1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
|
#include <linux/types.h>
#include <linux/ring_buffer.h>
#include <linux/wait.h>
#include <linux/poll.h>
#include <linux/cpumask.h>
#ifndef STP_RELAY_TIMER_INTERVAL
/* Wakeup timer interval in jiffies (default 10 ms) */
#define STP_RELAY_TIMER_INTERVAL ((HZ + 99) / 100)
#endif
struct _stp_data_entry {
size_t len;
unsigned char buf[];
};
/*
* Trace iterator - used by printout routines who present trace
* results to users and which routines might sleep, etc:
*/
struct _stp_iterator {
#if 0
struct trace_array *tr;
struct tracer *trace;
void *private;
#endif
int cpu_file;
#if 0
struct mutex mutex;
#endif
struct ring_buffer_iter *buffer_iter[NR_CPUS];
#if 0
unsigned long iter_flags;
/* The below is zeroed out in pipe_read */
struct trace_seq seq;
struct trace_entry *ent;
#endif
int cpu;
u64 ts;
#if 0
loff_t pos;
long idx;
cpumask_var_t started;
#endif
};
/* In bulk mode, we need 1 'struct _stp_iterator' for each cpu. In
* 'normal' mode, we only need 1 'struct _stp_iterator' (since all
* output is sent through 1 file). */
#ifdef STP_BULKMODE
#define NR_ITERS NR_CPUS
#else
#define NR_ITERS 1
#endif
struct _stp_relay_data_type {
enum _stp_transport_state transport_state;
struct ring_buffer *rb;
struct _stp_iterator iter[NR_ITERS];
cpumask_var_t trace_reader_cpumask;
struct timer_list timer;
int overwrite_flag;
};
static struct _stp_relay_data_type _stp_relay_data;
/* _stp_poll_wait is a waitqueue for tasks blocked on
* _stp_data_poll_trace() */
static DECLARE_WAIT_QUEUE_HEAD(_stp_poll_wait);
static void __stp_free_ring_buffer(void)
{
free_cpumask_var(_stp_relay_data.trace_reader_cpumask);
if (_stp_relay_data.rb)
ring_buffer_free(_stp_relay_data.rb);
_stp_relay_data.rb = NULL;
}
static int __stp_alloc_ring_buffer(void)
{
int i;
unsigned long buffer_size = _stp_bufsize;
if (!alloc_cpumask_var(&_stp_relay_data.trace_reader_cpumask,
GFP_KERNEL))
goto fail;
cpumask_clear(_stp_relay_data.trace_reader_cpumask);
if (buffer_size == 0) {
dbug_trans(1, "using default buffer size...\n");
buffer_size = _stp_nsubbufs * _stp_subbuf_size;
}
/* The number passed to ring_buffer_alloc() is per cpu. Our
* 'buffer_size' is a total number of bytes to allocate. So,
* we need to divide buffer_size by the number of cpus. */
buffer_size /= num_online_cpus();
dbug_trans(1, "%lu\n", buffer_size);
_stp_relay_data.rb = ring_buffer_alloc(buffer_size, 0);
if (!_stp_relay_data.rb)
goto fail;
dbug_trans(0, "size = %lu\n", ring_buffer_size(_stp_relay_data.rb));
return 0;
fail:
__stp_free_ring_buffer();
return -ENOMEM;
}
static int _stp_data_open_trace(struct inode *inode, struct file *file)
{
struct _stp_iterator *iter = inode->i_private;
#ifdef STP_BULKMODE
int cpu_file = iter->cpu_file;
#endif
/* We only allow for one reader per cpu */
dbug_trans(1, "trace attach\n");
#ifdef STP_BULKMODE
if (!cpumask_test_cpu(cpu_file, _stp_relay_data.trace_reader_cpumask))
cpumask_set_cpu(cpu_file, _stp_relay_data.trace_reader_cpumask);
else {
dbug_trans(1, "returning EBUSY\n");
return -EBUSY;
}
#else
if (!cpumask_empty(_stp_relay_data.trace_reader_cpumask)) {
dbug_trans(1, "returning EBUSY\n");
return -EBUSY;
}
cpumask_setall(_stp_relay_data.trace_reader_cpumask);
#endif
file->private_data = inode->i_private;
return 0;
}
static int _stp_data_release_trace(struct inode *inode, struct file *file)
{
struct _stp_iterator *iter = inode->i_private;
dbug_trans(1, "trace detach\n");
#ifdef STP_BULKMODE
cpumask_clear_cpu(iter->cpu_file, _stp_relay_data.trace_reader_cpumask);
#else
cpumask_clear(_stp_relay_data.trace_reader_cpumask);
#endif
return 0;
}
size_t
_stp_event_to_user(struct ring_buffer_event *event, char __user *ubuf,
size_t cnt)
{
int ret;
struct _stp_data_entry *entry;
dbug_trans(1, "event(%p), ubuf(%p), cnt(%lu)\n", event, ubuf, cnt);
if (event == NULL || ubuf == NULL) {
dbug_trans(1, "returning -EFAULT(1)\n");
return -EFAULT;
}
entry = (struct _stp_data_entry *)ring_buffer_event_data(event);
if (entry == NULL) {
dbug_trans(1, "returning -EFAULT(2)\n");
return -EFAULT;
}
/* We don't do partial entries - just fail. */
if (entry->len > cnt) {
dbug_trans(1, "returning -EBUSY\n");
return -EBUSY;
}
#if defined(DEBUG_TRANS) && (DEBUG_TRANS >= 2)
{
char *last = entry->buf + (entry->len - 5);
dbug_trans2("copying %.5s...%.5s\n", entry->buf, last);
}
#endif
if (cnt > entry->len)
cnt = entry->len;
ret = copy_to_user(ubuf, entry->buf, cnt);
if (ret) {
dbug_trans(1, "returning -EFAULT(3)\n");
return -EFAULT;
}
return cnt;
}
static int _stp_ring_buffer_empty_cpu(struct _stp_iterator *iter)
{
int cpu;
#ifdef STP_BULKMODE
cpu = iter->cpu_file;
if (iter->buffer_iter[cpu]) {
if (ring_buffer_iter_empty(iter->buffer_iter[cpu]))
return 1;
}
else {
if (ring_buffer_empty_cpu(_stp_relay_data.rb, cpu))
return 1;
}
return 0;
#else
for_each_possible_cpu(cpu) {
if (iter->buffer_iter[cpu]) {
if (!ring_buffer_iter_empty(iter->buffer_iter[cpu]))
return 0;
}
else {
if (!ring_buffer_empty_cpu(_stp_relay_data.rb, cpu))
return 0;
}
}
return 1;
#endif
}
static int _stp_ring_buffer_empty(void)
{
struct _stp_iterator *iter;
#ifdef STP_BULKMODE
int cpu;
for_each_possible_cpu(cpu) {
iter = &_stp_relay_data.iter[cpu];
if (! _stp_ring_buffer_empty_cpu(iter))
return 0;
}
return 1;
#else
iter = &_stp_relay_data.iter[0];
return _stp_ring_buffer_empty_cpu(iter);
#endif
}
static void _stp_ring_buffer_iterator_increment(struct _stp_iterator *iter)
{
if (iter->buffer_iter[iter->cpu])
ring_buffer_read(iter->buffer_iter[iter->cpu], NULL);
}
static void _stp_ring_buffer_consume(struct _stp_iterator *iter)
{
_stp_ring_buffer_iterator_increment(iter);
ring_buffer_consume(_stp_relay_data.rb, iter->cpu, &iter->ts);
}
static ssize_t _stp_tracing_wait_pipe(struct file *filp)
{
struct _stp_iterator *iter = filp->private_data;
if (_stp_ring_buffer_empty_cpu(iter)) {
if ((filp->f_flags & O_NONBLOCK)) {
dbug_trans(1, "returning -EAGAIN\n");
return -EAGAIN;
}
if (signal_pending(current)) {
dbug_trans(1, "returning -EINTR\n");
return -EINTR;
}
dbug_trans(1, "returning 0\n");
return 0;
}
dbug_trans(1, "returning 1\n");
return 1;
}
static struct ring_buffer_event *
_stp_peek_next_event(struct _stp_iterator *iter, int cpu, u64 *ts)
{
if (iter->buffer_iter[cpu])
return ring_buffer_iter_peek(iter->buffer_iter[cpu], ts);
else
return ring_buffer_peek(_stp_relay_data.rb, cpu, ts);
}
/* Find the next real event */
static struct ring_buffer_event *
_stp_find_next_event(struct _stp_iterator *iter)
{
struct ring_buffer_event *event;
int cpu_file = iter->cpu_file;
#ifdef STP_BULKMODE
/*
* If we are in a per_cpu trace file, don't bother by iterating over
* all cpus and peek directly.
*/
if (ring_buffer_iter_empty(iter->buffer_iter[cpu_file]))
return NULL;
event = _stp_peek_next_event(iter, cpu_file, &iter->ts);
iter->cpu = cpu_file;
return event;
#else
struct ring_buffer_event *next = NULL;
u64 next_ts = 0, ts;
int next_cpu = -1;
int cpu;
for_each_possible_cpu(cpu) {
if (iter->buffer_iter[cpu] == NULL)
continue;
if (ring_buffer_iter_empty(iter->buffer_iter[cpu]))
continue;
event = _stp_peek_next_event(iter, cpu, &ts);
/*
* Pick the event with the smallest timestamp:
*/
if (event && (!next || ts < next_ts)) {
next = event;
next_cpu = cpu;
next_ts = ts;
}
}
iter->cpu = next_cpu;
iter->ts = next_ts;
return next;
#endif
}
/*
* Consumer reader.
*/
static ssize_t
_stp_data_read_trace(struct file *filp, char __user *ubuf,
size_t cnt, loff_t *ppos)
{
ssize_t sret;
struct ring_buffer_event *event;
struct _stp_iterator *iter = filp->private_data;
#ifdef STP_BULKMODE
int cpu_file = iter->cpu_file;
#else
int cpu;
#endif
dbug_trans(1, "%lu\n", (unsigned long)cnt);
sret = _stp_tracing_wait_pipe(filp);
dbug_trans(1, "_stp_tracing_wait_pipe returned %ld\n", sret);
if (sret <= 0)
goto out;
#ifdef STP_BULKMODE
iter->buffer_iter[cpu_file]
= ring_buffer_read_start(_stp_relay_data.rb, cpu_file);
if (iter->buffer_iter[cpu_file] == NULL) {
dbug_trans(0, "buffer_iter[%d] was NULL\n", cpu_file);
goto out;
}
#else
for_each_possible_cpu(cpu) {
iter->buffer_iter[cpu]
= ring_buffer_read_start(_stp_relay_data.rb, cpu);
}
#endif
iter->ts = 0;
dbug_trans(0, "iterator(s) started\n");
if (cnt >= PAGE_SIZE)
cnt = PAGE_SIZE - 1;
dbug_trans(1, "sret = %lu\n", (unsigned long)sret);
sret = 0;
while ((event = _stp_find_next_event(iter)) != NULL) {
ssize_t len;
len = _stp_event_to_user(event, ubuf, cnt);
if (len <= 0)
break;
_stp_ring_buffer_consume(iter);
dbug_trans(1, "event consumed\n");
ubuf += len;
cnt -= len;
sret += len;
if (cnt <= 0)
break;
}
out:
#ifdef STP_BULKMODE
if (iter->buffer_iter[cpu_file]) {
ring_buffer_read_finish(iter->buffer_iter[cpu_file]);
iter->buffer_iter[cpu_file] = NULL;
dbug_trans(0, "iterator finished\n");
}
#else
for_each_possible_cpu(cpu) {
if (iter->buffer_iter[cpu]) {
ring_buffer_read_finish(iter->buffer_iter[cpu]);
iter->buffer_iter[cpu] = NULL;
}
}
dbug_trans(0, "iterator(s) finished\n");
#endif
return sret;
}
static unsigned int
_stp_data_poll_trace(struct file *filp, poll_table *poll_table)
{
struct _stp_iterator *iter = filp->private_data;
dbug_trans(1, "entry\n");
if (! _stp_ring_buffer_empty_cpu(iter))
return POLLIN | POLLRDNORM;
poll_wait(filp, &_stp_poll_wait, poll_table);
if (! _stp_ring_buffer_empty_cpu(iter))
return POLLIN | POLLRDNORM;
dbug_trans(1, "exit\n");
return 0;
}
static struct file_operations __stp_data_fops = {
.owner = THIS_MODULE,
.open = _stp_data_open_trace,
.release = _stp_data_release_trace,
.poll = _stp_data_poll_trace,
.read = _stp_data_read_trace,
};
/*
* Here's how __STP_MAX_RESERVE_SIZE is figured. The value of
* BUF_PAGE_SIZE was gotten from the kernel's ring_buffer code. It
* is divided by 4, so we waste a maximum of 1/4 of the buffer (in
* the case of a small reservation).
*/
#define __STP_MAX_RESERVE_SIZE ((/*BUF_PAGE_SIZE*/ 4080 / 4) \
- sizeof(struct _stp_data_entry) \
- sizeof(struct ring_buffer_event))
/*
* This function prepares the cpu buffer to write a sample.
*
* Struct op_entry is used during operations on the ring buffer while
* struct op_sample contains the data that is stored in the ring
* buffer. Struct entry can be uninitialized. The function reserves a
* data array that is specified by size. Use
* op_cpu_buffer_write_commit() after preparing the sample. In case of
* errors a null pointer is returned, otherwise the pointer to the
* sample.
*
*/
static size_t
_stp_data_write_reserve(size_t size_request, void **entry)
{
struct ring_buffer_event *event;
struct _stp_data_entry *sde;
if (entry == NULL)
return -EINVAL;
if (size_request > __STP_MAX_RESERVE_SIZE) {
size_request = __STP_MAX_RESERVE_SIZE;
}
#ifdef STAPCONF_RING_BUFFER_FLAGS
event = ring_buffer_lock_reserve(_stp_relay_data.rb,
(sizeof(struct _stp_data_entry)
+ size_request), 0);
#else
event = ring_buffer_lock_reserve(_stp_relay_data.rb,
(sizeof(struct _stp_data_entry)
+ size_request));
#endif
if (unlikely(! event)) {
int cpu;
struct _stp_iterator *iter;
dbug_trans(0, "event = NULL (%p)?\n", event);
if (! _stp_relay_data.overwrite_flag) {
entry = NULL;
return 0;
}
/* If we're in overwrite mode and all the buffers are
* full, take a event out of the buffer and consume it
* (throw it away). This should make room for the new
* data. */
#ifdef STP_BULKMODE
cpu = raw_smp_processor_id();
iter = &_stp_relay_data.iter[cpu];
#else
iter = &_stp_relay_data.iter[0];
#endif
event = _stp_find_next_event(iter);
if (event) {
ssize_t len;
sde = (struct _stp_data_entry *)ring_buffer_event_data(event);
if (sde->len < size_request)
size_request = sde->len;
_stp_ring_buffer_consume(iter);
/* Try to reserve again. */
#ifdef STAPCONF_RING_BUFFER_FLAGS
event = ring_buffer_lock_reserve(_stp_relay_data.rb,
sizeof(struct _stp_data_entry) + size_request,
0);
#else
event = ring_buffer_lock_reserve(_stp_relay_data.rb,
sizeof(struct _stp_data_entry) + size_request);
#endif
dbug_trans(0, "overwritten event = 0x%p\n", event);
}
if (unlikely(! event)) {
entry = NULL;
return 0;
}
}
sde = (struct _stp_data_entry *)ring_buffer_event_data(event);
sde->len = size_request;
*entry = event;
return size_request;
}
static unsigned char *_stp_data_entry_data(void *entry)
{
struct ring_buffer_event *event = entry;
struct _stp_data_entry *sde;
if (event == NULL)
return NULL;
sde = (struct _stp_data_entry *)ring_buffer_event_data(event);
return sde->buf;
}
static int _stp_data_write_commit(void *entry)
{
struct ring_buffer_event *event = (struct ring_buffer_event *)entry;
if (unlikely(! entry)) {
dbug_trans(1, "entry = NULL, returning -EINVAL\n");
return -EINVAL;
}
#if defined(DEBUG_TRANS) && (DEBUG_TRANS >= 2)
{
struct _stp_data_entry *sde = (struct _stp_data_entry *)ring_buffer_event_data(event);
char *last = sde->buf + (sde->len - 5);
dbug_trans2("commiting %.5s...%.5s\n", sde->buf, last);
}
#endif
#ifdef STAPCONF_RING_BUFFER_FLAGS
return ring_buffer_unlock_commit(_stp_relay_data.rb, event, 0);
#else
return ring_buffer_unlock_commit(_stp_relay_data.rb, event);
#endif
}
static void __stp_relay_wakeup_timer(unsigned long val)
{
if (waitqueue_active(&_stp_poll_wait)
&& ! _stp_ring_buffer_empty())
wake_up_interruptible(&_stp_poll_wait);
mod_timer(&_stp_relay_data.timer, jiffies + STP_RELAY_TIMER_INTERVAL);
}
static void __stp_relay_timer_start(void)
{
init_timer(&_stp_relay_data.timer);
_stp_relay_data.timer.expires = jiffies + STP_RELAY_TIMER_INTERVAL;
_stp_relay_data.timer.function = __stp_relay_wakeup_timer;
_stp_relay_data.timer.data = 0;
add_timer(&_stp_relay_data.timer);
smp_mb();
}
static void __stp_relay_timer_stop(void)
{
del_timer_sync(&_stp_relay_data.timer);
}
static struct dentry *__stp_entry[NR_CPUS] = { NULL };
static int _stp_transport_data_fs_init(void)
{
int rc;
int cpu;
_stp_relay_data.transport_state = STP_TRANSPORT_STOPPED;
_stp_relay_data.rb = NULL;
// allocate buffer
dbug_trans(1, "entry...\n");
rc = __stp_alloc_ring_buffer();
if (rc != 0)
return rc;
// create file(s)
for_each_online_cpu(cpu) {
char cpu_file[9]; /* 5(trace) + 3(XXX) + 1(\0) = 9 */
if (cpu > 999 || cpu < 0) {
_stp_transport_data_fs_close();
return -EINVAL;
}
sprintf(cpu_file, "trace%d", cpu);
__stp_entry[cpu] = debugfs_create_file(cpu_file, 0600,
_stp_get_module_dir(),
(void *)(long)cpu,
&__stp_data_fops);
if (!__stp_entry[cpu]) {
pr_warning("Could not create debugfs 'trace' entry\n");
__stp_free_ring_buffer();
return -ENOENT;
}
else if (IS_ERR(__stp_entry[cpu])) {
rc = PTR_ERR(__stp_entry[cpu]);
pr_warning("Could not create debugfs 'trace' entry\n");
__stp_free_ring_buffer();
return rc;
}
__stp_entry[cpu]->d_inode->i_uid = _stp_uid;
__stp_entry[cpu]->d_inode->i_gid = _stp_gid;
__stp_entry[cpu]->d_inode->i_private = &_stp_relay_data.iter[cpu];
#ifndef STP_BULKMODE
break;
#endif
}
#ifdef STP_BULKMODE
for_each_possible_cpu(cpu) {
_stp_relay_data.iter[cpu].cpu_file = cpu;
_stp_relay_data.iter[cpu].cpu = cpu;
}
#endif
dbug_trans(1, "returning 0...\n");
_stp_relay_data.transport_state = STP_TRANSPORT_INITIALIZED;
return 0;
}
static void _stp_transport_data_fs_start(void)
{
if (_stp_relay_data.transport_state == STP_TRANSPORT_INITIALIZED) {
__stp_relay_timer_start();
_stp_relay_data.transport_state = STP_TRANSPORT_RUNNING;
}
}
static void _stp_transport_data_fs_stop(void)
{
if (_stp_relay_data.transport_state == STP_TRANSPORT_RUNNING) {
__stp_relay_timer_stop();
_stp_relay_data.transport_state = STP_TRANSPORT_STOPPED;
}
}
static void _stp_transport_data_fs_close(void)
{
int cpu;
for_each_possible_cpu(cpu) {
if (__stp_entry[cpu])
debugfs_remove(__stp_entry[cpu]);
__stp_entry[cpu] = NULL;
}
__stp_free_ring_buffer();
}
static enum _stp_transport_state _stp_transport_get_state(void)
{
return _stp_relay_data.transport_state;
}
static void _stp_transport_data_fs_overwrite(int overwrite)
{
dbug_trans(0, "setting ovewrite to %d\n", overwrite);
_stp_relay_data.overwrite_flag = overwrite;
}
|