summaryrefslogtreecommitdiffstats
path: root/doc/langref.tex
blob: aad57dc0bfc5551bf9d095c3db1e0b77cd51721c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
% SystemTap Language Reference
\documentclass[twoside,english]{article}
\usepackage{geometry}
\geometry{verbose,letterpaper,tmargin=1.5in,bmargin=1.5in,lmargin=1in,rmargin=1in}
\usepackage{fancyhdr}
\pagestyle{fancy}
\usepackage{array}
\usepackage{varioref}
\usepackage{float}
\usepackage{makeidx}
\usepackage{verbatim}
\usepackage{url}
\makeindex

\makeatletter

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LyX specific LaTeX commands.
\newcommand{\noun}[1]{\textsc{#1}}
%% Bold symbol macro for standard LaTeX users
%\providecommand{\boldsymbol}[1]{\mbox{\boldmath $#1$}}

%% Because html converters don't know tabularnewline
\providecommand{\tabularnewline}{\\}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% User specified LaTeX commands.
\setlength{\parindent}{0pt}
%\setlength{\parskip}{3pt plus 2pt minus 1pt}
\setlength{\parskip}{5pt}

%
% this makes list spacing much better.
%
\newenvironment{my_itemize}{
\begin{itemize}
  \setlength{\itemsep}{1pt}
  \setlength{\parskip}{0pt}
  \setlength{\parsep}{0pt}}{\end{itemize}
}

\newenvironment{vindent}
{\begin{list}{}{\setlength{\listparindent}{6pt}}
\item[]}
{\end{list}}

\usepackage{babel}
\makeatother
\begin{document}

\title{SystemTap Language Reference}

\maketitle
\newpage{}
This document was derived from other documents contributed to the SystemTap project by employees of Red Hat, IBM and Intel.\newline

Copyright \copyright\space  2007-2010 Red Hat Inc.\newline
Copyright \copyright\space  2007-2009 IBM Corp.\newline
Copyright \copyright\space  2007 Intel Corporation.\newline

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.\newline

The GNU Free Documentation License is available from
\url{http://www.gnu.org/licenses/fdl.html} or by writing to
the Free Software Foundation, Inc., 51 Franklin Street,
Fifth Floor, Boston, MA 02110-1301, USA.
\newpage{}
\tableofcontents{}
\listoftables
\newpage{}

\section{SystemTap overview\label{sec:SystemTap-Overview}}

\subsection{About this guide}

This guide is a comprehensive reference of SystemTap's language constructs
and syntax. The contents borrow heavily from existing SystemTap documentation
found in manual pages and the tutorial. The presentation of information here
provides the reader with a single place to find language syntax and recommended
usage. In order to successfully use this guide, you should be familiar with
the general theory and operation of SystemTap. If you are new to SystemTap,
you will find the tutorial to be an excellent place to start learning. For
detailed information about tapsets, see the manual pages provided with the
distribution. For information about the entire collection of SystemTap reference
material, see Section~\ref{sec:For-Further-Reference}

\subsection{Reasons to use SystemTap}

SystemTap provides infrastructure to simplify the gathering of information
about a running Linux kernel so that it may be further analyzed. This analysis
assists in identifying the underlying cause of a performance or functional
problem. SystemTap was designed to eliminate the need for a developer to
go through the tedious instrument, recompile, install, and reboot sequence
normally required to collect this kind of data. To do this, it provides a
simple command-line interface and scripting language for writing
instrumenation for both kernel and user space.
With SystemTap, developers, system administrators, and users can easily write
scripts that gather and manipulate system data that is otherwise unavailable
from standard Linux tools. Users of SystemTap will find it to be a significant
improvement over older methods.

\subsection{Event-action language}
\index{language}
SystemTap's language is strictly typed, declaration free, procedural, and
inspired by dtrace and awk. Source code points or events in the kernel are
associated with handlers, which are subroutines that are executed synchronously.
These probes are conceptually similar to \char`\"{}breakpoint command lists\char`\"{}
in the GDB debugger.

There are two main outermost constructs: probes and functions. Within these,
statements and expressions use C-like operator syntax and precedence.

\subsection{Sample SystemTap scripts}
\index{example scripts}
Following are some example scripts that illustrate the basic operation of
SystemTap. For more examples, see the examples/small\_demos/ directory in
the source directory, the SystemTap wiki at \url{http://sourceware.org/systemtap/wiki/HomePage},
or the SystemTap War Stories at \url{http://sourceware.org/systemtap/wiki/WarStories} page.

\subsubsection{Basic SystemTap syntax and control structures}

The following code examples demonstrate SystemTap syntax and control structures.

\begin{vindent}
\begin{verbatim}
global odds, evens

probe begin {
    # "no" and "ne" are local integers
    for (i = 0; i < 10; i++) {
        if (i % 2) odds [no++] = i
            else evens [ne++] = i
    }

    delete odds[2]
    delete evens[3]
    exit()
}

probe end {
    foreach (x+ in odds)
        printf ("odds[%d] = %d", x, odds[x])

    foreach (x in evens-)
        printf ("evens[%d] = %d", x, evens[x])
}
\end{verbatim}
\end{vindent}
This prints:

\begin{vindent}
\begin{verbatim}
odds[0] = 1
odds[1] = 3
odds[3] = 7
odds[4] = 9
evens[4] = 8
evens[2] = 4
evens[1] = 2
evens[0] = 0
\end{verbatim}
\end{vindent}
Note that all variable types are inferred, and that all locals and
globals are initialized.  Integers are set to 0 and strings are set to
the empty string.

\subsubsection{Primes between 0 and 49}

\begin{vindent}
\begin{verbatim}
function isprime (x) {
    if (x < 2) return 0
    for (i = 2; i < x; i++) {
        if (x % i == 0) return 0
        if (i * i > x) break
    }
    return 1
}

probe begin {
    for (i = 0; i < 50; i++)
        if (isprime (i)) printf("%d\n", i)
    exit()
}
\end{verbatim}
\end{vindent}
This prints:

\begin{vindent}
\begin{verbatim}
2
3
5
7
11
13
17
19
23
29
31
37
41
43
47
\end{verbatim}
\end{vindent}

\subsubsection{Recursive functions}
\index{recursion}
\begin{vindent}
\begin{verbatim}
function fibonacci(i) {
    if (i < 1) error ("bad number")
    if (i == 1) return 1
    if (i == 2) return 2
    return fibonacci (i-1) + fibonacci (i-2)
}

probe begin {
    printf ("11th fibonacci number: %d", fibonacci (11))
    exit ()
}
\end{verbatim}
\end{vindent}
This prints:

\begin{vindent}
\begin{verbatim}
11th fibonacci number: 118
\end{verbatim}
\end{vindent}
Any larger number input to the function may exceed the MAXACTION or MAXNESTING
limits, which will be caught at run time and result in an error. For more
about limits see Section~\ref{sub:SystemTap-safety}.
\newpage{}
\subsection{The stap command}
\index{stap}
The stap program is the front-end to the SystemTap tool. It accepts probing
instructions written in its scripting language, translates those instructions
into C code, compiles this C code, and loads the resulting kernel module
into a running Linux kernel to perform the requested system trace or probe
functions. You can supply the script in a named file, from standard input,
or from the command line. The SystemTap script runs until one of the following
conditions occurs:

\begin{itemize}
\item The user interrupts the script with a CTRL-C.
\item The script executes the exit() function.
\item The script encounters a sufficient number of soft errors.
\item The monitored command started with the stap program's
\texttt{\textbf{-c}} option exits.
\end{itemize}

The stap command does the following:

\begin{itemize}
\item Translates the script
\item Generates and compiles a kernel module
\item Inserts the module; output to stap's stdout
\item CTRL-C unloads the module and terminates stap
\end{itemize}

For a full list of options to the stap command, see the stap(1) manual page.

\subsection{Safety and security\label{sub:SystemTap-safety}}
\index{limits}
SystemTap is an administrative tool. It exposes kernel internal data structures
and potentially private user information. It requires root privileges to
actually run the kernel objects it builds using the \textbf{sudo} command,
applied to the \textbf{staprun} program.

staprun is a part of the SystemTap package, dedicated to module loading and
unloading and kernel-to-user data transfer. Since staprun does not perform
any additional security checks on the kernel objects it is given, do not
give elevated privileges via sudo to untrusted users.

The translator asserts certain safety constraints. \index{constraints}It
ensures that no handler routine can run for too long, allocate memory, perform
unsafe operations, or unintentionally interfere with the kernel. Use of script
global variables is locked to protect against manipulation by concurrent
probe handlers. Use of \emph{guru mode} constructs such as embedded C (see
Section~\ref{sub:Embedded-C}) can violate these constraints, leading to
a kernel crash or data corruption.

The resource use limits are set by macros in the generated C code. These
may be overridden with the -D flag. The following list describes a selection
of these macros:

\textbf{MAXNESTING} -- The maximum number of recursive function call levels. The default is 10.

\textbf{MAXSTRINGLEN} -- The maximum length of strings. The default is 256 bytes
for 32 bit machines and 512 bytes for all other machines.

\textbf{MAXTRYLOCK} -- The maximum number of iterations to wait for locks on global variables before
declaring possible deadlock and skipping the probe. The default is 1000.

\textbf{MAXACTION} -- The maximum number of statements to execute during any single probe hit. The default is 1000.

\textbf{MAXMAPENTRIES} -- The maximum number of rows in an array if the array size is not specified
explicitly when declared. The default is 2048.

\textbf{MAXERRORS} -- The maximum number of soft errors before an exit is triggered. The default is 0.

\textbf{MAXSKIPPED} -- The maximum number of skipped reentrant probes before an exit is triggered. The default is 100.

\textbf{MINSTACKSPACE} -- The minimum number of free kernel stack bytes required in order to run a
probe handler. This number should be large enough for the probe handler's
own needs, plus a safety margin.  The default is 1024.

If something goes wrong with stap or staprun after a probe has started running,
you may safely kill both user processes, and remove the active probe kernel
module with the rmmod command. Any pending trace messages may be lost.

\section{Types of SystemTap scripts\label{sec:Types-of-SystemTap}}

\subsection{Probe scripts}

Probe scripts are analogous to programs; these scripts identify probe points
and associated handlers.

\subsection{Tapset scripts}

Tapset scripts are libraries of probe aliases and auxiliary functions.

The /usr/share/systemtap/tapset directory contains tapset scripts. While
these scripts look like regular SystemTap scripts, they cannot be run directly.

\section{Components of a SystemTap script}

The main construct in the scripting language identifies probes. Probes associate
abstract events with a statement block, or probe handler, that is to be executed
when any of those events occur.

The following example shows how to trace entry and exit from a function using
two probes.

\begin{vindent}
\begin{verbatim}
probe kernel.function("sys_mkdir").call { log ("enter") }
probe kernel.function("sys_mkdir").return { log ("exit") }
\end{verbatim}
\end{vindent}

To list the probe-able functions in the kernel, use the listing option
(\texttt{\textbf{-l}}).  For example:

\begin{vindent}
\begin{verbatim}
$ stap -l 'kernel.function("*")' | sort
\end{verbatim}
\end{vindent}

\subsection{Probe definitions}

The general syntax is as follows.

\begin{vindent}
\begin{verbatim}
probe PROBEPOINT [, PROBEPOINT] { [STMT ...] }
\end{verbatim}
\end{vindent}
Events are specified in a special syntax called \emph{probe points}. There
are several varieties of probe points defined by the translator, and tapset
scripts may define others using aliases. The provided probe points are listed
in the stapprobes(3) man pages.

The probe handler is interpreted relative to the context of each event. For
events associated with kernel code, this context may include variables defined
in the source code at that location. These \emph{target variables}\index{target variables}
are presented to the script as variables whose names are prefixed with a
dollar sign (\$). They may be accessed only if the compiler used to compile
the kernel preserved them, despite optimization. This is the same constraint
imposed by a debugger when working with optimized code. Other events may
have very little context.


\subsection{Probe aliases\label{sub:Probe-aliases}}
\index{probe aliases}
The general syntax is as follows.

\begin{vindent}
\begin{verbatim}
probe <alias> = <probepoint> { <prologue_stmts> }
probe <alias> += <probepoint> { <epilogue_stmts> }
\end{verbatim}
\end{vindent}

New probe points may be defined using \emph{aliases}. A probe point alias
looks similar to probe definitions, but instead of activating a probe at
the given point, it defines a new probe point name as an alias to an existing
one. New probe aliases may refer to one or more existing probe aliases.
Multiple aliases may share the same underlying probe points.
The following is an example.

\begin{vindent}
\begin{verbatim}
probe socket.sendmsg = kernel.function ("sock_sendmsg") { ... }
probe socket.do_write = kernel.function ("do_sock_write") { ... }
probe socket.send = socket.sendmsg, socket.do_write { ... }
\end{verbatim}
\end{vindent}

There are two types of aliases, the prologue style and the epilogue style
which are identified by the equal sign (\texttt{\textbf{=}}) and \char`\"{}\texttt{\textbf{+=}}\char`\"{}
respectively.

A probe that uses a probe point alias will create an actual probe, with
the handler of the alias \emph{pre-pended}.

This pre-pending behavior serves several purposes. It allows the alias definition
to pre-process the context of the probe before passing control to the handler
specified by the user. This has several possible uses, demonstrated as follows.

\begin{vindent}
\begin{verbatim}
# Skip probe unless given condition is met:
if ($flag1 != $flag2) next

# Supply values describing probes:
name = "foo"

# Extract the target variable to a plain local variable:
var = $var
\end{verbatim}
\end{vindent}

\subsubsection{Prologue-style aliases (=)}
\index{prologue-style aliases}
\index{=}
For a prologue style alias, the statement block that follows an alias definition
is implicitly added as a prologue to any probe that refers to the alias.
The following is an example.

\begin{vindent}
\begin{verbatim}
# Defines a new probe point syscall.read, which expands to
# kernel.function("sys_read"), with the given statement as
# a prologue.
#
probe syscall.read = kernel.function("sys_read") {
    fildes = $fd
}
\end{verbatim}
\end{vindent}

\subsubsection{Epilogue-style aliases (+=)}
\index{epilogue-style aliases}
\index{+=}
The statement block that follows an alias definition is implicitly added
as an epilogue to any probe that refers to the alias.  It is not useful
to define new variable there (since no subsequent code will see it), but
rather the code can take action based upon variables set by the
prologue or by the user code.  The following is an example:

\begin{vindent}
\begin{verbatim}
# Defines a new probe point with the given statement as an
# epilogue.
#
probe syscall.read += kernel.function("sys_read") {
    if (traceme) println ("tracing me")
}
\end{verbatim}
\end{vindent}

\subsubsection{Probe alias usage}

A probe alias is used the same way as any built-in probe type, by
naming it:

\begin{vindent}
\begin{verbatim}
probe syscall.read {
    printf("reading fd=%d\n", fildes)
}
\end{verbatim}
\end{vindent}

\subsection{Variables\label{sub:Variables}}
\index{variables}
Identifiers for variables and functions are alphanumeric sequences, and may
include the underscore (\_) and the dollar sign (\$) characters. They may
not start with a plain digit. Each variable is by default local to the probe
or function statement block where it is mentioned, and therefore its scope
and lifetime is limited to a particular probe or function invocation. Scalar
variables are implicitly typed as either string or integer. Associative arrays
also have a string or integer value, and a tuple of strings or integers serves
as a key. Arrays must be declared as global. Local arrays\index{local arrays}
are not allowed.

The translator performs \emph{type inference} on all identifiers, including
array indexes and function parameters. Inconsistent type-related use of identifiers
results in an error.

Variables may be declared global. Global variables are shared among all probes
and remain instantiated as long as the SystemTap session. There is one namespace
for all global variables, regardless of the script file in which they are
found. Because of possible concurrency limits, such as multiple probe handlers,
each global variable used by a probe is automatically read- or write-locked
while the handler is running. A global declaration may be written at the
outermost level anywhere in a script file, not just within a block of code.
Global variables which are written but never read will be displayed
automatically at session shutdown.  The following declaration marks
\texttt{var1} and \texttt{var2} as global.
The translator will infer a value type for each, and if the variable is used
as an array, its key types.

\begin{vindent}
\begin{verbatim}
global var1[=<value>], var2[=<value>]
\end{verbatim}
\end{vindent}

\subsubsection{Unused variables}
\index{unused variables}

The SystemTap translator removes unused variables. Global variable
that are never written or read are discarded.  Every local variables
where the variable is only written but never read are also
discarded. This optimization prunes unused variables defined
in the probe aliases, but never used in the probe handler.
If desired, this optimization can disabled with the \texttt{-u} option.

\subsection{Auxiliary functions\label{sub:Auxiliary-functions}}
\index{auxiliary functions}
General syntax:

\begin{vindent}
\begin{verbatim}
function <name>[:<type>] ( <arg1>[:<type>], ... ) { <stmts> }
\end{verbatim}
\end{vindent}
SystemTap scripts may define subroutines to factor out common work. Functions
may take any number of scalar arguments, and must return a single scalar
value. Scalars in this context are integers or strings. For more information
on scalars, see Section~\ref{sub:Variables} and Section~\ref{sub:Data-types}\texttt{.}
The following is an example function declaration.

\begin{vindent}
\begin{verbatim}
function thisfn (arg1, arg2) {
    return arg1 + arg2
}
\end{verbatim}
\end{vindent}

Note the general absence of type declarations, which are inferred by the
translator. If desired, a function definition may include explicit type declarations
for its return value, its arguments, or both. This is helpful for embedded-C
functions. In the following example, the type inference engine need only
infer the type of arg2, a string.

\begin{vindent}
\begin{verbatim}
function thatfn:string(arg1:long, arg2) {
    return sprintf("%d%s", arg1, arg2)
}
\end{verbatim}
\end{vindent}

Functions may call others or themselves recursively, up to a fixed nesting
limit. See Section~\ref{sub:SystemTap-safety}.


\subsection{Embedded C\label{sub:Embedded-C}}
\index{embedded C}
SystemTap supports a \emph{guru\index{guru mode} mode} where script safety
features such as code and data memory reference protection are removed. Guru
mode is set by passing the \textbf{-g} option to the stap command. When in guru
mode, the translator accepts C code enclosed between {}``\%\{''
and {}``\%\}'' markers in the script file. The embedded C code is transcribed
verbatim, without analysis, in sequence, into generated C code. At the outermost
level of a script, guru mode may be useful to add \#include instructions,
or any auxiliary definitions for use by other embedded code.


\subsection{Embedded C functions}

General syntax:

\begin{vindent}
\begin{verbatim}
function <name>:<type> ( <arg1>:<type>, ... ) %{ <C_stmts> %}
\end{verbatim}
\end{vindent}
Embedded C code is permitted in a function body.
In that case, the script language
body is replaced entirely by a piece of C code enclosed between 
{}``\%\{'' and {}``\%\}'' markers.
The enclosed code may do anything reasonable and safe as allowed
by the parser.

There are a number of undocumented but complex safety constraints on concurrency,
resource consumption and runtime limits that are applied to code written
in the SystemTap language. These constraints are not applied to embedded
C code, so use embedded C code with extreme caution. Be especially
careful when dereferencing pointers. Use the kread() macro to dereference
any pointers that could potentially be invalid or dangerous. If you are unsure,
err on the side of caution and use kread(). The kread() macro is one of the
safety mechanisms used in code generated by embedded C. It protects against
pointer accesses that could crash the system.

For example, to access the pointer chain \texttt{name = skb->dev->name} in
embedded C, use the following code.

\begin{vindent}
\begin{verbatim}
struct net_device *dev;
char *name;
dev = kread(&(skb->dev));
name = kread(&(dev->name));
\end{verbatim}
\end{vindent}

The memory locations reserved for input and output values are provided to
a function using a macro named \texttt{THIS}\index{THIS}. The following
are examples.

\begin{vindent}
\begin{verbatim}
function add_one (val:long) %{
    THIS->__retvalue = THIS->val + 1;
%}
function add_one_str:string (val:string) %{
    strlcpy (THIS->__retvalue, THIS->val, MAXSTRINGLEN);
    strlcat (THIS->__retvalue, "one", MAXSTRINGLEN);
%}
\end{verbatim}
\end{vindent}

The function argument and return value types should be stated;
the translator does not analyze the embedded C code within the function.
You should examine
C code generated for ordinary script language functions to write compatible
embedded-C. Note that all SystemTap functions and probes run with interrupts
disabled, thus you cannot call functions that might sleep within the embedded
C.

\section{Probe points\label{sec:Probe-Points}}
\index{probe points}
\subsection{General syntax}
\index{probe syntax}
The general probe point syntax is a dotted-symbol sequence. This divides
the event namespace into parts, analogous to the style of the Domain Name
System. Each component identifier is parameterized by a string or number
literal, with a syntax analogous to a function call.

The following are all syntactically valid probe points.

\begin{vindent}
\begin{verbatim}
kernel.function("foo")
kernel.function("foo").return
module{"ext3"}.function("ext3_*")
kernel.function("no_such_function") ?
syscall.*
end
timer.ms(5000)
\end{verbatim}
\end{vindent}

Probes may be broadly classified into \emph{synchronous}\index{synchronous}
or \emph{asynchronous}.\index{asynchronous} A synchronous event occurs when
any processor executes an instruction matched by the specification. This
gives these probes a reference point (instruction address) from which more
contextual data may be available. Other families of probe points refer to
asynchronous events such as timers, where no fixed reference point is related.
Each probe point specification may match multiple locations, such as by using
wildcards or aliases, and all are probed. A probe declaration may contain
several specifications separated by commas, which are all probed.

\subsubsection{Prefixes}
\index{prefixes}
Prefixes specify the probe target, such as \textbf{kernel}, \textbf{module},
\textbf{timer}, and so on.

\subsubsection{Suffixes}
\index{suffixes}
Suffixes further qualify the point to probe, such as \textbf{.return} for the
exit point of a probed function. The absence of a suffix implies the function
entry point.

\subsubsection{Wildcarded file names, function names}
\index{wildcards}
A component may include an asterisk ({*}) character, which expands to other
matching probe points. An example follows.

\begin{vindent}
\begin{verbatim}
kernel.syscall.*
kernel.function("sys_*)
\end{verbatim}
\end{vindent}

\subsubsection{Optional probe points\label{sub:Optional-probe-points}}
\index{?}
A probe point may be followed by a question mark (?) character, to indicate
that it is optional, and that no error should result if it fails to expand.
This effect passes down through all levels of alias or wildcard expansion.

The following is the general syntax.

\begin{vindent}
\begin{verbatim}
kernel.function("no_such_function") ?
\end{verbatim}
\end{vindent}

\subsection{Built-in probe point types (DWARF probes)}
\index{built-in probes}
\index{dwarf probes}
\label{dwarfprobes}
This family of probe points uses symbolic debugging information for the target
kernel or module, as may be found in executables that have not
been stripped, or in the separate \textbf{debuginfo} packages. They allow
logical placement of probes into the execution path of the target
by specifying a set of points in the source or object code. When a matching
statement executes on any processor, the probe handler is run in that context.

Points in a kernel are identified by module, source file, line number, function
name or some combination of these.

Here is a list of probe point specifications currently supported:

\begin{vindent}
\begin{verbatim}
kernel.function(PATTERN)
kernel.function(PATTERN).call
kernel.function(PATTERN).return
kernel.function(PATTERN).return.maxactive(VALUE)
kernel.function(PATTERN).inline
kernel.function(PATTERN).label(LPATTERN)
module(MPATTERN).function(PATTERN)
module(MPATTERN).function(PATTERN).call
module(MPATTERN).function(PATTERN).return.maxactive(VALUE)
module(MPATTERN).function(PATTERN).inline
kernel.statement(PATTERN)
kernel.statement(ADDRESS).absolute
module(MPATTERN).statement(PATTERN)
\end{verbatim}
\end{vindent}

The \textbf{.function} variant places a probe near the beginning of the named
function, so that parameters are available as context variables.

The \textbf{.return} variant places a probe at the moment of return from the named
function, so the return value is available as the \$return context variable.
The entry parameters are also available, though the function may have changed
their values.  Return probes may be further qualified with \textbf{.maxactive},
which specifies how many instances of the specified function can be probed simultaneously.
You can leave off \textbf{.maxactive} in most cases, as the default
(\textbf{KRETACTIVE}) should be sufficient.
However, if you notice an excessive number of skipped probes, try setting \textbf{.maxactive}
to incrementally higher values to see if the number of skipped probes decreases.

The \textbf{.inline} modifier for \textbf{.function} filters the results to include only
instances of inlined functions. The \textbf{.call} modifier selects the opposite subset.
Inline functions do not have an identifiable return point, so \textbf{.return}
is not supported on \textbf{.inline} probes.

The \textbf{.statement} variant places a probe at the exact spot, exposing those local
variables that are visible there.

In the above probe descriptions, MPATTERN stands for a string literal
that identifies the loaded kernel module of interest and LPATTERN
stands for a source program label. Both MPATTERN and LPATTERN may
include asterisk ({*}), square brackets \char`\"{}{[}]\char`\"{}, and
question mark (?) wildcards.

PATTERN stands for a string literal that identifies a point in the program.
It is composed of three parts:

\begin{enumerate}
\item The first part is the name of a function, as would appear in the nm program's
output. This part may use the asterisk and question mark wildcard operators
to match multiple names.
\item The second part is optional, and begins with the ampersand (@) character.
It is followed by the path to the source file containing the function,
which may include a wildcard pattern, such as mm/slab{*}.
In most cases, the path should be relative to the top of the
linux source directory, although an absolute path may be necessary for some kernels.
If a relative pathname doesn't work, try absolute.
\item The third part is optional if the file name part was given. It identifies
the line number in the source file, preceded by a ``:'' or ``+''.
The line number is assumed to be an
absolute line number if preceded by a ``:'', or relative to the entry of
the function if preceded by a ``+''.
All the lines in the function can be matched with ``:*''.
A range of lines x through y can be matched with ``:x-y''.

\end{enumerate}
Alternately, specify PATTERN as a numeric constant to indicate a relative
module address or an absolute kernel address.

Some of the source-level variables, such as function parameters, locals,
or globals visible in the compilation unit, are visible to probe handlers.
Refer to these variables by prefixing their name with a dollar sign within
the scripts. In addition, a special syntax allows limited traversal of structures,
pointers, and arrays.

\texttt{\$var} refers to an in-scope variable var. If it is a type similar
to an integer, it will be cast to a 64-bit integer for script use. Pointers
similar to a string (char {*}) are copied to SystemTap string values by the
\texttt{kernel\_string()} or \texttt{user\_string()} functions.

\texttt{\$var->field} traverses a structure's field. The indirection operator
may be repeated to follow additional levels of pointers.

\texttt{\$var{[}N]} indexes into an array. The index is given with a literal
number.

\texttt{\$\$vars} expands to a character string that is equivalent to
\texttt{sprintf("parm1=\%x ... parmN=\%x var1=\%x ... varN=\%x", \$parm1, ..., \$parmN,
\$var1, ..., \$varN)}

\texttt{\$\$locals} expands to a character string that is equivalent to
\texttt{sprintf("var1=\%x ... varN=\%x", \$var1, ..., \$varN)}

\texttt{\$\$parms} expands to a character string that is equivalent to
\texttt{sprintf("parm1=\%x ... parmN=\%x", \$parm1, ..., \$parmN)}


\subsubsection{kernel.function, module().function}
\index{kernel.function}
\index{module().function}
The \textbf{.function} variant places a probe near the beginning of the named function,
so that parameters are available as context variables.

General syntax:

\begin{vindent}
\begin{verbatim}
kernel.function("func[@file]"
module("modname").function("func[@file]"
\end{verbatim}
\end{vindent}
Examples:

\begin{vindent}
\begin{verbatim}
# Refers to all kernel functions with "init" or "exit"
# in the name:
kernel.function("*init*"), kernel.function("*exit*")

# Refers to any functions within the "kernel/sched.c"
# file that span line 240:
kernel.function("*@kernel/sched.c:240")

# Refers to all functions in the ext3 module:
module("ext3").function("*")
\end{verbatim}
\end{vindent}

\subsubsection{kernel.statement, module().statement}
\index{kernel.statement}
\index{module().statement}
The \textbf{.statement} variant places a probe at the exact spot, exposing those local
variables that are visible there.

General syntax:

\begin{vindent}
\begin{verbatim}
kernel.statement("func@file:linenumber")
module("modname").statement("func@file:linenumber")
\end{verbatim}
\end{vindent}
Example:

\begin{vindent}
\begin{verbatim}
# Refers to the statement at line 2917 within the
# kernel/sched.c file:
kernel.statement("*@kernel/sched.c:2917")
# Refers to the statement at line bio_init+3 within the fs/bio.c file:
kernel.statement("bio_init@fs/bio.c+3")
\end{verbatim}
\end{vindent}


\subsection{Function return probes}
\index{return probes}
The \texttt{.return} variant places a probe at the moment of return from
the named function, so that the return value is available as the \$return
context variable. The entry parameters are also accessible in the context
of the return probe, though their values may have been changed by the function.
Inline functions do not have an identifiable return point, so \texttt{.return}
is not supported on \texttt{.inline} probes.

\subsection{DWARF-less probing}
\index{DWARF-less probing}

In the absence of debugging information, you can still use the
\emph{kprobe} family of probes to examine the entry and exit points of
kernel and module functions. You cannot look up the arguments or local
variables of a function using these probes. However, you can access
the parameters by following this procedure:

When you're stopped at the entry to a function, you can refer to the
function's arguments by number. For example, when probing the function
declared:

\begin{vindent}
\begin{verbatim}
asmlinkage ssize_t sys_read(unsigned int fd, char __user * buf, size_t
count)
\end{verbatim}
\end{vindent}

You can obtain the values of \texttt{fd}, \texttt{buf}, and
\texttt{count}, respectively, as \texttt{uint\_arg(1)},
\texttt{pointer\_arg(2)}, and \texttt{ulong\_arg(3)}. In this case, your
probe code must first call \texttt{asmlinkage()}, because on some
architectures the asmlinkage attribute affects how the function's
arguments are passed.

When you're in a return probe, \texttt{\$return} isn't supported
without DWARF, but you can call \texttt{returnval()} to get the value
of the register in which the function value is typically returned, or
call \texttt{returnstr()} to get a string version of that value.

And at any code probepoint, you can call
\texttt{{register("regname")}} to get the value of the specified CPU
register when the probe point was hit.
\texttt{u\_register("regname")} is like \texttt{register("regname")},
but interprets the value as an unsigned integer.

SystemTap supports the following constructs:
\begin{vindent}
\begin{verbatim}
kprobe.function(FUNCTION)
kprobe.function(FUNCTION).return
kprobe.module(NAME).function(FUNCTION)
kprobe.module(NAME).function(FUNCTION).return
kprobe.statement(ADDRESS).absolute
\end{verbatim}
\end{vindent}

Use \textbf{.function} probes for kernel functions and
\textbf{.module} probes for probing functions of a specified module.
If you do not know the absolute address of a kernel or module
function, use \textbf{.statement} probes. Do not use wildcards in
\textit{FUNCTION} and \textit{MODULE} names. Wildcards cause the probe
to not register. Also, statement probes are available only in guru mode.


\subsection{Userspace probing}
\index{userspace probing}
\index{process}
Support for userspace probing is supported on kernels that are
configured to include the utrace extensions.  Red Hat and CentOS
distributions provide kernels with utrace support enabled.  For more
information about utrace, see
\url{http://people.redhat.com/roland/utrace/}.

\subsubsection{Begin/end variants}
\label{sec:beginendvariants}
Constructs:
\begin{vindent}
\begin{verbatim}
process.begin
process("PATH").begin
process(PID).begin

process.thread.begin
process("PATH").thread.begin
process(PID).thread.begin

process.end
process("PATH").end
process(PID).end

process.thread.end
process("PATH").thread.end
process(PID).thread.end
\end{verbatim}
\end{vindent}

The \texttt{.begin} variant is called when a new process described by
\texttt{PID} or \texttt{PATH} is created. If no \texttt{PID} or
\texttt{PATH} argument is specified (for example
\texttt{process.begin}), the probe flags any new process being
spawned.

The \texttt{.thread.begin} variant is called when a new thread
described by \texttt{PID} or \texttt{PATH} is created.

The \texttt{.end} variant is called when a process described by
\texttt{PID} or \texttt{PATH} dies.

The \texttt{.thread.end} variant is called when a thread described by
\texttt{PID} or \texttt{PATH} dies.

\subsubsection{Syscall variants}
\label{sec:syscallvariants}
Constructs:
\begin{vindent}
\begin{verbatim}
process.syscall
process("PATH").syscall
process(PID).syscall

process.syscall.return
process("PATH").syscall.return
process(PID).syscall.return
\end{verbatim}
\end{vindent}

The \texttt{.syscall} variant is called when a thread described by
\texttt{PID} or \texttt{PATH} makes a system call.  The system call
number is available in the \texttt{\$syscall} context variable.  The
first six arguments of the system call are available in the
\texttt{\$argN} parameter, for example \texttt{\$arg1},
\texttt{\$arg2}, and so on.

The \texttt{.syscall.return} variant is called when a thread described
by \texttt{PID} or \texttt{PATH} returns from a system call.  The
system call number is available in the \texttt{\$syscall} context
variable.  The return value of the system call is available in the
\texttt{\$return} context variable.


\subsubsection{Function/statement variants}
\label{sec:function-statement}
Constructs:
\begin{vindent}
\begin{verbatim}
process("PATH").function("NAME")
process("PATH").statement("*@FILE.c:123")
process("PATH").function("*").return
process("PATH").function("myfun").label("foo")
\end{verbatim}
\end{vindent}

Full symbolic source-level probes in userspace programs and shared
libraries are supported.  These are exactly analogous to the symbolic
DWARF-based kernel or module probes described previously and expose
similar contextual \texttt{\$-variables}. See
Section~\ref{dwarfprobes} for more information

Here is an example of prototype symbolic userspace probing support:
\begin{vindent}
\begin{verbatim}
# stap -e 'probe process("ls").function("*").call {
           log (probefunc()." ".$$parms)
           }' \
       -c 'ls -l'
\end{verbatim}
\end{vindent}

To run, this script requires debugging information for the named
program and utrace support in the kernel. If you see a "pass 4a-time"
build failure, check that your kernel supports utrace.

\subsubsection{Absolute variant}
\label{sec:absolutevariant}
A non-symbolic probe point such as
\texttt{process(PID).statement(ADDRESS).absolute} is analogous to
\newline\texttt{kernel.statement(ADDRESS).absolute} in that both use
raw, unverified virtual addresses and provide no \texttt{\$variables}.
The target \texttt{PID} parameter must identify a running process and
\texttt{ADDRESS} must identify a valid instruction address.  All
threads of the listed process will be probed.  This is a guru mode
probe.

\subsubsection{Process probe paths}
\label{sec:paths}
For all process probes, \texttt{PATH} names refer to executables that
are searched the same way that shells do: the explicit path specified
if the path name begins with a slash (/) character sequence; otherwise
\texttt{\$PATH} is searched.  For example, the following probe syntax:
\begin{vindent}
\begin{verbatim}
probe process("ls").syscall {}
probe process("./a.out").syscall {}
\end{verbatim}
\end{vindent}

works the same as:
\begin{vindent}
\begin{verbatim}
probe process("/bin/ls").syscall {}
probe process("/my/directory/a.out").syscall {}
\end{verbatim}
\end{vindent}

If a process probe is specified without a \texttt{PID} or
\texttt{PATH} parameter, all user threads are probed. However, if
systemtap is invoked in target process mode, process probes are
restricted to the process hierarchy associated with the target
process. If stap is running in \texttt{--unprivileged} mode, only
processes owned by the current user are selected.


\subsubsection{Target process mode}
\label{sec:targetprocessmode}
Target process mode (invoked with \texttt{stap -c CMD} or \texttt{-x
  PID}) implicitly restricts all \texttt{process.*} probes to the
given child process.  It does not affect \texttt{kernel.*} or other
probe types.  The \texttt{CMD} string is normally run directly, rather
than from a ``\texttt{/bin/sh -c}'' sub-shell, since utrace and uprobe
probes receive a fairly "clean" event stream.  If meta-characters such
as redirection operators are present in \texttt{CMD}, ``\texttt{/bin/sh
  -c CMD}'' is still used, and utrace and uprobe probes will receive
events from the shell. For example:
\begin{vindent}
\begin{verbatim}
% stap -e 'probe process.syscall, process.end {
           printf("%s %d %s\n", execname(), pid(), pp())}' \
       -c ls
\end{verbatim}
\end{vindent}

Here is the output from this command:
\begin{vindent}
\begin{verbatim}
ls 2323 process.syscall
ls 2323 process.syscall
ls 2323 process.end
\end{verbatim}
\end{vindent}

If \texttt{PATH} names a shared library, all processes that map that
shared library can be probed.  If dwarf debugging information is
installed, try using a command with this syntax:
\begin{vindent}
\begin{verbatim}
probe process("/lib64/libc-2.8.so").function("....") { ... }
\end{verbatim}
\end{vindent}
This command probes all threads that call into that library.  Typing
``\texttt{stap -c CMD}'' or ``\texttt{stap -x PID}'' restricts this to
the target command and descendants only.  You can use
\texttt{\$\$vars} and others. You can provide the location of debug
information to the stap command with the \texttt{-d DIRECTORY} option.

\subsubsection{Instruction probes}
\label{sec:insnprobes}
Constructs:
\begin{vindent}
\begin{verbatim}
process("PATH").insn
process(PID).insn

process("PATH").insn.block
process(PID).insn.block
\end{verbatim}
\end{vindent}
The \texttt{process().insn} and \texttt{process().insn.block} probes
inspect the process after each instruction or block of instructions is
executed. These probes are not implemented on all architectures. If
they are not implemented on your system, you will receive an error
message when the script starts.

The \texttt{.insn} probe is called for every single-stepped
instruction of the process described by \texttt{PID} or \texttt{PATH}.

The \texttt{.insn.block} probe is called for every block-stepped
instruction of the process described by \texttt{PID} or \texttt{PATH}.

To count the total number of instructions that a process executes,
type a command similar to:
\begin{vindent}
\begin{verbatim}
$ stap -e 'global steps; probe process("/bin/ls").insn {steps++}
           probe end {printf("Total instructions: %d\n", steps);}' \
       -c /bin/ls
\end{verbatim}
\end{vindent}

Using this feature will significantly slow process execution.

\subsubsection{Static userspace probing}
\label{sec:staticuserspace}
You can probe symbolic static instrumentation compiled into programs
and shared libraries with the following syntax:
\begin{vindent}
\begin{verbatim}
process("PATH").mark("LABEL")
\end{verbatim}
\end{vindent}

The \texttt{.mark} variant is called from a static probe defined in
the application by
\texttt{STAP\_PROBE1(handle,LABEL,arg1)}. \texttt{STAP\_PROBE1} is
defined in the sdt.h file.  The parameters are:


\begin{tabular}{|l|r|c|}
  Parameter & Definition \\ \hline
  \texttt{handle} & the application handle \\ \hline
  \texttt{LABEL} & corresponds to the \texttt{.mark} argument \\ \hline
  \texttt{arg1} & the argument \\ \hline
\end{tabular}


Use \texttt{STAP\_PROBE1} for probes with one argument.  Use
\texttt{STAP\_PROBE2} for probes with 2 arguments, and so on.  The
arguments of the probe are available in the context variables
\texttt{\$arg1}, \texttt{\$arg2}, and so on.

As an alternative to the \texttt{STAP\_PROBE} macros, you can use the
dtrace script to create custom macros. The sdt.h file also provides
dtrace compatible markers through \texttt{DTRACE\_PROBE} and an
associated python \texttt{dtrace} script.  You can use these in builds
based on dtrace that need dtrace -h or -G functionality.

\subsection{PROCFS probes}
\index{PROCFS probes}
These probe points allow procfs pseudo-files in
\texttt{/proc/systemtap/\textit{MODNAME}} to be created, read and
written.  Specify the name of the systemtap module as
\texttt{\textit{MODNAME}}.  There are four probe point variants
supported by the translator:
\begin{vindent}
\begin{verbatim}
procfs("PATH").read
procfs("PATH").write
procfs.read
procfs.write
\end{verbatim}
\end{vindent}

\texttt{PATH} is the file name to be created, relative to
\texttt{/proc/systemtap/MODNAME}.  If no \texttt{PATH} is specified
(as in the last two variants in the previous list), \texttt{PATH}
defaults to "command".

When a user reads \texttt{/proc/systemtap/MODNAME/PATH}, the
corresponding procfs read probe is triggered.  Assign the string data
to be read to a variable named \texttt{\$value}, as follows:
\begin{vindent}
\begin{verbatim}
procfs("PATH").read { $value = "100\n" }
\end{verbatim}
\end{vindent}

When a user writes into \texttt{/proc/systemtap/MODNAME/PATH}, the
corresponding procfs write probe is triggered.  The data the user
wrote is available in the string variable named \texttt{\$value}, as
follows:
\begin{vindent}
\begin{verbatim}
procfs("PATH").write { printf("User wrote: %s", $value) }
\end{verbatim}
\end{vindent}


\subsection{Marker probes}
\index{marker probes}
This family of probe points connects to static probe markers inserted
into the kernel or a module. These markers are special macro calls in
the kernel that make probing faster and more reliable than with
DWARF-based probes.  DWARF debugging information is not required to
use probe markers.

Marker probe points begin with a \texttt{kernel} prefix which
identifies the source of the symbol table used for finding
markers. The suffix names the marker itself:
\texttt{mark.("MARK")}. The marker name string, which can contain
wildcard characters, is matched against the names given to the marker
macros when the kernel or module is compiled.  Optionally, you can
specify \texttt{format("FORMAT")}.  Specifying the marker format
string allows differentiation between two markers with the same name
but different marker format strings.

The handler associated with a marker probe reads any optional
parameters specified at the macro call site named \texttt{\$arg1}
through \texttt{\$argNN}, where \texttt{NN} is the number of
parameters supplied by the macro. Number and string parameters are
passed in a type-safe manner.

The marker format string associated with a marker is available in
\texttt{\$format}. The marker name string is available in
\texttt{\$name}.

Here are the marker probe constructs:
\begin{vindent}
\begin{verbatim}
kernel.mark("MARK")
kernel.mark("MARK").format("FORMAT")
\end{verbatim}
\end{vindent}

For more information about marker probes, see
\url{http://sourceware.org/systemtap/wiki/UsingMarkers}.


\subsection{Tracepoints}
\label{sec:tracepoints}
\index{tracepoints}

This family of probe points hooks to static probing tracepoints
inserted into the kernel or kernel modules.  As with marker probes,
these tracepoints are special macro calls inserted by kernel
developers to make probing faster and more reliable than with
DWARF-based probes.  DWARF debugging information is not required to
probe tracepoints.  Tracepoints have more strongly-typed parameters
than marker probes.

Tracepoint probes begin with \texttt{kernel}.  The next part names the
tracepoint itself: \texttt{trace("name")}.  The tracepoint
\texttt{name} string, which can contain wildcard characters, is
matched against the names defined by the kernel developers in the
tracepoint header files.

The handler associated with a tracepoint-based probe can read the
optional parameters specified at the macro call site.  These
parameters are named according to the declaration by the tracepoint
author.  For example, the tracepoint probe
\texttt{kernel.trace("sched\_switch")} provides the parameters
\texttt{\$rq}, \texttt{\$prev}, and \texttt{\$next}.  If the parameter
is a complex type such as a struct pointer, then a script can access
fields with the same syntax as DWARF \texttt{\$target} variables.
Tracepoint parameters cannot be modified; however, in guru mode a
script can modify fields of parameters.

The name of the tracepoint is available in \texttt{\$\$name}, and a
string of \texttt{name=value} pairs for all parameters of the
tracepoint is available in \texttt{\$\$vars} or \texttt{\$\$parms}.


\subsection{Syscall probes}
\label{sec:syscall}
\index{syscall probes}
The \texttt{syscall.*}  aliases define several hundred probes.  They
use the following syntax:
\begin{vindent}
\begin{verbatim}
syscall.NAME
syscall.NAME.return
\end{verbatim}
\end{vindent}

Generally, two probes are defined for each normal system call as
listed in the syscalls(2) manual page: one for entry and one for
return.   System calls that never return do not have a
corresponding \texttt{.return} probe.

Each probe alias defines a variety of variables. Look at the tapset
source code to find the most reliable source of variable definitions.
Generally, each variable listed in the standard manual page is
available as a script-level variable. For example,
\texttt{syscall.open} exposes file name, flags, and mode.  In addition,
a standard suite of variables is available at most aliases, as follows:

\begin{itemize}
\item \texttt{argstr}: A pretty-printed form of the entire argument
  list, without parentheses.
\item \texttt{name}: The name of the system call.
\item \texttt{retstr}: For return probes, a pretty-printed form of the
  system call result.
\end{itemize}

Not all probe aliases obey all of these general guidelines.  Please
report exceptions that you encounter as a bug.


\subsection{Timer probes}
\index{timer probes}
You can use intervals defined by the standard kernel jiffies\index{jiffies}
timer to trigger probe handlers asynchronously. A \emph{jiffy} is a kernel-defined
unit of time typically between 1 and 60 msec. Two probe point variants are
supported by the translator:

\begin{vindent}
\begin{verbatim}
timer.jiffies(N)
timer.jiffies(N).randomize(M)
\end{verbatim}
\end{vindent}
The probe handler runs every N jiffies. If the \texttt{randomize}\index{randomize}
component is given, a linearly distributed random value in the range {[}-M
\ldots{} +M] is added to N every time the handler executes. N is restricted
to a reasonable range (1 to approximately 1,000,000), and M is restricted
to be less than N. There are no target variables provided in either context.
Probes can be run concurrently on multiple processors.

Intervals may be specified in units of time. There are two probe point variants
similar to the jiffies timer:

\begin{vindent}
\begin{verbatim}
timer.ms(N)
timer.ms(N).randomize(M)
\end{verbatim}
\end{vindent}
Here, N and M are specified in milliseconds\index{milliseconds}, but the
full options for units are seconds (s or sec), milliseconds (ms or msec),
microseconds (us or usec), nanoseconds (ns or nsec), and hertz (hz). Randomization
is not supported for hertz timers.

The resolution of the timers depends on the target kernel. For kernels prior
to 2.6.17, timers are limited to jiffies resolution, so intervals are rounded
up to the nearest jiffies interval. After 2.6.17, the implementation uses
hrtimers for greater precision, though the resulting resolution will be dependent
upon architecture. In either case, if the randomize component is given, then
the random value will be added to the interval before any rounding occurs.

Profiling timers are available to provide probes that execute on all CPUs
at each system tick. This probe takes no parameters, as follows.

\begin{vindent}
\begin{verbatim}
timer.profile
\end{verbatim}
\end{vindent}
Full context information of the interrupted process is available, making
this probe suitable for implementing a time-based sampling profiler.

The following is an example of timer usage.

\begin{vindent}
\begin{verbatim}
# Refers to a periodic interrupt, every 1000 jiffies:
timer.jiffies(1000)

# Fires every 5 seconds:
timer.sec(5)

# Refers to a periodic interrupt, every 1000 +/- 200 jiffies:
timer.jiffies(1000).randomize(200)
\end{verbatim}
\end{vindent}

\subsection{Special probe points}

The probe points \texttt{begin} and \texttt{end} are defined by the translator
to refer to the time of session startup and shutdown. There are no target
variables available in either context.


\subsubsection{begin}
\index{begin}
The \texttt{begin} probe is the start of the SystemTap session.
All \texttt{begin}
probe handlers are run during the startup of the session.


\subsubsection{end}
\index{end}
The \texttt{end} probe is the end of the SystemTap session. All \texttt{end}
probes are run during the normal shutdown of a session, such as in the aftermath
of a SystemTap \texttt{exit} function call, or an interruption from the user.
In the case of an shutdown triggered by error, \texttt{end} probes are not run.


\subsubsection{error}
\index{error}
The \emph{error} probe point is similar to the end
probe, except the probe handler runs when the session ends if an error
occurred.  In this case, an \texttt{end} probe is skipped, but each
\texttt{error} probe is still attempted.  You can use an
\texttt{error} probe to clean up or perform a final action on script
termination.

Here is a simple example:
\begin{vindent}
\begin{verbatim}
probe error { println ("Oops, errors occurred. Here's a report anyway.")
              foreach (coin in mint) { println (coin) } }
\end{verbatim}
\end{vindent}


\subsubsection{begin, end, and error probe sequence}
\index{probe sequence}
\texttt{begin}, \texttt{end}, and \texttt{error} probes can be
specified with an optional sequence number that controls the order in
which they are run. If no sequence number is provided, the sequence
number defaults to zero and probes are run in the order that they
occur in the script file. Sequence numbers may be either positive or
negative, and are especially useful for tapset writers who want to do
initialization in a \texttt{begin} probe. The following are examples.

\begin{vindent}
\begin{verbatim}
# In a tapset file:
probe begin(-1000) { ... }

# In a user script:
probe begin { ... }
\end{verbatim}
\end{vindent}
The user script \texttt{begin} probe defaults to sequence number zero, so
the tapset \texttt{begin} probe will run first.


\subsubsection{never}
\index{never}
The \texttt{never} probe point is defined by the translator to mean \emph{never}.
Its statements are analyzed for symbol and type correctness, but its probe
handler is never run. This probe point may be useful in conjunction with
optional probes. See Section~\ref{sub:Optional-probe-points}.


\begin{comment} % Comment out until perfmon code is reactivated
\subsection{Probes to monitor performance}

The perfmon family of probe points is used to access the performance monitoring
hardware available in modern processors. These probe points require perfmon2
support in the kernel to access the hardware.

Performance monitor hardware points have a \texttt{perfmon} prefix. The suffix
names the event being counted, for example \texttt{counter(event)}. The event
names are specific to the processor implementation, except for generic cycle
and instructions events, which are available on all processors. The probe
\texttt{perfmon.counter(event)} starts a counter on the processor which counts
the number of events that occur on that processor. For more details about
the performance monitoring events available on a specific processor, see
the help text returned by typing the perfmon2 command \texttt{pfmon -l.}

\subsubsection{\$counter}

\$counter is a handle used in the body of a probe for operations involving
the counter associated with the probe.

\subsubsection{read\_counter}

read\_counter is a function passed to the handle for a perfmon probe. It
returns the current count for the event.
\end{comment}

\section{Language elements\label{sec:Language-Elements}}
\subsection{Identifiers}
\index{identifiers}
\emph{Identifiers} are used to name variables and functions. They are an
alphanumeric sequence that may include the underscore (\_) and dollar sign
(\$) characters. They have the same syntax as C identifiers, except that
the dollar sign is also a legal character. Identifiers that begin with a
dollar sign are interpreted as references to variables in the target software,
rather than to SystemTap script variables. Identifiers may not start with
a plain digit.


\subsection{Data types\label{sub:Data-types}}
\index{data types}
The SystemTap language includes a small number of data types, but no type
declarations. A variable's type is inferred\index{inference} from its use.
To support this inference, the translator enforces consistent typing of function
arguments and return values, array indices and values. There are no implicit
type conversions between strings and numbers. Inconsistent type-related use
of an identifier signals an error.


\subsubsection{Literals}
\index{literals}
Literals are either strings or integers.
Literal integers can be expressed as decimal,
octal, or hexadecimal, using C notation. Type suffixes (e.g., \emph{L} or
\emph{U}) are not used.


\subsubsection{Integers\label{sub:Integers}}
\index{integers} \index{numbers}
Integers are decimal, hexadecimal, or octal, and use the same notation as
in C. Integers are 64-bit signed quantities, although the parser also accepts
(and wraps around) values above positive $2^{63}$ but below $2^{64}$.


\subsubsection{Strings\label{sub:Strings}}
\index{strings}
Strings are enclosed in quotation marks ({}``string''), and pass through
standard C escape codes with backslashes. Strings are limited in length to
MAXSTRINGLEN. For more information about this and other limits, see
Section~\ref{sub:SystemTap-safety}.


\subsubsection{Associative arrays}

See Section~\ref{sec:Associative-Arrays}


\subsubsection{Statistics}

See Section~\ref{sec:Statistics}


\subsection{Semicolons}
\index{;}
The semicolon is the null statement, or do nothing statement. It is optional,
and useful as a separator between statements to improve detection of syntax
errors and to reduce ambiguities in grammar.


\subsection{Comments}
\index{comments}
Three forms of comments are supported, as follows.

\begin{vindent}
\begin{verbatim}
# ... shell style, to the end of line
// ... C++ style, to the end of line
/* ... C style ... */
\end{verbatim}
\end{vindent}

\subsection{Whitespace}
\index{whitespace}
As in C, spaces, tabs, returns, newlines, and comments are treated as whitespace.
Whitespace is ignored by the parser.


\subsection{Expressions}
\index{expressions}
SystemTap supports a number of operators that use the same general syntax,
semantics, and precedence as in C and awk. Arithmetic is performed per C
rules for signed integers. If the parser detects division by zero or an overflow,
it generates an error. The following subsections list these operators.


\subsubsection{Binary numeric operators}
\index{binary}
\texttt{{*} / \% + - >\,{}> <\,{}< \& \textasciicircum{}
| \&\& ||}


\subsubsection{Binary string operators}
\index{binary}
\texttt{\textbf{.}} (string concatenation)


\subsubsection{Numeric assignment operators}
\index{numeric}
\texttt{= {*}= /= \%= += -= >\,{}>= <\,{}<=
\&= \textasciicircum{}= |=}


\subsubsection{String assignment operators}

\texttt{= .=}


\subsubsection{Unary numeric operators}
\index{unary}
\texttt{+ - ! \textasciitilde{} ++ -{}-}


\subsubsection{Binary numeric or string comparison operators}
\index{comparison}
\texttt{< > <= >= == !=}


\subsubsection{Ternary operator\label{sub:Ternary-operator}}
\index{?}
\texttt{cond ? exp1 : exp2}


\subsubsection{Grouping operator}
\index{grouping}
\texttt{( exp )}


\subsubsection{Function call}
\index{fn}
General syntax:

\texttt{fn ({[} arg1, arg2, ... ])}


\subsubsection{\$ptr-\textgreater member}
\index{pointer}
\texttt{ptr} is a kernel pointer available in a probed context.


\subsubsection{Pointer typecasting}
\index{Pointer typecasting}

\emph{Typecasting} is supported using the \texttt{@cast()} operator. A
script can define a pointer type for a \emph{long} value, then access
type members using the same syntax as with \texttt{\$target}
variables. After a pointer is saved into a script integer variable,
the translator loses the necessary type information to access members
from that pointer.  The \texttt{@cast()} operator tells the translator
how to read a pointer.

The following statement interprets \texttt{p} as a pointer to a struct
or union named \texttt{type\_name} and dereferences the
\texttt{member} value:
\begin{vindent}
\begin{verbatim}
@cast(p, "type_name"[, "module"])->member
\end{verbatim}
\end{vindent}

The optional \texttt{module} parameter tells the translator where to
look for information about that type. You can specify multiple modules
as a list with colon (\texttt{:}) separators. If you do not specify
the module parameter, the translator defaults to either the probe
module for dwarf probes or to \textit{kernel} for functions and all
other probe types.

The following statement retrieves the parent PID from a kernel
task\_struct:
\begin{vindent}
\begin{verbatim}
@cast(pointer, "task_struct", "kernel")->parent->tgid
\end{verbatim}
\end{vindent}

The translator can create its own module with type information from a
header surrounded by angle brackets (\texttt{< >}) if normal debugging
information is not available.  For kernel headers, prefix it with
\texttt{kernel} to use the appropriate build system.  All other
headers are built with default GCC parameters into a user module. The
following statements are examples.
\begin{vindent}
\begin{verbatim}
@cast(tv, "timeval", "<sys/time.h>")->tv_sec
@cast(task, "task_struct", "kernel<linux/sched.h>")->tgid
\end{verbatim}
\end{vindent}

In guru mode, the translator allows scripts to assign new values to
members of typecasted pointers.

Typecasting is also useful in the case of \texttt{void*} members whose
type might be determinable at run time.
\begin{vindent}
\begin{verbatim}
probe foo {
   if ($var->type == 1) {
      value = @cast($var->data, "type1")->bar
   } else {
      value = @cast($var->data, "type2")->baz
   }
   print(value)
}
\end{verbatim}
\end{vindent}


\subsubsection{\textless value\textgreater\ in \textless array\_name\textgreater}
\index{index}
This expression evaluates to true if the array contains an element with the
specified index.


\subsubsection{{[} \textless value\textgreater, ... ] in \textless array\_name\textgreater}

The number of index values must match the number of indexes previously specified.


\subsection{Literals passed in from the stap command line\label{sub:Literals-passed-in}}
\index{literals}
\emph{Literals} are either strings enclosed in double quotes ('' '') or
integers. For information about integers, see Section~\ref{sub:Integers}.
For information about strings, see Section~\ref{sub:Strings}.

Script arguments at the end of a command line are expanded as literals. You
can use these in all contexts where literals are accepted. A reference to
a nonexistent argument number is an error.


\subsubsection{\$1 \ldots{} \$\textless NN\textgreater\ for integers}
\index{\$}
Use \texttt{\$1 \ldots{} \$<NN>} for casting as a numeric literal.


\subsubsection{@1 \ldots{} @\textless NN\textgreater\ for strings}

Use \texttt{@1 \ldots{} @<NN>} for casting as a string literal.


\subsubsection{Examples}

For example, if the following script named example.stp

\begin{vindent}
\begin{verbatim}
probe begin { printf("%d, %s\n", $1, @2) }
\end{verbatim}
\end{vindent}
is invoked as follows

\begin{vindent}
\begin{verbatim}
# stap example.stp 10 mystring
\end{verbatim}
\end{vindent}
then 10 is substituted for \$1 and \char`\"{}mystring\char`\"{} for @2. The
output will be

\begin{vindent}
\begin{verbatim}
10, mystring
\end{verbatim}
\end{vindent}

\subsection{Conditional compilation}


\subsubsection{Conditions}
\index{conditions}
One of the steps of parsing is a simple conditional preprocessing stage.
The general form of this is similar to the ternary operator (Section~\ref{sub:Ternary-operator}).

\begin{vindent}
\begin{verbatim}
%( CONDITION %? TRUE-TOKENS %)
%( CONDITION %? TRUE-TOKENS %: FALSE-TOKENS %)
\end{verbatim}
\end{vindent}
The CONDITION is a limited expression whose format is determined by its first
keyword. The following is the general syntax.

\begin{vindent}
\begin{verbatim}
%( <condition> %? <code> [ %: <code> ] %)
\end{verbatim}
\end{vindent}

\subsubsection{Conditions based on available target variables}
\index{defined target variable}
The predicate @defined() is available for testing whether a
particular \$variable/expression is resolvable at translation time. The
following is an example of its use:

\begin{vindent}
\begin{verbatim}
  probe foo { if (@defined($bar)) log ("$bar is available here") }
\end{verbatim}
\end{vindent}


\subsubsection{Conditions based on kernel version: kernel\_v, kernel\_vr}
\index{kernel version}
\index{kernel\_vr}
\index{kernel\_v}
If the first part of a conditional expression is the identifier \texttt{kernel\_v}
or \texttt{kernel\_vr}, the second part must be one of six standard numeric
comparison operators {}``\textless'', {}``\textless ='', {}``=='', {}``!='', {}``\textgreater'',
or {}``\textgreater ='',
and the third part must be a string literal that contains an RPM-style version-release
value. The condition returns true if the version of the target kernel (as
optionally overridden by the \textbf{-r} option) matches the given version
string. The comparison is performed by the glibc function strverscmp.

\texttt{kernel\_v} refers to the kernel version number only, such as {}``2.6.13\char`\"{}.

\texttt{kernel\_vr} refers to the kernel version number including the release
code suffix, such as {}``2.6.13-1.322FC3smp''.


\subsubsection{Conditions based on architecture: arch}
\index{arch}
If the first part of the conditional expression is the identifier \texttt{arch}
which refers to the processor architecture, then the second part is a string
comparison operator ''=='' or ''!='', and the third part is a string
literal for matching it. This comparison is a simple string equality or inequality.
The currently supported architecture strings are i386, i686, x86\_64, ia64,
s390, and powerpc.


\subsubsection{True and False Tokens}
\index{tokens}
TRUE-TOKENS and FALSE-TOKENS are zero or more general parser tokens, possibly
including nested preprocessor conditionals, that are pasted into the input
stream if the condition is true or false. For example, the following code
induces a parse error unless the target kernel version is newer than 2.6.5.

\begin{vindent}
\begin{verbatim}
%( kernel_v <= "2.6.5" %? **ERROR** %) # invalid token sequence
\end{verbatim}
\end{vindent}
The following code adapts to hypothetical kernel version drift.

\begin{vindent}
\begin{verbatim}
probe kernel.function (
    %( kernel_v <= "2.6.12" %? "__mm_do_fault" %:
        %( kernel_vr == "2.6.13-1.8273FC3smp" %? "do_page_fault" %: UNSUPPORTED %)
    %)) { /* ... */ }

%( arch == "ia64" %?
    probe syscall.vliw = kernel.function("vliw_widget") {}
%)

\end{verbatim}
\end{vindent}

The following code adapts to the presence of a kernel CONFIG option.

\begin{vindent}
\begin{verbatim}
%( CONFIG_UTRACE == "y" %?
    probe process.syscall {}
%)
\end{verbatim}
\end{vindent}

\section{Statement types\label{sec:Statement-Types}}

Statements enable procedural control flow within functions and probe handlers.
The total number of statements executed in response to any single probe event
is limited to MAXACTION, which defaults to 1000. See Section~\ref{sub:SystemTap-safety}.


\subsection{break and continue}
\index{break}
\index{continue}
Use \texttt{break} or \texttt{continue} to exit or iterate the innermost
nesting loop statement, such as within a \texttt{while, for,} or \texttt{foreach}
statement. The syntax and semantics are the same as those used in C.


\subsection{try/catch}
\index{try}
\index{catch}
Use \texttt{try}/\texttt{catch} to handle most kinds of run-time errors within the script
instead of aborting the probe handler in progress.  The semantics are similar
to C++ in that try/catch blocks may be nested.  The error string may be captured
by optionally naming a variable which is to receive it.

\begin{vindent}
\begin{verbatim}
try { 
   /* do something */
   /* trigger error like kread(0), or divide by zero, or error("foo") */
} catch (msg) { /* omit (msg) entirely if not interested */
   /* println("caught error ", msg) */
   /* handle error */
}
/* execution continues */
\end{verbatim}
\end{vindent}


\subsection{delete}
\index{delete}
\texttt{delete} removes an element.

The following statement removes from ARRAY the element specified by the index
tuple. The value will no longer be available, and subsequent iterations will
not report the element. It is not an error to delete an element that does
not exist.

\begin{vindent}
\begin{verbatim}
delete ARRAY[INDEX1, INDEX2, ...]
\end{verbatim}
\end{vindent}
The following syntax removes all elements from ARRAY:

\begin{vindent}
\begin{verbatim}
delete ARRAY
\end{verbatim}
\end{vindent}
The following statement removes the value of SCALAR. Integers and strings
are cleared to zero and null (\char`\"{}\char`\"{}) respectively, while statistics
are reset to their initial empty state.

\begin{vindent}
\begin{verbatim}
delete SCALAR
\end{verbatim}
\end{vindent}

\subsection{EXP (expression)}
\index{expression}
An \texttt{expression} executes a string- or integer-valued expression and
discards the value.


\subsection{for}
\index{for}
General syntax:
\begin{vindent}
\begin{verbatim}
for (EXP1; EXP2; EXP3) STMT
\end{verbatim}
\end{vindent}
The \texttt{for} statement is similar to the \texttt{for} statement in C.
The \texttt{for} expression executes EXP1 as initialization. While EXP2 is
non-zero, it executes STMT, then the iteration expression EXP3.

\subsection{foreach\label{sub:foreach}}
\index{foreach}
General syntax:
\begin{vindent}
\begin{verbatim}
foreach (VAR in ARRAY) STMT
\end{verbatim}
\end{vindent}
The \texttt{foreach} statement loops over each element of a named global array, assigning
the current key to VAR. The array must not be modified within the statement.
If you add a single plus (+) or minus (-) operator after the VAR or the ARRAY
identifier, the iteration order will be sorted by the ascending or descending
index or value.

The following statement behaves the same as the first example, except it
is used when an array is indexed with a tuple of keys.  Use a sorting suffix
on at most one VAR or ARRAY identifier.

\begin{vindent}
\begin{verbatim}
foreach ([VAR1, VAR2, ...] in ARRAY) STMT
\end{verbatim}
\end{vindent}
The following statement is the same as the first example, except that the
\texttt{limit} keyword limits the number of loop iterations to EXP times.
EXP is evaluated once at the beginning of the loop.

\begin{vindent}
\begin{verbatim}
foreach (VAR in ARRAY limit EXP) STMT
\end{verbatim}
\end{vindent}

\subsection{if}
\index{if}
General syntax:

\begin{vindent}
\begin{verbatim}
if (EXP) STMT1 [ else STMT2 ]
\end{verbatim}
\end{vindent}
The \texttt{if} statement compares an integer-valued EXP to zero. It executes
the first STMT if non-zero, or the second STMT if zero.

The \texttt{if} command has the same syntax and semantics as used in C.


\subsection{next}
\index{next}
The \texttt{next} statement returns immediately from the enclosing probe
handler.


\subsection{; (null statement)}
\index{;}
\index{null statement}
General syntax:

\begin{vindent}
\begin{verbatim}
statement1
;
statement2
\end{verbatim}
\end{vindent}
The semicolon represents the null statement, or do nothing. It is useful
as an optional separator between statements to improve syntax error detection
and to handle certain grammar ambiguities.


\subsection{return}
\index{return}
General syntax:

\begin{vindent}
\begin{verbatim}
return EXP
\end{verbatim}
\end{vindent}
The \texttt{return} statement returns the EXP value from the enclosing function.
If the value of the function is not returned, then a return statement is
not needed, and the function will have a special \emph{unknown} type with
no return value.

\subsection{\{ \} (statement block)}
\index{\{ \}}
\index{statement block}
This is the statement block with zero or more statements enclosed within
brackets. The following is the general syntax:

\begin{vindent}
\begin{verbatim}
{ STMT1 STMT2 ... }
\end{verbatim}
\end{vindent}
The statement block executes each statement in sequence in the block. Separators
or terminators are generally not necessary between statements. The statement
block uses the same syntax and semantics as in C.


\subsection{while}
\index{while}
General syntax:

\begin{vindent}
\begin{verbatim}
while (EXP) STMT
\end{verbatim}
\end{vindent}
The \texttt{while} statement uses the same syntax and semantics as in C.
In the statement above, while the integer-valued EXP evaluates to non-zero,
the parser will execute STMT.


\section{Associative arrays\label{sec:Associative-Arrays}}
\index{associative arrays}
Associative arrays are implemented as hash tables with a maximum size set
at startup. Associative arrays are too large to be created dynamically for
individual probe handler runs, so they must be declared as global. The basic
operations for arrays are setting and looking up elements. These operations
are expressed in awk syntax: the array name followed by an opening bracket
({[}), a comma-separated list of up to nine index index expressions, and
a closing bracket (]). Each index expression may be a string or a number,
as long as it is consistently typed throughout the script.


\subsection{Examples}

\begin{vindent}
\begin{verbatim}
# Increment the named array slot:
foo [4,"hello"] ++

# Update a statistic:
processusage [uid(),execname()] ++

# Set a timestamp reference point:
times [tid()] = get_cycles()

# Compute a timestamp delta:
delta = get_cycles() - times [tid()]
\end{verbatim}
\end{vindent}

\subsection{Types of values}

Array elements may be set to a number, a string, or an aggregate.
The type must be consistent
throughout the use of the array. The first assignment to the array defines
the type of the elements. Unset array elements may be fetched and return
a null value (zero or empty string) as appropriate, but they are not seen
by a membership test.


\subsection{Array capacity}

Array sizes can be specified explicitly or allowed to default to the maximum
size as defined by MAXMAPENTRIES. See Section~\ref{sub:SystemTap-safety}
for details on changing MAXMAPENTRIES.

You can explicitly specify the size of an array as follows:

\begin{vindent}
\begin{verbatim}
global ARRAY[<size>]
\end{verbatim}
\end{vindent}
If you do not specify the size parameter, then the array is created to hold
MAXMAPENTRIES number of elements


\subsection{Iteration, foreach}
\index{foreach}
Like awk, SystemTap's foreach creates a loop that iterates over key tuples
of an array, not only values. The iteration may be sorted by any single key
or a value by adding an extra plus symbol (+) or minus symbol (-) to the
code. The following are examples.

\begin{vindent}
\begin{verbatim}
# Simple loop in arbitrary sequence:
foreach ([a,b] in foo)
    fuss_with(foo[a,b])

# Loop in increasing sequence of value:
foreach ([a,b] in foo+) { ... }

# Loop in decreasing sequence of first key:
foreach ([a-,b] in foo) { ... }
\end{verbatim}
\end{vindent}
The \texttt{break} and \texttt{continue} statements also work inside foreach
loops. Since arrays can be large but probe handlers must execute quickly,
you should write scripts that exit iteration early, if possible. For simplicity,
SystemTap forbids any modification of an array during iteration with a foreach.


\section{Statistics (aggregates)\label{sec:Statistics}}
\index{aggregates}
Aggregate instances are used to collect statistics on numerical values, when
it is important to accumulate new data quickly and in large volume. These
instances operate without exclusive locks, and store only aggregated stream
statistics. Aggregates make sense only for global variables. They are stored
individually or as elements of an associative array.

\subsection{The aggregation (\textless\hspace{1 sp}\textless\hspace{1 sp}\textless) operator}
\index{\textless\hspace{1 sp}\textless\hspace{1 sp}\textless}
The aggregation operator is {}``\textless\hspace{1 sp}\textless\hspace{1 sp}\textless'',
and its effect is similar to an assignment or a C++ output streaming operation.
The left operand specifies a scalar or array-index \emph{l-value}, which
must be declared global. The right operand is a numeric expression. The meaning
is intuitive: add the given number as a sample to the set of numbers to compute their
statistics. The specific list of statistics to gather is given separately
by the extraction functions. The following is an example.

\begin{vindent}
\begin{verbatim}
a <<< delta_timestamp
writes[execname()] <<< count
\end{verbatim}
\end{vindent}

\subsection{Extraction functions}
\index{extraction}
For each instance of a distinct extraction function operating on a given
identifier, the translator computes a set of statistics. With each execution
of an extraction function, the aggregation is computed for that moment across
all processors. The first argument of each function is the same style of
l-value as used on the left side of the aggregation operation.


\subsection{Integer extractors}

The following functions provide methods to extract information about aggregate.


\subsubsection{@count(s)}
\index{count}
This statement returns the number of samples accumulated in aggregate s.


\subsubsection{@sum(s)}
\index{sum}
This statement returns the total sum of all samples in aggregate s.


\subsubsection{@min(s)}
\index{min}
This statement returns the minimum of all samples in aggregate s.


\subsubsection{@max(s)}
\index{max}
This statement returns the maximum of all samples in aggregate s.


\subsubsection{@avg(s)}
\index{avg}
This statement returns the average value of all samples in aggregate s.


\subsection{Histogram extractors}
\index{histograms}
The following functions provide methods to extract histogram information.
Printing a histogram with the print family of functions renders a histogram
object as a tabular "ASCII art" bar chart.

\subsubsection{@hist\_linear}
\index{hist\_linear}
The statement \texttt{@hist\_linear(v,L,H,W)} represents a linear histogram
of aggregate \texttt{v},
where \emph{L} and \emph{H} represent the lower and upper end of
a range of values and \emph{W} represents the width (or size) of each bucket
within the range.  The low and high values can be negative, but the overall
difference (high minus low) must be positive. The width parameter must also
be positive.

In the output, a range of consecutive empty buckets may be replaced with a tilde
(\textasciitilde{}) character.  This can be controlled on the command line
with -DHIST\_ELISION=\textless\hspace{1 sp}num\textgreater\hspace{1 sp},
where \textless\hspace{1 sp}num\textgreater\hspace{1 sp} specifies how many
empty buckets at the top and bottom of the range to print.
The default is 2.  A \textless\hspace{1 sp}num\textgreater\hspace{1 sp} of 0
removes all empty buckets. A negative \textless\hspace{1 sp}num\textgreater\hspace{1 sp}
disables removal.

For example, if you specify -DHIST\_ELISION=3 and the histogram has 10
consecutive empty buckets, the first 3 and last 3 empty buckets will
be printed and the middle 4 empty buckets will be represented by a
tilde (\textasciitilde{}).

The following is an example.

\begin{vindent}
\begin{verbatim}
global reads
probe netdev.receive {
    reads <<< length
}
probe end {
    print(@hist_linear(reads, 0, 10240, 200))
}
\end{verbatim}
\end{vindent}
This generates the following output.

\begin{samepage}
\begin{vindent}
\begin{verbatim}
value |-------------------------------------------------- count
    0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1650
  200 |                                                      8
  400 |                                                      0
  600 |                                                      0
      ~
 1000 |                                                      0
 1200 |                                                      0
 1400 |                                                      1
 1600 |                                                      0
 1800 |                                                      0
\end{verbatim}
\end{vindent}
\end{samepage}
This shows that 1650 network reads were of a size between 0 and 199 bytes,
8 reads were between 200 and 399 bytes, and 1 read was between
1200 and 1399 bytes.  The tilde (\textasciitilde{}) character indicates
the bucket for 800 to 999 bytes was removed because it was empty.
Empty buckets for 2000 bytes and larger were also removed because they
were empty.

\subsubsection{@hist\_log}
\index{hist\_log}
The statement \texttt{@hist\_log(v)} represents a base-2 logarithmic
histogram.  Empty buckets are replaced with a tilde (\textasciitilde{})
character in the same way as \texttt{@hist\_linear()} (see above).

The following is an example.

\begin{vindent}
\begin{verbatim}
global reads
probe netdev.receive {
    reads <<< length
}
probe end {
    print(@hist_log(reads))
}
\end{verbatim}
\end{vindent}
This generates the following output.

\begin{samepage}
\begin{vindent}
\begin{verbatim}
value |-------------------------------------------------- count
    8 |                                                      0
   16 |                                                      0
   32 |                                                    254
   64 |                                                      3
  128 |                                                      2
  256 |                                                      2
  512 |                                                      4
 1024 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 16689
 2048 |                                                      0
 4096 |                                                      0
\end{verbatim}
\end{vindent}
\end{samepage}

\section{Predefined functions\label{sec:Predefined-Functions}}

Unlike built-in functions, predefined functions are implemented in the tapsets.


\subsection{Output functions}

The following sections describe the functions you can use to output data.


\subsubsection{error}
\index{error}
General syntax:

\begin{vindent}
\begin{verbatim}
error (msg:string)
\end{verbatim}
\end{vindent}
This function logs the given string to the error stream. It appends an implicit
end-of-line. It blocks any further execution of statements in this probe.
If the number of errors exceeds the MAXERRORS parameter, it triggers an \texttt{exit}.


\subsubsection{log}
\index{log}
General syntax:

\begin{vindent}
\begin{verbatim}
log (msg:string)
log (const char *fmt, ...)
\end{verbatim}
\end{vindent}
This function logs data. \texttt{log} sends the message immediately to staprun
and to the bulk transport (relayfs) if it is being used. If the last character
given is not a newline, then one is added.

This function is not as efficient as printf and should only be used for urgent
messages.

\subsubsection{print}
\index{print}
General syntax:

\begin{vindent}
\begin{verbatim}
print ()
\end{verbatim}
\end{vindent}
This function prints a single value of any type.


\subsubsection{printf}
\index{printf}
General syntax:

\begin{vindent}
\begin{verbatim}
printf (fmt:string, ...)
\end{verbatim}
\end{vindent}
The printf function takes a formatting string as an argument, and a number
of values of corresponding types, and prints them all. The format must be a
literal string constant. The printf formatting directives are similar to those
of C, except that they are fully checked for type by the translator.

The formatting string can contain tags that are defined as follows:

\begin{vindent}
\begin{verbatim}
%[flags][width][.precision][length]specifier
\end{verbatim}
\end{vindent}
Where \texttt{specifier} is required and defines the type and the interpretation
of the value of the corresponding argument. The following table shows the
details of the specifier parameter:

\begin{table}[H]
\caption{printf specifier values}
\begin{tabular}{|>{\raggedright}p{1in}|>{\raggedright}p{3.5in}|>{\raggedright}p{1.25in}|}
\hline
\textbf{Specifier}&
\textbf{Output}&
\textbf{Example}\tabularnewline
\hline
\hline
d or i&
Signed decimal&
392\tabularnewline
\hline
o&
Unsigned octal&
610\tabularnewline
\hline
s&
String&
sample\tabularnewline
\hline
u&
Unsigned decimal&
7235\tabularnewline
\hline
x&
Unsigned hexadecimal (lowercase letters)&
7fa\tabularnewline
\hline
X&
Unsigned hexadecimal (uppercase letters)&
7FA\tabularnewline
\hline
p&
Pointer address&
0x0000000000bc614e\tabularnewline
\hline
b&
Writes a binary value as text using the computer's native byte order.
The field width specifies the number of bytes
to write. Valid specifications are \%b, \%1b, \%2b, \%4b and \%8b. The default
width is 8 (64-bits).&
See below\tabularnewline
\hline
\%&
A \% followed by another \% character will write \% to stdout.&
\%\tabularnewline
\hline
\end{tabular}
\end{table}
The tag can also contain \texttt{flags}, \texttt{width}, \texttt{.precision}
and \texttt{modifiers} sub-specifiers, which are optional and follow these
specifications:

\begin{table}[H]
\caption{printf flag values}
\begin{tabular}{|>{\raggedright}p{1.5in}|>{\raggedright}p{4.5in}|}
\hline
\textbf{Flags}&
\textbf{Description}\tabularnewline
\hline
\hline
- (minus sign)&
Left-justify within the given field width. Right justification is the default
(see \texttt{width} sub-specifier).\tabularnewline
\hline
+ (plus sign)&
Precede the result with a plus or minus sign even for positive numbers. By
default, only negative numbers are preceded with a minus sign.\tabularnewline
\hline
(space)&
If no sign is going to be written, a blank space is inserted before the value.\tabularnewline
\hline
\#&
Used with \texttt{o}, \texttt{x} or \texttt{X} specifiers the value is preceded
with \texttt{0}, \texttt{0x} or \texttt{0X} respectively for non-zero values.\tabularnewline
\hline
0&
Left-pads the number with zeroes instead of spaces, where padding is specified
(see \texttt{width} sub-specifier).\tabularnewline
\hline
\end{tabular}
\end{table}

\begin{table}[H]
\caption{printf width values}
\begin{tabular}{|>{\raggedright}p{1.5in}|>{\raggedright}p{4.5in}|}
\hline
\textbf{Width}&
\textbf{Description}\tabularnewline
\hline
\hline
(number)&
Minimum number of characters to be printed. If the value to be printed is
shorter than this number, the result is padded with blank spaces. The value
is not truncated even if the result is larger.\tabularnewline
\hline
\end{tabular}
\end{table}

%
\begin{table}[H]

\caption{printf precision values}

\begin{tabular}{|>{\raggedright}p{1.5in}|>{\raggedright}p{4.5in}|}
\hline
\textbf{Precision}&
\textbf{Description}\tabularnewline
\hline
\hline
.number&
For integer specifiers (\texttt{d, i, o, u, x, X}): \texttt{precision} specifies
the minimum number of digits to be written. If the value to be written is
shorter than this number, the result is padded with leading zeros. The value
is not truncated even if the result is longer. A precision of 0 means that
no character is written for the value 0. For s: this is the maximum number
of characters to be printed. By default all characters are printed until
the ending null character is encountered. When no \texttt{precision} is specified,
the default is 1. If the period is specified without an explicit value for
\texttt{precision}, 0 is assumed.\tabularnewline
\hline
\end{tabular}
\end{table}

\textbf{Binary Write Examples}

The following is an example of using the binary write functions:

\begin{vindent}
\begin{verbatim}
probe begin {
    for (i = 97; i < 110; i++)
        printf("%3d: %1b%1b%1b\n", i, i, i-32, i-64)
    exit()
}
\end{verbatim}
\end{vindent}
This prints:

\begin{vindent}
\begin{verbatim}
 97: aA!
 98: bB"
 99: cC#
100: dD$
101: eE%
102: fF&
103: gG'
104: hH(
105: iI)
106: jJ*
107: kK+
108: lL,
109: mM-
\end{verbatim}
\end{vindent}
Another example:

\begin{vindent}
\begin{verbatim}
stap -e 'probe begin{printf("%b%b", 0xc0dedbad, \
0x12345678);exit()}' | hexdump -C

\end{verbatim}
\end{vindent}
This prints:

\begin{vindent}
\begin{verbatim}
00000000  ad db de c0 00 00 00 00  78 56 34 12 00 00 00 00  |........xV4.....|
00000010
\end{verbatim}
\end{vindent}
Another example:

\begin{vindent}
\begin{verbatim}
probe begin{
    printf("%1b%1b%1blo %1b%1brld\n", 72,101,108,87,111)
    exit()
}
\end{verbatim}
\end{vindent}
This prints:

\begin{vindent}
\begin{verbatim}
Hello World
\end{verbatim}
\end{vindent}

\subsubsection{printd}
\index{printd}
General syntax:

\begin{vindent}
\begin{verbatim}
printd (delimiter:string, ...)
\end{verbatim}
\end{vindent}
This function takes a string delimiter and two or more values of any type, then
prints the values with the delimiter interposed. The delimiter must be a
literal string constant.

For example:
\begin{vindent}
\begin{verbatim}
printd("/", "one", "two", "three", 4, 5, 6)
\end{verbatim}
\end{vindent}
prints:
\begin{vindent}
\begin{verbatim}
one/two/three/4/5/6
\end{verbatim}
\end{vindent}

\subsubsection{printdln}
\index{printdln}
General syntax:

\begin{vindent}
\begin{verbatim}
printdln (delimiter:string, ...)
\end{verbatim}
\end{vindent}
This function operates like \texttt{printd}, but also appends a newline.

\subsubsection{println}
\index{println}
General syntax:

\begin{vindent}
\begin{verbatim}
println ()
\end{verbatim}
\end{vindent}
This function prints a single value like \texttt{print},
but also appends a newline.

\subsubsection{sprint}
\index{sprint}
General syntax:

\begin{vindent}
\begin{verbatim}
sprint:string ()
\end{verbatim}
\end{vindent}
This function operates like \texttt{print}, but returns the string rather
than printing it.

\subsubsection{sprintf}
\index{sprintf}
General syntax:

\begin{vindent}
\begin{verbatim}
sprintf:string (fmt:string, ...)
\end{verbatim}
\end{vindent}
This function operates like \texttt{printf}, but returns the formatted string
rather than printing it.


\subsubsection{warn}
\index{warn}
General syntax:

\begin{vindent}
\begin{verbatim}
warn (msg:string)
\end{verbatim}
\end{vindent}
This function sends a warning message immediately to staprun. It is also
sent over the bulk transport (relayfs) if it is being used.
If the last character is not a newline, then one is added.

\subsection{Context at the probe point}

The following functions provide ways to access the current task context
at a probe point. Note that these may not return correct values when
a probe is hit in interrupt context.

\subsubsection{backtrace}
\index{backtrace}
General syntax:

\begin{vindent}
\begin{verbatim}
backtrace:string ()
\end{verbatim}
\end{vindent}
Returns a string of hex addresses that are a backtrace of the
stack. The output is truncated to MAXSTRINGLEN.

\subsubsection{caller}
\index{caller}
General syntax:

\begin{vindent}
\begin{verbatim}
caller:string()
\end{verbatim}
\end{vindent}
Returns the address and name of the calling function. It works
only for return probes.

\subsubsection{caller\_addr}
\index{caller\_addr}
General syntax:

\begin{vindent}
\begin{verbatim}
caller_addr:long ()
\end{verbatim}
\end{vindent}
Returns the address of the calling function. It works only
for return probes.


\subsubsection{cpu}
\index{cpu}
General syntax:

\begin{vindent}
\begin{verbatim}
cpu:long ()
\end{verbatim}
\end{vindent}
Returns the current cpu number.


\subsubsection{egid}
\index{egid}
General syntax:

\begin{vindent}
\begin{verbatim}
egid:long ()
\end{verbatim}
\end{vindent}
Returns the effective group ID of the current process.


\subsubsection{euid}
\index{euid}
General syntax:

\begin{vindent}
\begin{verbatim}
euid:long ()
\end{verbatim}
\end{vindent}
Returns the effective user ID of the current process.


\subsubsection{execname}
\index{execname}
General syntax:

\begin{vindent}
\begin{verbatim}
execname:string ()
\end{verbatim}
\end{vindent}
Returns the name of the current process.


\subsubsection{gid}
\index{gid}
General syntax:

\begin{vindent}
\begin{verbatim}
gid:long ()
\end{verbatim}
\end{vindent}
Returns the group ID of the current process.


\subsubsection{is\_return}
\index{is\_return}
General syntax:

\begin{vindent}
\begin{verbatim}
is_return:long ()
\end{verbatim}
\end{vindent}
Returns 1 if the probe point is a return probe, else it returns
zero.

\noun{Deprecated}.


\subsubsection{pexecname}
\index{pexecname}
General syntax:

\begin{vindent}
\begin{verbatim}
pexecname:string ()
\end{verbatim}
\end{vindent}
Returns the name of the parent process.


\subsubsection{pid}
\index{pid}
General syntax:

\begin{vindent}
\begin{verbatim}
pid:long ()
\end{verbatim}
\end{vindent}
Returns the process ID of the current process.


\subsubsection{ppid}
\index{ppid}
General syntax:

\begin{vindent}
\begin{verbatim}
ppid:long ()
\end{verbatim}
\end{vindent}
Returns the process ID of the parent process.


\subsubsection{tid}
\index{tid}
General syntax:

\begin{vindent}
\begin{verbatim}
tid:long ()
\end{verbatim}
\end{vindent}
Returns the ID of the current thread.


\subsubsection{uid}
\index{uid}
General syntax:

\begin{vindent}
\begin{verbatim}
uid:long ()
\end{verbatim}
\end{vindent}
Returns the user ID of the current task.


\subsubsection{print\_backtrace}
\index{print\_backtrace}
General syntax:

\begin{vindent}
\begin{verbatim}
print_backtrace ()
\end{verbatim}
\end{vindent}
This function is equivalent to \texttt{print\_stack(backtrace())}, except
that deeper stack nesting is supported. The function does not return a value.


\subsubsection{print\_regs}
\index{print\_regs}
General syntax:

\begin{vindent}
\begin{verbatim}
print_regs ()
\end{verbatim}
\end{vindent}
This function prints a register dump.


\subsubsection{print\_stack}
\index{print\_stack}
General syntax:

\begin{vindent}
\begin{verbatim}
print_stack (stk:string)
\end{verbatim}
\end{vindent}
This function performs a symbolic lookup of the addresses in the given string,
which is assumed to be the result of a prior call to \texttt{backtrace()}.
It prints one line per address. Each printed line includes the address, the
name of the function containing the address, and an estimate of its position
within that function. The function does not return a value.


\subsubsection{stack\_size}
\index{stack\_size}
General syntax:

\begin{vindent}
\begin{verbatim}
stack_size:long ()
\end{verbatim}
\end{vindent}
Returns the size of the kernel stack.


\subsubsection{stack\_unused}
\index{stack\_unused}
General syntax:

\begin{vindent}
\begin{verbatim}
stack_unused:long ()
\end{verbatim}
\end{vindent}
Returns how many bytes are currently unused in the kernel stack.


\subsubsection{stack\_used}
\index{stack\_used}
General syntax:

\begin{vindent}
\begin{verbatim}
stack_used:long ()
\end{verbatim}
\end{vindent}
Returns how many bytes are currently used in the kernel stack.


\subsubsection{stp\_pid}
\index{stp\_pid}
\begin{vindent}
\begin{verbatim}
stp_pid:long ()
\end{verbatim}
\end{vindent}
Returns the process ID of the of the stapio process that launched
this script. There could be other SystemTap scripts and stapio processes
running on the system.


\subsubsection{target}
\index{target}
General syntax:

\begin{vindent}
\begin{verbatim}
target:long ()
\end{verbatim}
\end{vindent}
Returns the process ID of the target process. This is useful
in conjunction with the -x PID or -c CMD command-line options to stap. An
example of its use is to create scripts that filter on a specific process.

\begin{verbatim}
-x <pid>
\end{verbatim}
target() returns the pid specified by -x

\begin{verbatim}
-c <command>
\end{verbatim}
target() returns the pid for the executed command specified
by -c.

\subsection{Task data}

These functions return data about a task.  They all require a task handle as
input, such as the  value return by task\_current() or the variables
prev\_task and next\_task in the scheduler.ctxswitch probe alias.

\subsubsection{task\_cpu}
\index{task\_cpu}
General syntax:

\begin{vindent}
\begin{verbatim}
task_cpu:long (task:long)
\end{verbatim}
\end{vindent}
Returns the scheduled cpu for the given task.


\subsubsection{task\_current}
\index{task\_current}
General syntax:

\begin{vindent}
\begin{verbatim}
task_current:long ()
\end{verbatim}
\end{vindent}
Returns the address of the task\_struct representing
the current process. This address can be passed to the various task\_{*}()
functions to extract more task-specific data.


\subsubsection{task\_egid}
\index{task\_egid}
General syntax:

\begin{vindent}
\begin{verbatim}
task_egid:long (task:long)
\end{verbatim}
\end{vindent}
Returns the effective group ID of the given task.


\subsubsection{task\_execname}
\index{task\_execname}
General syntax:

\begin{vindent}
\begin{verbatim}
task_execname:string (task:long)
\end{verbatim}
\end{vindent}
Returns the name of the given task.


\subsubsection{task\_euid}
\index{task\_euid}
General syntax:

\begin{vindent}
\begin{verbatim}
task_euid:long (task:long)
\end{verbatim}
\end{vindent}
Returns the effective user ID of the given task.


\subsubsection{task\_gid}
\index{task\_gid}
General syntax:

\begin{vindent}
\begin{verbatim}
task_gid:long (task:long)
\end{verbatim}
\end{vindent}
Returns the group ID of the given task.


\subsubsection{task\_nice}
\index{task\_nice}
General syntax:

\begin{vindent}
\begin{verbatim}
task_nice:long (task:long)
\end{verbatim}
\end{vindent}
Returns the nice value of the given task.


\subsubsection{task\_parent}
\index{task\_parent}
General syntax:

\begin{vindent}
\begin{verbatim}
task_parent:long (task:long)
\end{verbatim}
\end{vindent}
Returns the address of the parent task\_struct of the given
task. This address can be passed to the various task\_{*}() functions to
extract more task-specific data.


\subsubsection{task\_pid}
\index{task\_pid}
General syntax:

\begin{vindent}
\begin{verbatim}
task_pid:long (task:long)
\end{verbatim}
\end{vindent}
Returns the process ID of the given task.


\subsubsection{task\_prio}
\index{task\_prio}
General syntax:

\begin{vindent}
\begin{verbatim}
task_prio:long (task:long)
\end{verbatim}
\end{vindent}
Returns the priority value of the given task.


\subsubsection{task\_state}
\index{task\_state}
General syntax:

\begin{vindent}
\begin{verbatim}
task_state:long (task:long)
\end{verbatim}
\end{vindent}
Returns the state of the given task. Possible states are:

\begin{vindent}
\begin{verbatim}
TASK_RUNNING           0
TASK_INTERRUPTIBLE     1
TASK_UNINTERRUPTIBLE   2
TASK_STOPPED           4
TASK_TRACED            8
EXIT_ZOMBIE           16
EXIT_DEAD             32
\end{verbatim}
\end{vindent}

\subsubsection{task\_tid}
\index{task\_tid}
General syntax:

\begin{vindent}
\begin{verbatim}
task_tid:long (task:long)
\end{verbatim}
\end{vindent}
Returns the thread ID of the given task.


\subsubsection{task\_uid}
\index{task\_uid}
General syntax:

\begin{vindent}
\begin{verbatim}
task_uid:long (task:long)
\end{verbatim}
\end{vindent}
Returns the user ID of the given task.


\subsubsection{task\_open\_file\_handles}
\index{task\_open\_file\_handles}
General syntax:

\begin{vindent}
\begin{verbatim}
task_open_file_handles:long (task:long)
\end{verbatim}
\end{vindent}
Returns the number of open file handles for the given task.


\subsubsection{task\_max\_file\_handles}
\index{task\_max\_file\_handles}
General syntax:

\begin{vindent}
\begin{verbatim}
task_max_file_handles:long (task:long)
\end{verbatim}
\end{vindent}
Returns the maximum number of file handles for the given task.


\subsection{Accessing string data at a probe point}

The following functions provide methods to access string data at a probe
point.


\subsubsection{kernel\_string}
\index{kernel\_string}
General syntax:

\begin{vindent}
\begin{verbatim}
kernel_string:string (addr:long)
\end{verbatim}
\end{vindent}
Copies a string from kernel space at a given address. The validation of this
address is only partial.


\subsubsection{user\_string\label{sub:user_string}}
\index{user\_string}
General syntax:

\begin{vindent}
\begin{verbatim}
user_string:string (addr:long)
\end{verbatim}
\end{vindent}
This function copies a string from user space at a given address. The validation
of this address is only partial. In rare cases when userspace data is not
accessible, this function returns the string \texttt{<unknown>.}


\subsubsection{user\_string2}
\index{user\_string2}
General syntax:

\begin{vindent}
\begin{verbatim}
user_string2:string (addr:long, err_msg:string)
\end{verbatim}
\end{vindent}
This function is similar to \texttt{user\_string}, (Section~\ref{sub:user_string})
but allows passing an error message as an argument to be returned if userspace
data is not available.


\subsubsection{user\_string\_warn}
\index{user\_string\_warn}
General syntax:

\begin{vindent}
\begin{verbatim}
user_string_warn:string (addr:long)
\end{verbatim}
\end{vindent}
This function copies a string from userspace at given address. It prints
a verbose error message on failure.


\subsubsection{user\_string\_quoted}
\index{user\_string\_quoted}
General syntax:

\begin{vindent}
\begin{verbatim}
user_string_quoted:string (addr:long)
\end{verbatim}
\end{vindent}
This function copies a string from userspace at given address. Any ASCII
characters that are not printable are replaced by the corresponding escape
sequence in the returned string.


\subsection{Initializing queue statistics}
\index{queue statistics}
The queue\_stats tapset provides functions that, when given notification
of queuing events like wait, run, or done, track averages such as queue length,
service and wait times, and utilization. Call the following three functions
from appropriate probes, in sequence.


\subsubsection{qs\_wait}
\index{qs\_wait}
General syntax:

\begin{vindent}
\begin{verbatim}
qs_wait (qname:string)
\end{verbatim}
\end{vindent}
This function records that a new request was enqueued for the given queue
name.


\subsubsection{qs\_run}
\index{qs\_run}
General syntax:

\begin{vindent}
\begin{verbatim}
qs_run (qname:string)
\end{verbatim}
\end{vindent}
This function records that a previously enqueued request was removed from
the given wait queue and is now being serviced.


\subsubsection{qs\_done}
\index{qs\_done}
General syntax:

\begin{vindent}
\begin{verbatim}
qs_done (qname:string)
\end{verbatim}
\end{vindent}
This function records that a request originally from the given queue has
completed being serviced.


\subsection{Using queue statistics}

Functions with the qsq\_ prefix query the statistics averaged since the first
queue operation or when qsq\_start was called. Since statistics are often
fractional, a scale parameter multiplies the result to a more useful scale.
For some fractions, a scale of 100 returns percentage numbers.


\subsubsection{qsq\_blocked}
\index{qsq\_blocked}
General syntax:

\begin{vindent}
\begin{verbatim}
qsq_blocked:long (qname:string, scale:long)
\end{verbatim}
\end{vindent}
This function returns the fraction of elapsed time during which one or more
requests were on the wait queue.


\subsubsection{qsq\_print}
\index{qsq\_print}
General syntax:

\begin{vindent}
\begin{verbatim}
qsq_print (qname:string)
\end{verbatim}
\end{vindent}
This function prints a line containing the following statistics for the given
queue:

\begin{itemize}
\item queue name
\item average rate of requests per second
\item average wait queue length
\item average time on the wait queue
\item average time to service a request
\item percentage of time the wait queue was used
\item percentage of time any request was being serviced
\end{itemize}

\subsubsection{qsq\_start}
\index{qsq\_start}
General syntax:

\begin{vindent}
\begin{verbatim}
qsq_start (qname:string)
\end{verbatim}
\end{vindent}
This function resets the statistics counters for the given queue, and restarts
tracking from the moment the function was called. This function is also used to
create initialize a queue.


\subsubsection{qsq\_service\_time}
\index{qsq\_service\_time}
General syntax:

\begin{vindent}
\begin{verbatim}
qsq_service_time:long (qname:string, scale:long)
\end{verbatim}
\end{vindent}
This function returns the average time in microseconds required to service
a request once it is removed from the wait queue.


\subsubsection{qsq\_throughput}
\index{qsq\_throughput}
General syntax:

\begin{vindent}
\begin{verbatim}
qsq_throughput:long (qname:string, scale:long)
\end{verbatim}
\end{vindent}
This function returns the average number of requests served per microsecond.


\subsubsection{qsq\_utilization}
\index{qsq\_utilization}
General syntax:

\begin{vindent}
\begin{verbatim}
qsq_utilization:long (qname:string, scale:long)
\end{verbatim}
\end{vindent}
This function returns the average time in microseconds that at least one
request was being serviced.


\subsubsection{qsq\_wait\_queue\_length}
\index{qsq wait\_queue\_length}
General syntax:

\begin{vindent}
\begin{verbatim}
qsq_wait_queue_length:long (qname:string, scale:long)
\end{verbatim}
\end{vindent}
This function returns the average length of the wait queue.


\subsubsection{qsq\_wait\_time}
\index{qsq\_wait\_time}
General syntax:

\begin{vindent}
\begin{verbatim}
qsq_wait_time:long (qname:string, scale:long)
\end{verbatim}
\end{vindent}
This function returns the average time in microseconds that it took for a
request to be serviced (qs\_wait() to qs\_done()).


\subsubsection{A queue example}

What follows is an example from src/testsuite/systemtap.samples/queue\_demo.stp.
It uses the randomize feature of the timer probe to simulate queuing activity.

\begin{vindent}
\begin{verbatim}
probe begin {
    qsq_start ("block-read")
    qsq_start ("block-write")
}

probe timer.ms(3500), end {
    qsq_print ("block-read")
    qsq_start ("block-read")
    qsq_print ("block-write")
    qsq_start ("block-write")
}

probe timer.ms(10000) {
    exit ()
}

# synthesize queue work/service using three randomized "threads" for each queue.
global tc

function qs_doit (thread, name) {
    n = tc[thread] = (tc[thread]+1) % 3 # per-thread state counter
    if (n==1) qs_wait (name)
    else if (n==2) qs_run (name)
    else if (n==0) qs_done (name)
}

probe timer.ms(100).randomize(100) { qs_doit (0, "block-read") }
probe timer.ms(100).randomize(100) { qs_doit (1, "block-read") }
probe timer.ms(100).randomize(100) { qs_doit (2, "block-read") }
probe timer.ms(100).randomize(100) { qs_doit (3, "block-write") }
probe timer.ms(100).randomize(100) { qs_doit (4, "block-write") }
probe timer.ms(100).randomize(100) { qs_doit (5, "block-write") }
\end{verbatim}
\end{vindent}
This prints:

\begin{vindent}
\begin{verbatim}
block-read: 9 ops/s, 1.090 qlen, 215749 await, 96382 svctm, 69% wait, 64% util
block-write: 9 ops/s, 0.992 qlen, 208485 await, 103150 svctm, 69% wait, 61% util
block-read: 9 ops/s, 0.968 qlen, 197411 await, 97762 svctm, 63% wait, 63% util
block-write: 8 ops/s, 0.930 qlen, 202414 await, 93870 svctm, 60% wait, 56% util
block-read: 8 ops/s, 0.774 qlen, 192957 await, 99995 svctm, 58% wait, 62% util
block-write: 9 ops/s, 0.861 qlen, 193857 await, 101573 svctm, 56% wait, 64% util
\end{verbatim}
\end{vindent}

\subsection{Probe point identification}

The following functions help you identify probe points.


\subsubsection{pp}
\index{pp}
General syntax:

\begin{vindent}
\begin{verbatim}
pp:string ()
\end{verbatim}
\end{vindent}
This function returns the probe point associated with a currently running
probe handler, including alias and wild-card expansion effects.


\subsubsection{probefunc}
\index{probefunc}
General syntax:

\begin{vindent}
\begin{verbatim}
probefunc:string ()
\end{verbatim}
\end{vindent}
This function returns the name of the function being probed.


\subsubsection{probemod}
\index{probefunc}
General syntax:

\begin{vindent}
\begin{verbatim}
probemod:string ()
\end{verbatim}
\end{vindent}
This function returns the name of the module containing the probe point.


\subsection{Formatting functions}
\index{formatting}
The following functions help you format output.


\subsubsection{ctime}
\index{ctime}
General syntax:

\begin{vindent}
\begin{verbatim}
ctime:string(epochsecs:long)
\end{verbatim}
\end{vindent}
This function accepts an argument of seconds since the epoch as returned
by \texttt{gettimeofday\_s()}. It returns a date string in UTC of the form:

\begin{vindent}
\begin{verbatim}
"Wed Jun 30 21:49:008 2006"
\end{verbatim}
\end{vindent}
This function does not adjust for timezones. The returned time is always
in GMT. Your script must manually adjust epochsecs before passing it to ctime()
if you want to print local time.


\subsubsection{errno\_str}
\index{errno\_str}
General syntax:

\begin{vindent}
\begin{verbatim}
errno_str:string (err:long)
\end{verbatim}
\end{vindent}
This function returns the symbolic string associated with the given error
code, such as ENOENT for the number 2, or E\#3333 for an out-of-range value
such as 3333.


\subsubsection{returnstr}
\index{returnstr}
General syntax:

\begin{vindent}
\begin{verbatim}
returnstr:string (returnp:long)
\end{verbatim}
\end{vindent}
This function is used by the syscall tapset, and returns a string. Set \texttt{}returnp
equal to 1 for decimal, or 2 for hex.


\subsubsection{thread\_indent}
\index{thread\_indent}
General syntax:

\begin{vindent}
\begin{verbatim}
thread_indent:string (delta:long)
\end{verbatim}
\end{vindent}
This function returns a string with appropriate indentation for a thread.
Call it with a small positive or matching negative delta. If this is the
outermost, initial level of indentation, then the function resets the relative
timestamp base to zero.

The following example uses thread\_indent() to trace the functions called
in the drivers/usb/core kernel source. It prints a relative timestamp and
the name and ID of the current process, followed by the appropriate indent
and the function name. Note that \char`\"{}swapper(0)\char`\"{} indicates
the kernel is running in interrupt context and there is no valid current
process.

\begin{vindent}
\begin{verbatim}
probe kernel.function("*@drivers/usb/core/*") {
    printf ("%s -> %s\n", thread_indent(1), probefunc())
}
probe kernel.function("*@drivers/usb/core/*").return {
    printf ("%s <- %s\n", thread_indent(-1), probefunc())
}
\end{verbatim}
\end{vindent}
This prints:

\begin{vindent}
\begin{verbatim}
 0 swapper(0): -> usb_hcd_irq
 8 swapper(0): <- usb_hcd_irq
 0 swapper(0): -> usb_hcd_irq
10 swapper(0):  -> usb_hcd_giveback_urb
16 swapper(0):   -> urb_unlink
22 swapper(0):   <- urb_unlink
29 swapper(0):   -> usb_free_urb
35 swapper(0):   <- usb_free_urb
39 swapper(0):  <- usb_hcd_giveback_urb
45 swapper(0): <- usb_hcd_irq
 0 usb-storage(1338): -> usb_submit_urb
 6 usb-storage(1338):  -> usb_hcd_submit_urb
12 usb-storage(1338):   -> usb_get_urb
18 usb-storage(1338):   <- usb_get_urb
25 usb-storage(1338):  <- usb_hcd_submit_urb
29 usb-storage(1338): <- usb_submit_urb
 0 swapper(0): -> usb_hcd_irq
 7 swapper(0): <- usb_hcd_irq
\end{verbatim}
\end{vindent}

\subsubsection{thread\_timestamp}
\index{thread\_timestamp}

General syntax:

\begin{vindent}
\begin{verbatim}
thread_timestamp:long ()
\end{verbatim}
\end{vindent}
This function returns an absolute timestamp value for use by the indentation
function. The default function uses \texttt{gettimeofday\_us.}


\subsection{String functions}
\index{string}
The following are string functions you can use.


\subsubsection{isinstr}
\index{isinstr}
General syntax:

\begin{vindent}
\begin{verbatim}
isinstr:long (s1:string, s2:string)
\end{verbatim}
\end{vindent}
This function returns 1 if string s1 contains string s2, otherwise zero.


\subsubsection{strlen}
\index{strlen}
General syntax:

\begin{vindent}
\begin{verbatim}
strlen:long (str:string)
\end{verbatim}
\end{vindent}
This function returns the number of characters in str.


\subsubsection{strtol}

General syntax:

\begin{vindent}
\begin{verbatim}
strtol:long (str:string, base:long)
\end{verbatim}
\end{vindent}
This function converts the string representation of a number to an integer.
The base parameter indicates the number base to assume for the string (e.g.
16 for hex, 8 for octal, 2 for binary).


\subsubsection{substr}
\index{substr}
General syntax:

\begin{vindent}
\begin{verbatim}
substr:string (str:string, start:long, stop:long)
\end{verbatim}
\end{vindent}
This function returns the substring of \texttt{str} starting from character
position \texttt{start} and ending at character position \texttt{stop}.


\subsubsection{text\_str}
\index{text\_str}
General syntax:

\begin{vindent}
\begin{verbatim}
text_str:string (input:string)
\end{verbatim}
\end{vindent}
This function accepts a string argument. Any ASCII characters in the string
that are not printable are replaced by a corresponding escape sequence in
the returned string.


\subsubsection{text\_strn}
\index{text\_strn}
General syntax:

\begin{vindent}
\begin{verbatim}
text_strn:string (input:string, len:long, quoted:long)
\end{verbatim}
\end{vindent}
This function accepts a string of length \texttt{len}. Any ASCII characters
that are not printable are replaced by a corresponding escape sequence in
the returned string. If \texttt{quoted} is not null, the function adds a
backslash character to the output.


\subsubsection{tokenize}

General syntax:

\begin{vindent}
\begin{verbatim}
tokenize:string (input:string, delim:string)
\end{verbatim}
\end{vindent}
This function returns the next non-empty token in the given input string,
where the tokens are delimited by characters in the delim string.
If the input string is non-NULL, it returns the first token. If the input string
is NULL, it returns the next token in the string passed in the previous call
to tokenize. If no delimiter is found, the entire remaining input string
is returned.  It returns NULL when no more tokens are available.


\subsection{Timestamps}
\index{timestamps}
The following functions provide methods to extract time data.


\subsubsection{get\_cycles}
\index{get\_cycles}
General syntax:

\begin{vindent}
\begin{verbatim}
get_cycles:long ()
\end{verbatim}
\end{vindent}
This function returns the processor cycle counter value if available,
else it returns zero. The cycle counter is free running and
unsynchronized on each processor. Thus, the order of events cannot be
determined by comparing the results of the get\_cycles function on
different processors.


\subsubsection{gettimeofday\_ms}
\index{gettimeofday\_ms}
General syntax:

\begin{vindent}
\begin{verbatim}
gettimeofday_ms:long ()
\end{verbatim}
\end{vindent}
This function returns the number of milliseconds since the UNIX epoch.


\subsubsection{gettimeofday\_ns}
\index{gettimeofday\_ns}
General syntax:

\begin{vindent}
\begin{verbatim}
gettimeofday_ns:long ()
\end{verbatim}
\end{vindent}
This function returns the number of nanoseconds since the UNIX epoch.


\subsubsection{gettimeofday\_s}
\index{gettimeofday\_ s}
General syntax:

\begin{vindent}
\begin{verbatim}
gettimeofday_s:long ()
\end{verbatim}
\end{vindent}
This function returns the number of seconds since the UNIX epoch.


\subsubsection{gettimeofday\_us}
\index{gettimeofday\_us}
General syntax:

\begin{vindent}
\begin{verbatim}
gettimeofday_us:long ()
\end{verbatim}
\end{vindent}
This function returns the number of microseconds since the UNIX epoch.


\subsection{Miscellaneous tapset functions}

The following are miscellaneous functions.


\subsubsection{addr\_to\_node}
\index{addr\_to\_node}
General syntax:

\begin{vindent}
\begin{verbatim}
addr_to_node:long (addr:long)
\end{verbatim}
\end{vindent}
This function accepts an address, and returns the node that the given address
belongs to in a NUMA system.


\subsubsection{exit}
\index{exit}
General syntax:

\begin{vindent}
\begin{verbatim}
exit ()
\end{verbatim}
\end{vindent}
This function enqueues a request to shut down the SystemTap session. It does
not unwind the current probe handler, nor block new probe handlers. The stap
daemon will respond to the request and initiate an ordered shutdown.


\subsubsection{system}
\index{system}
General syntax:

\begin{vindent}
\begin{verbatim}
system (command:string)
\end{verbatim}
\end{vindent}
This function runs a command on the system. The command is started
in the background when the current probe completes.


\section{For Further Reference\label{sec:For-Further-Reference}}

For more information, see:
\begin{itemize}
\item The SystemTap tutorial at \url{http://sourceware.org/systemtap/tutorial/}
\item The SystemTap wiki at \url{http://sourceware.org/systemtap/wiki}
\item The SystemTap documentation page at \url{http://sourceware.org/systemtap/documentation.html}
\item From an unpacked source tarball or GIT directory, the examples in in the
src/examples directory, the tapsets in the src/tapset directory, and the
test scripts in the src/testsuite directory.
\item The man pages for tapsets.
For a list, run the command \texttt{{}``man -k tapset::}''.
\item The man pages for individual probe points.
For a list, run the command \texttt{{}``man -k probe::}''.
\item The man pages for individual systemtap functions.
For a list, run the command \texttt{{}``man -k function::}''.
\end {itemize}

\setcounter{secnumdepth}{0}
\newpage{}
\addcontentsline{toc}{section}{Index}
\printindex{}
\end{document}