace '" + sname + "' variable is read-only", e->tok);

  string fname;
  if (sname == "$return")
    {
      if (flags != UDPF_SYSCALL_RETURN)
	throw semantic_error ("only \"process(PATH_OR_PID).syscall.return\" support $return.", e->tok);
      fname = "_utrace_syscall_return";
    }
  else if (sname == "$syscall")
    {
      // If we've got a syscall entry probe, we can just call the
      // right function.
      if (flags == UDPF_SYSCALL) {
        fname = "_utrace_syscall_nr";
      }
      // If we're in a syscal return probe, we can't really access
      // $syscall.  So, similar to what
      // dwarf_var_expanding_visitor::visit_target_symbol() does,
      // we'll create an syscall entry probe to cache $syscall, then
      // we'll access the cached value in the syscall return probe.
      else {
	visit_target_symbol_cached (e);

	// Remember that we've seen a target variable.
	target_symbol_seen = true;
	return;
      }
    }
  else
    {
      throw semantic_error ("unknown target variable", e->tok);
    }

  // Remember that we've seen a target variable.
  target_symbol_seen = true;

  // We're going to substitute a synthesized '_utrace_syscall_nr'
  // function call for the '$syscall' reference.
  functioncall* n = new functioncall;
  n->tok = e->tok;
  n->function = fname;
  n->referent = 0; // NB: must not resolve yet, to ensure inclusion in session

  provide (n);
}

void
utrace_var_expanding_visitor::visit_target_symbol (target_symbol* e)
{
  assert(e->base_name.size() > 0 && e->base_name[0] == '$');

  try 
    {
      if (flags != UDPF_SYSCALL && flags != UDPF_SYSCALL_RETURN)
        throw semantic_error ("only \"process(PATH_OR_PID).syscall\" and \"process(PATH_OR_PID).syscall.return\" probes support target symbols",
                              e->tok);
      
      if (e->addressof)
        throw semantic_error("cannot take address of utrace variable", e->tok);
      
      if (startswith(e->base_name, "$arg") || e->base_name == "$$parms")
        visit_target_symbol_arg(e);
      else if (e->base_name == "$syscall" || e->base_name == "$return")
        visit_target_symbol_context(e);
      else
        throw semantic_error ("invalid target symbol for utrace probe, $syscall, $return, $argN or $$parms expected",
                              e->tok);
    }
  catch (const semantic_error &er) 
    {
      e->chain (er);
      provide(e);
      return;
    }
}


struct utrace_builder: public derived_probe_builder
{
  utrace_builder() {}
  virtual void build(systemtap_session & sess,
		     probe * base,
		     probe_point * location,
		     literal_map_t const & parameters,
		     vector<derived_probe *> & finished_results)
  {
    string path;
    int64_t pid;

    bool has_path = get_param (parameters, TOK_PROCESS, path);
    bool has_pid = get_param (parameters, TOK_PROCESS, pid);
    enum utrace_derived_probe_flags flags = UDPF_NONE;

    if (has_null_param (parameters, TOK_THREAD))
      {
	if (has_null_param (parameters, TOK_BEGIN))
	  flags = UDPF_THREAD_BEGIN;
	else if (has_null_param (parameters, TOK_END))
	  flags = UDPF_THREAD_END;
      }
    else if (has_null_param (parameters, TOK_SYSCALL))
      {
	if (has_null_param (parameters, TOK_RETURN))
	  flags = UDPF_SYSCALL_RETURN;
	else
	  flags = UDPF_SYSCALL;
      }
    else if (has_null_param (parameters, TOK_BEGIN))
      flags = UDPF_BEGIN;
    else if (has_null_param (parameters, TOK_END))
      flags = UDPF_END;

    // If we didn't get a path or pid, this means to probe everything.
    // Convert this to a pid-based probe.
    if (! has_path && ! has_pid)
      {
	has_path = false;
	path.clear();
	has_pid = true;
	pid = 0;
      }
    else if (has_path)
      {
        path = find_executable (path);
        sess.unwindsym_modules.insert (path);
      }
    else if (has_pid)
      {
	// We can't probe 'init' (pid 1).  XXX: where does this limitation come from?
	if (pid < 2)
	  throw semantic_error ("process pid must be greater than 1",
				location->components.front()->tok);

        // XXX: could we use /proc/$pid/exe in unwindsym_modules and elsewhere?
      }

    finished_results.push_back(new utrace_derived_probe(sess, base, location,
							has_path, path, pid,
							flags));
  }
};


void
utrace_derived_probe_group::enroll (utrace_derived_probe* p)
{
  if (p->has_path)
    probes_by_path[p->path].push_back(p);
  else
    probes_by_pid[p->pid].push_back(p);
  num_probes++;
  flags_seen[p->flags] = true;

  // XXX: multiple exec probes (for instance) for the same path (or
  // pid) should all share a utrace report function, and have their
  // handlers executed sequentially.
}


void
utrace_derived_probe_group::emit_probe_decl (systemtap_session& s,
					     utrace_derived_probe *p)
{
  s.op->newline() << "{";
  s.op->line() << " .tgt={";

  if (p->has_path)
    {
      s.op->line() << " .procname=\"" << p->path << "\",";
      s.op->line() << " .pid=0,";
    }
  else
    {
      s.op->line() << " .procname=NULL,";
      s.op->line() << " .pid=" << p->pid << ",";
    }

  s.op->line() << " .callback=&_stp_utrace_probe_cb,";
  s.op->line() << " .mmap_callback=NULL,";
  s.op->line() << " .munmap_callback=NULL,";
  s.op->line() << " .mprotect_callback=NULL,";
  s.op->line() << " },";
  s.op->line() << " .pp=" << lex_cast_qstring (*p->sole_location()) << ",";
  s.op->line() << " .ph=&" << p->name << ",";

  // Handle flags
  switch (p->flags)
    {
    // Notice that we'll just call the probe directly when we get
    // notified, since the task_finder layer stops the thread for us.
    case UDPF_BEGIN:				// process begin
      s.op->line() << " .flags=(UDPF_BEGIN),";
      break;
    case UDPF_THREAD_BEGIN:			// thread begin
      s.op->line() << " .flags=(UDPF_THREAD_BEGIN),";
      break;

    // Notice we're not setting up a .ops/.report_death handler for
    // either UDPF_END or UDPF_THREAD_END.  Instead, we'll just call
    // the probe directly when we get notified.
    case UDPF_END:				// process end
      s.op->line() << " .flags=(UDPF_END),";
      break;
    case UDPF_THREAD_END:			// thread end
      s.op->line() << " .flags=(UDPF_THREAD_END),";
      break;

    // For UDPF_SYSCALL/UDPF_SYSCALL_RETURN probes, the .report_death
    // handler isn't strictly necessary.  However, it helps to keep
    // our attaches/detaches symmetrical.  Since the task_finder layer
    // stops the thread, that works around bug 6841.
    case UDPF_SYSCALL:
      s.op->line() << " .flags=(UDPF_SYSCALL),";
      s.op->line() << " .ops={ .report_syscall_entry=stap_utrace_probe_syscall,  .report_death=stap_utrace_task_finder_report_death },";
      s.op->line() << " .events=(UTRACE_EVENT(SYSCALL_ENTRY)|UTRACE_EVENT(DEATH)),";
      break;
    case UDPF_SYSCALL_RETURN:
      s.op->line() << " .flags=(UDPF_SYSCALL_RETURN),";
      s.op->line() << " .ops={ .report_syscall_exit=stap_utrace_probe_syscall, .report_death=stap_utrace_task_finder_report_death },";
      s.op->line() << " .events=(UTRACE_EVENT(SYSCALL_EXIT)|UTRACE_EVENT(DEATH)),";
      break;

    case UDPF_NONE:
      s.op->line() << " .flags=(UDPF_NONE),";
      s.op->line() << " .ops={ },";
      s.op->line() << " .events=0,";
      break;
    default:
      throw semantic_error ("bad utrace probe flag");
      break;
    }
  s.op->line() << " .engine_attached=0,";
  s.op->line() << " },";
}


void
utrace_derived_probe_group::emit_module_decls (systemtap_session& s)
{
  if (probes_by_path.empty() && probes_by_pid.empty())
    return;

  s.op->newline();
  s.op->newline() << "/* ---- utrace probes ---- */";

  s.op->newline() << "enum utrace_derived_probe_flags {";
  s.op->indent(1);
  s.op->newline() << "UDPF_NONE,";
  s.op->newline() << "UDPF_BEGIN,";
  s.op->newline() << "UDPF_END,";
  s.op->newline() << "UDPF_THREAD_BEGIN,";
  s.op->newline() << "UDPF_THREAD_END,";
  s.op->newline() << "UDPF_SYSCALL,";
  s.op->newline() << "UDPF_SYSCALL_RETURN,";
  s.op->newline() << "UDPF_NFLAGS";
  s.op->newline(-1) << "};";

  s.op->newline() << "struct stap_utrace_probe {";
  s.op->indent(1);
  s.op->newline() << "struct stap_task_finder_target tgt;";
  s.op->newline() << "const char *pp;";
  s.op->newline() << "void (*ph) (struct context*);";
  s.op->newline() << "int engine_attached;";
  s.op->newline() << "enum utrace_derived_probe_flags flags;";
  s.op->newline() << "struct utrace_engine_ops ops;";
  s.op->newline() << "unsigned long events;";
  s.op->newline(-1) << "};";


  // Output handler function for UDPF_BEGIN, UDPF_THREAD_BEGIN,
  // UDPF_END, and UDPF_THREAD_END
  if (flags_seen[UDPF_BEGIN] || flags_seen[UDPF_THREAD_BEGIN]
      || flags_seen[UDPF_END] || flags_seen[UDPF_THREAD_END])
    {
      s.op->newline() << "static void stap_utrace_probe_handler(struct task_struct *tsk, struct stap_utrace_probe *p) {";
      s.op->indent(1);

      common_probe_entryfn_prologue (s.op, "STAP_SESSION_RUNNING", "p->pp");

      // call probe function
      s.op->newline() << "(*p->ph) (c);";
      common_probe_entryfn_epilogue (s.op);

      s.op->newline() << "return;";
      s.op->newline(-1) << "}";
    }

  // Output handler function for SYSCALL_ENTRY and SYSCALL_EXIT events
  if (flags_seen[UDPF_SYSCALL] || flags_seen[UDPF_SYSCALL_RETURN])
    {
      s.op->newline() << "#ifdef UTRACE_ORIG_VERSION";
      s.op->newline() << "static u32 stap_utrace_probe_syscall(struct utrace_attached_engine *engine, struct task_struct *tsk, struct pt_regs *regs) {";
      s.op->newline() << "#else";
      s.op->newline() << "#if defined(UTRACE_API_VERSION) && (UTRACE_API_VERSION >= 20091216)";
      s.op->newline() << "static u32 stap_utrace_probe_syscall(u32 action, struct utrace_attached_engine *engine, struct pt_regs *regs) {";
      s.op->newline() << "#else";
      s.op->newline() << "static u32 stap_utrace_probe_syscall(enum utrace_resume_action action, struct utrace_attached_engine *engine, struct task_struct *tsk, struct pt_regs *regs) {";
      s.op->newline() << "#endif";
      s.op->newline() << "#endif";

      s.op->indent(1);
      s.op->newline() << "struct stap_utrace_probe *p = (struct stap_utrace_probe *)engine->data;";

      common_probe_entryfn_prologue (s.op, "STAP_SESSION_RUNNING", "p->pp");
      s.op->newline() << "c->regs = regs;";

      // call probe function
      s.op->newline() << "(*p->ph) (c);";
      common_probe_entryfn_epilogue (s.op);

      s.op->newline() << "if ((atomic_read (&session_state) != STAP_SESSION_STARTING) && (atomic_read (&session_state) != STAP_SESSION_RUNNING)) {";
      s.op->indent(1);
      s.op->newline() << "debug_task_finder_detach();";
      s.op->newline() << "return UTRACE_DETACH;";
      s.op->newline(-1) << "}";
      s.op->newline() << "return UTRACE_RESUME;";
      s.op->newline(-1) << "}";
    }

  // Output task_finder callback routine that gets called for all
  // utrace probe types.
  s.op->newline() << "static int _stp_utrace_probe_cb(struct stap_task_finder_target *tgt, struct task_struct *tsk, int register_p, int process_p) {";
  s.op->indent(1);
  s.op->newline() << "int rc = 0;";
  s.op->newline() << "struct stap_utrace_probe *p = container_of(tgt, struct stap_utrace_probe, tgt);";
  s.op->newline() << "struct utrace_attached_engine *engine;";

  s.op->newline() << "if (register_p) {";
  s.op->indent(1);

  s.op->newline() << "switch (p->flags) {";
  s.op->indent(1);

  // When receiving a UTRACE_EVENT(CLONE) event, we can't call the
  // begin/thread.begin probe directly.  So, we'll just attach an
  // engine that waits for the thread to quiesce.  When the thread
  // quiesces, then call the probe.
  if (flags_seen[UDPF_BEGIN])
  {
      s.op->newline() << "case UDPF_BEGIN:";
      s.op->indent(1);
      s.op->newline() << "if (process_p) {";
      s.op->indent(1);
      s.op->newline() << "stap_utrace_probe_handler(tsk, p);";
      s.op->newline(-1) << "}";
      s.op->newline() << "break;";
      s.op->indent(-1);
  }
  if (flags_seen[UDPF_THREAD_BEGIN])
  {
      s.op->newline() << "case UDPF_THREAD_BEGIN:";
      s.op->indent(1);
      s.op->newline() << "if (! process_p) {";
      s.op->indent(1);
      s.op->newline() << "stap_utrace_probe_handler(tsk, p);";
      s.op->newline(-1) << "}";
      s.op->newline() << "break;";
      s.op->indent(-1);
  }

  // For end/thread_end probes, do nothing at registration time.
  // We'll handle these in the 'register_p == 0' case.
  if (flags_seen[UDPF_END] || flags_seen[UDPF_THREAD_END])
    {
      s.op->newline() << "case UDPF_END:";
      s.op->newline() << "case UDPF_THREAD_END:";
      s.op->indent(1);
      s.op->newline() << "break;";
      s.op->indent(-1);
    }

  // Attach an engine for SYSCALL_ENTRY and SYSCALL_EXIT events.
  if (flags_seen[UDPF_SYSCALL] || flags_seen[UDPF_SYSCALL_RETURN])
    {
      s.op->newline() << "case UDPF_SYSCALL:";
      s.op->newline() << "case UDPF_SYSCALL_RETURN:";
      s.op->indent(1);
      s.op->newline() << "rc = stap_utrace_attach(tsk, &p->ops, p, p->events);";
      s.op->newline() << "if (rc == 0) {";
      s.op->indent(1);
      s.op->newline() << "p->engine_attached = 1;";
      s.op->newline(-1) << "}";
      s.op->newline() << "break;";
      s.op->indent(-1);
    }

  s.op->newline() << "default:";
  s.op->indent(1);
  s.op->newline() << "_stp_error(\"unhandled flag value %d at %s:%d\", p->flags, __FUNCTION__, __LINE__);";
  s.op->newline() << "break;";
  s.op->indent(-1);
  s.op->newline(-1) << "}";
  s.op->newline(-1) << "}";

  // Since this engine could be attached to multiple threads, don't
  // call stap_utrace_detach_ops() here, only call
  // stap_utrace_detach() as necessary.
  s.op->newline() << "else {";
  s.op->indent(1);
  s.op->newline() << "switch (p->flags) {";
  s.op->indent(1);
  // For end probes, go ahead and call the probe directly.
  if (flags_seen[UDPF_END])
    {
      s.op->newline() << "case UDPF_END:";
      s.op->indent(1);
      s.op->newline() << "if (process_p) {";
      s.op->indent(1);
      s.op->newline() << "stap_utrace_probe_handler(tsk, p);";
      s.op->newline(-1) << "}";
      s.op->newline() << "break;";
      s.op->indent(-1);
    }
  if (flags_seen[UDPF_THREAD_END])
    {
      s.op->newline() << "case UDPF_THREAD_END:";
      s.op->indent(1);
      s.op->newline() << "if (! process_p) {";
      s.op->indent(1);
      s.op->newline() << "stap_utrace_probe_handler(tsk, p);";
      s.op->newline(-1) << "}";
      s.op->newline() << "break;";
      s.op->indent(-1);
    }

  // For begin/thread_begin probes, we don't need to do anything.
  if (flags_seen[UDPF_BEGIN] || flags_seen[UDPF_THREAD_BEGIN])
  {
      s.op->newline() << "case UDPF_BEGIN:";
      s.op->newline() << "case UDPF_THREAD_BEGIN:";
      s.op->indent(1);
      s.op->newline() << "break;";
      s.op->indent(-1);
  }

  if (flags_seen[UDPF_SYSCALL] || flags_seen[UDPF_SYSCALL_RETURN])
    {
      s.op->newline() << "case UDPF_SYSCALL:";
      s.op->newline() << "case UDPF_SYSCALL_RETURN:";
      s.op->indent(1);
      s.op->newline() << "stap_utrace_detach(tsk, &p->ops);";
      s.op->newline() << "break;";
      s.op->indent(-1);
    }

  s.op->newline() << "default:";
  s.op->indent(1);
  s.op->newline() << "_stp_error(\"unhandled flag value %d at %s:%d\", p->flags, __FUNCTION__, __LINE__);";
  s.op->newline() << "break;";
  s.op->indent(-1);
  s.op->newline(-1) << "}";
  s.op->newline(-1) << "}";
  s.op->newline() << "return rc;";
  s.op->newline(-1) << "}";

  s.op->newline() << "static struct stap_utrace_probe stap_utrace_probes[] = {";
  s.op->indent(1);

  // Set up 'process(PATH)' probes
  if (! probes_by_path.empty())
    {
      for (p_b_path_iterator it = probes_by_path.begin();
	   it != probes_by_path.end(); it++)
        {
	  for (unsigned i = 0; i < it->second.size(); i++)
	    {
	      utrace_derived_probe *p = it->second[i];
	      emit_probe_decl(s, p);
	    }
	}
    }

  // Set up 'process(PID)' probes
  if (! probes_by_pid.empty())
    {
      for (p_b_pid_iterator it = probes_by_pid.begin();
	   it != probes_by_pid.end(); it++)
        {
	  for (unsigned i = 0; i < it->second.size(); i++)
	    {
	      utrace_derived_probe *p = it->second[i];
	      emit_probe_decl(s, p);
	    }
	}
    }
  s.op->newline(-1) << "};";
}


void
utrace_derived_probe_group::emit_module_init (systemtap_session& s)
{
  if (probes_by_path.empty() && probes_by_pid.empty())
    return;

  s.op->newline() << "/* ---- utrace probes ---- */";
  s.op->newline() << "for (i=0; i<ARRAY_SIZE(stap_utrace_probes); i++) {";
  s.op->newline(1) << "struct stap_utrace_probe *p = &stap_utrace_probes[i];";
  s.op->newline() << "probe_point = p->pp;"; // for error messages
  s.op->newline() << "rc = stap_register_task_finder_target(&p->tgt);";

  // NB: if (rc), there is no need (XXX: nor any way) to clean up any
  // finders already registered, since mere registration does not
  // cause any utrace or memory allocation actions.  That happens only
  // later, once the task finder engine starts running.  So, for a
  // partial initialization requiring unwind, we need do nothing.
  s.op->newline() << "if (rc) break;";

  s.op->newline(-1) << "}";
}


void
utrace_derived_probe_group::emit_module_exit (systemtap_session& s)
{
  if (probes_by_path.empty() && probes_by_pid.empty()) return;

  s.op->newline();
  s.op->newline() << "/* ---- utrace probes ---- */";
  s.op->newline() << "for (i=0; i<ARRAY_SIZE(stap_utrace_probes); i++) {";
  s.op->newline(1) << "struct stap_utrace_probe *p = &stap_utrace_probes[i];";

  s.op->newline() << "if (p->engine_attached) {";
  s.op->newline(1) << "stap_utrace_detach_ops(&p->ops);";

  s.op->newline(-1) << "}";
  s.op->newline(-1) << "}";
}


void
register_tapset_utrace(systemtap_session& s)
{
  match_node* root = s.pattern_root;
  derived_probe_builder *builder = new utrace_builder();

  vector<match_node*> roots;
  roots.push_back(root->bind(TOK_PROCESS));
  roots.push_back(root->bind_str(TOK_PROCESS));
  roots.push_back(root->bind_num(TOK_PROCESS));

  for (unsigned i = 0; i < roots.size(); ++i)
    {
      roots[i]->bind(TOK_BEGIN)
	->bind_unprivileged()
	->bind(builder);
      roots[i]->bind(TOK_END)
	->bind_unprivileged()
	->bind(builder);
      roots[i]->bind(TOK_THREAD)->bind(TOK_BEGIN)
	->bind_unprivileged()
	->bind(builder);
      roots[i]->bind(TOK_THREAD)->bind(TOK_END)
	->bind_unprivileged()
	->bind(builder);
      roots[i]->bind(TOK_SYSCALL)
	->bind_unprivileged()
	->bind(builder);
      roots[i]->bind(TOK_SYSCALL)->bind(TOK_RETURN)
	->bind_unprivileged()
	->bind(builder);
    }
}

/* vim: set sw=2 ts=8 cino=>4,n-2,{2,^-2,t0,(0,u0,w1,M1 : */