summaryrefslogtreecommitdiffstats
path: root/doc/SystemTap_Beginners_Guide/en-US/Scripts.xml
blob: e0b7c12c247389a1a1c097c4a651a1afd8fff25c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
<?xml version='1.0'?>
<!DOCTYPE section PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN" "http://www.oasis-open.org/docbook/xml/4.5/docbookx.dtd" [
]>

<section id="scripts">
  <title>SystemTap Scripts</title>
	
  <para>
    For the most part, SystemTap scripts are the foundation of each SystemTap
    session. SystemTap scripts instruct SystemTap on what type of information to
    collect, and what to do once that information is collected.
  </para>

  <para>
    As stated in <xref linkend="understanding-how-systemtap-works"/>, SystemTap
    scripts are made up of two components: <emphasis>events</emphasis> and
    <emphasis>handlers</emphasis>. Once a SystemTap session is underway,
    SystemTap monitors the operating system for the specified events and
    executes the handlers as they occur.
  </para>

  <note>
    <title>Note</title>
    <para>
      An event and its corresponding handler is collectively called a
      <emphasis>probe</emphasis>. A SystemTap script can have multiple probes.
    </para>
	
    <para>
      A probe's handler is commonly referred to as a <emphasis>probe
      body</emphasis>.
    </para>
  </note>

  <para>
    In terms of application development, using events and handlers is similar to
    instrumenting the code by inserting diagnostic print statements in a
    program's sequence of commands. These diagnostic print statements allow you
    to view a history of commands executed once the program is run.
  </para>
<!--	<para>
		In terms of application development, using events and handlers is similar to inserting <command>print</command> statements in a program's sequence of commands. These <command>print</command> statements allow you to view a history of commands executed once the program is run. 
	</para>	-->
	
  <para>
    SystemTap scripts allow insertion of the instrumentation code without
    recompilation of the code and allows more flexibility with regard to
    handlers. Events serve as the triggers for handlers to run; handlers can be
    specified to record specified data and print it in a certain manner.
  </para>
	
  <formalpara id="scriptformats">
    <title>Format</title>
    <para>
      SystemTap scripts use the file extension <filename>.stp</filename>, and
      are conatains probes written in the following format:
    </para>
  </formalpara>	
<screen>
probe	<replaceable>event</replaceable> {<replaceable>statements</replaceable>}
</screen>

  <para>
    SystemTap supports multiple events per probe; multiple events are delimited
    by a comma (<command>,</command>). If multiple events are specified in a
    single probe, SystemTap will execute the handler when any of the specified
    events occur.
  </para>
  
  <para>
	Each probe has a corresponding <firstterm>statement block</firstterm>. This statement block is 
	enclosed in braces (<command>{ }</command>) and contains the handlers to be executed per event. 
	SystemTap executes these handlers (i.e. "statements") in sequence; special separators or 
	terminators are generally not necessary between multiple handlers.
  </para>

<note>
	<title>Note</title>
	<para>
		Statement blocks in SystemTap scripts follow the same syntax and semantics as the C 
		programming language. A statement block can also nest another statement block, although 
		for the most part this is used only to organize code in the script for the benefit of the 
		administrator.
  	</para>
</note>	

  <para>
    Systemtap allow you to write functions to factor out code to be used by a
    number of probes. Thus, rather than repeatedly writing the same sequence of
    series of statements in multiple probes, you can just place the instructions
    in a <firstterm>function</firstterm>, as in:
  </para>

<screen>
function <replaceable>function_name</replaceable>(<replaceable>arguments</replaceable>) {<replaceable>statements</replaceable>}
probe <replaceable>event</replaceable> {<replaceable>function_name</replaceable>(<replaceable>arguments</replaceable>)}
</screen>

  <para>
    The <command><replaceable>statements</replaceable></command> in
    <replaceable>function_name</replaceable> are executed when the probe for
    <replaceable>event</replaceable> executes. The
    <replaceable>arguments</replaceable> are optional values passed into the
    function.
  </para>

<!--
	<para>The <replaceable>exit()</replaceable> condition is optional; this condition safely terminates the session once the script successfully collects the required information the first time.</para>	
	-->
  <important>
    <title>Important</title>
    <para>
      <xref linkend="scripts"/> is designed to introduce readers to the basics
      of SystemTap scripts. To understand SystemTap scripts better, it is
      advisable that you refer to <xref linkend="useful-systemtap-scripts"/>;
      each section therein provides a detailed explanation of the script, its
      events, handlers, and expected output.
    </para>
  </important>

  <section id="systemtapscript-events">
    <title>Event</title>
	
    <para>
      SystemTap events can be broadly classified into two types:
      <firstterm>synchronous</firstterm> and
      <firstterm>asynchronous</firstterm>.
    </para>

    <formalpara>
      <title>Synchronous Events</title>
      <para>
	A <firstterm>synchronous</firstterm> event occurs when any process
	executes an instruction that references a particular location in kernel
	code. This gives other events a reference point from which more
	contextual data may be available.
      </para>
    </formalpara>

<!--<para>A <firstterm>synchronous</firstterm> event occurs when any processor executes an instruction matched by the specification. This gives other events a reference point (or instruction address) from which more contextual data may be available.</para>-->

<!--<para>Synchronous events reference particular locations in kernel code. As a result, when synchronous events are used SystemTap can determine contextual  information regarding the location (such as function parameters).</para>-->

    <para>Examples of synchronous events include:</para>

<variablelist>

<varlistentry>
	<term>syscall.<replaceable>system_call</replaceable></term>
	<listitem>
	  <para>
	    The entry to the system call
	    <replaceable>system_call</replaceable>. If the exit from a syscall
	    is desired, appending a <command>.return</command> to the event
	    monitor the exit of the system call instead. For example, to specify
	    the entry and exit of the system call <command>close</command>, use 
	    <command>syscall.close</command> and
	    <command>syscall.close.return</command> respectively.
	  </para>
	</listitem>	
</varlistentry>
	
<varlistentry>
	<term>vfs.<replaceable>file_op</replaceable></term>
	<listitem>
	  <para>
	    The entry to the <replaceable>file_op</replaceable> event for
	    Virtual File System (VFS). Similar to <command>syscall</command>
	    event, appending a <command>.return</command> to the event monitors
	    the exit of the <replaceable>file_op</replaceable> operation.
	  </para>
	</listitem>	
</varlistentry>
	
<varlistentry>
	<term>kernel.function("<replaceable>function</replaceable>")</term>
	<listitem>
	  <para>
	    The entry to the kernel function
	    <replaceable>function</replaceable>. For example,
	    <command>kernel.function("sys_open")</command> refers to the "event"
	    that occurs when the kernel function <command>sys_open</command> is
	    called by any thread in the system. To specify the
	    <emphasis>return</emphasis> of the kernel function
	    <command>sys_open</command>, append the <command>return</command>
	    string to the event statement;
	    i.e. <command>kernel.function("sys_open").return</command>.
	  </para>

	  <para>
	    When defining functions, you can use asterisk (<literal>*</literal>)
	    for wildcards. You can also trace the entry or exit of a function in
	    a kernel source file. Consider the following example:
	  </para>

<example id="wildcards">
<title>wildcards.stp</title>
<programlisting>
probe kernel.function("*@net/socket.c") { }
probe kernel.function("*@net/socket.c").return { }
</programlisting>	
</example>

	  <remark>Wild cards also work for other things, e.g. syscall.*</remark>

	  <para>
	    In the previous example, the first probe's event specifies the entry
	    of ALL functions in the kernel source file
	    <filename>net/socket.c</filename>. The second probe specifies the
	    exit of all those functions. Note that in this example, no handler
	    was specified; as such, no information will be displayed.
	  </para>
	</listitem>

      </varlistentry>

      <varlistentry>
	<term>module("<replaceable>module</replaceable>").function("<replaceable>function</replaceable>")</term>
	<listitem>
	  <para>Allows you to probe functions within modules. For example:</para>
		
<example id="eventsmodules"><title>moduleprobe.stp</title>
<programlisting>
probe module("ext3").function("*") { }
probe module("ext3").function("*").return { }
</programlisting>	
</example>
		
		<para>
			The first probe in <xref linkend="eventsmodules"/> points to the entry of <emphasis>all</emphasis> functions for the <filename>ext3</filename> module. The second probe points to the exits of all entries for that same module; the use of the <command>.return</command> suffix is similar to <command>kernel.function()</command>. Note that the probes in <xref linkend="eventsmodules"/> also do not contain probe bodies, and as such will not print any useful data (as in <xref linkend="wildcards"/>). 
		</para>	
		
		<para>
			A system's loaded modules are typically located in <filename>/lib/modules/<replaceable>kernel version</replaceable></filename>, where <replaceable>kernel version</replaceable> refers to the currently loaded kernel. Modules use the filename extension <filename>.ko</filename>. 
		</para>	
		
	</listitem>
      </varlistentry>
    </variablelist>

    <formalpara>
      <title>Asynchronous Events</title>
      <para>
	<firstterm>Asynchronous</firstterm> events are not tied to a particular
	instruction or location in code. This family of probe points consists
	mainly of counters, timers, and similar constructs.
      </para>
<!--	<para><firstterm>Asynchronous</firstterm> events, on the other hand, do not point to any reference point. This family of probe points consists mainly of counters, timers, and similar constructs.</para>-->
    </formalpara>

    <para>Examples of asynchronous events include:</para>

    <variablelist>

      <varlistentry>
	<term>begin</term>
	<listitem>
	  <para>
	    The startup of a SystemTap session; i.e. as soon as the SystemTap
	    script is run.
	  </para>
	</listitem>	
      </varlistentry>	

      <varlistentry>
	<term>end</term>
	<listitem>
	  <para>The end of a SystemTap session.</para>
	</listitem>	
      </varlistentry>
      <varlistentry>
	<term>timer events</term>
	<listitem>
	  <para>
	    An event that specifies a handler to be executed every specified
	    period of time. For example:
	  </para>
		
<example id="timer"><title>timer-s.stp</title>
<programlisting>
probe timer.s(4)
{
  printf("hello world\n")
}
</programlisting>
</example>

	  <para>
	    <xref linkend="timer"/> is an example of a probe that prints
	    <command>hello world</command> every 4 seconds. Note that you can
	    also use the following timer events:
	  </para>
	
<itemizedlist>
<listitem><para><command>timer.ms(<replaceable>milliseconds</replaceable>)</command></para></listitem>

<listitem><para><command>timer.us(<replaceable>microseconds</replaceable>)</command></para></listitem>

<listitem><para><command>timer.ns(<replaceable>nanoseconds</replaceable>)</command></para></listitem>

<listitem><para><command>timer.hz(<replaceable>hertz</replaceable>)</command></para></listitem>

<listitem><para><command>timer.jiffies(<replaceable>jiffies</replaceable>)</command></para></listitem>
</itemizedlist>

	  <para>
	    When used in conjunction with other probes that collect information,
	    timer events allows you to print out get periodic updates and see
	    how that information changes over time.
	  </para>

	</listitem>
      </varlistentry>

  </variablelist>

    <important>
      <title>Important</title>
      <para>
	SystemTap supports the use of a large collection of probe events. For
	more information about supported events, refer to <command>man
	stapprobes</command>. The <citetitle>SEE ALSO</citetitle> section of
	<command>man stapprobes</command> also contains links to other
	<command>man</command> pages that discuss supported events for specific
	subsystems and components.
      </para>
    </important>

<remark>is reference appropriate? too advanced for readers (it seems so to me)? please advise.</remark> 

  </section>

  <section id="systemtapscript-handler">
    <title>Systemtap Handler/Body</title>

    <para> Consider the following sample script: </para>

<example id="helloworld"><title>helloworld.stp</title>
<programlisting>
probe begin
{
  printf ("hello world\n")
  exit ()
}
</programlisting>	
</example>

    <para>
      In <xref linkend="helloworld"/>, the event <command>begin</command>
      (i.e. the start of the session) triggers the handler enclosed in
      <command>{ }</command>, which simply prints <command>hello
      world</command>, then exits.
    </para>	

    <note>
      <title>Note</title>
      <para>
	SystemTap scripts continue to run until the
	<command>exit()</command> function executes. If the users wants to stop
	the execution of the script, it can interrupted manually with
	<keycombo><keycap>Ctrl</keycap><keycap>C</keycap></keycombo>.
      </para>
    </note>

    <formalpara id="printf">
      <title>printf ( ) Statements</title>
      <para>
	The <command>printf ()</command> statement is one of the simplest
	functions for printing data. <command>printf ()</command> can also be
	used to display data using a wide variety of SystemTap functions in the
	following format:
      </para>
    </formalpara>


<programlisting>
printf ("<replaceable>format string</replaceable>\n", <replaceable>argument</replaceable>)
</programlisting>

    <para>
	The <replaceable>format string</replaceable> specifies how
	<replaceable>argument</replaceable> should be printed. The format string
	of <xref linkend="helloworld"/> simply instructs SystemTap to print
	<command>hello world</command>, and contains no format specifiers.
    </para>

    <para>
	You can use the format specifiers <command>%s</command> (for strings)
	and <command>%d</command> (for numbers) in format strings, depending on
	your list of arguments. Format strings can have multiple format
	specifiers, each matching a corresponding argument; multiple arguments
	are delimited by a comma (<command>,</command>).
    </para>

    <note>
      <title>Note</title>
	<para>Semantically, the SystemTap <command>printf</command> function is
	very similar to its C language counterpart. The aforementioned syntax
	and format for SystemTap's <command>printf</command> function is
	identical to that of the C-style <command>printf</command>.
      </para>
    </note>

    <para> To illustrate this, consider the following probe example: </para>

<example id="syscall-open">
<title>variables-in-printf-statements.stp</title>
<programlisting>
probe syscall.open
{
  printf ("%s(%d) open\n", execname(), pid())
}
</programlisting>
</example>

    <para>
      <xref linkend="syscall-open"/> instructs SystemTap to probe all entries to
      the system call <command>open</command>; for each event, it prints the
      current <command>execname()</command> (which is a string) and
      <command>pid()</command> (which is a number), followed by the word
      <command>open</command>. A snippet of this probe's output would look like:
    </para>

    <remark>editorial review: does a clarification that "format specifier1" is
      to "argument1", "format specifier2" is to "argument2", or is this clear
      enough? </remark>

<screen>
vmware-guestd(2206) open
hald(2360) open
hald(2360) open
hald(2360) open
df(3433) open
df(3433) open
df(3433) open
hald(2360) open
</screen>

    <formalpara id="systemtapscript-functions">
      <title>SystemTap Functions</title>	
      <para>
	SystemTap supports a wide variety of functions that can be used as
	<command>printf ()</command> arguments. <xref linkend="syscall-open"/>
	uses the SystemTap functions <command>execname()</command> (name of the
	process that called a kernel function/performed a system call) and
	<command>pid()</command> (current process ID).
      </para>
    </formalpara>		

    <remark>is "handler function" an appropriate term? wcohen: use "SystemTap functions" to match up language in man pages</remark>

    <para>The following is a list of commonly-used SystemTap functions:</para>	
<variablelist>

<varlistentry>
	<term>tid()</term>
	<listitem>
		<para>The ID of the current thread.</para>
	</listitem>	
</varlistentry>	

<varlistentry>
	<term>uid()</term>
	<listitem>
		<para>The ID of the current user.</para>
	</listitem>	
</varlistentry>

<varlistentry>
	<term>cpu()</term>
	<listitem>
		<para>The current CPU number.</para>
	</listitem>	
</varlistentry>

<varlistentry>
	<term>gettimeofday_s()</term>
	<listitem>
		<para>The number of seconds since UNIX epoch (January 1, 1970).</para>
	</listitem>	
</varlistentry>
<!--
<varlistentry>
	<term>get_cycles()</term>
	<listitem>
		<para>A snapshot of the hardware cycle counter.</para>
	</listitem>	
</varlistentry>
-->

<varlistentry>
	<term>pp()</term>
	<listitem>
		<para>A string describing the probe point currently being handled.</para>
	</listitem>	
</varlistentry>
<!-- removed, doesnt work as expected anymore
<varlistentry>
	<term>probefunc()</term>
	<listitem>
		<para>If known, the name of the function in which the probe was placed.</para>
	</listitem>	
</varlistentry>
-->

<varlistentry>
	<term>thread_indent()</term>
	<listitem>
	  <para>
	    This particular function is quite useful, providing you with a way
	    to better organize your print results. When used with an indentation
	    parameter (for example, <command>-1</command>), it allows the probe
	    to internally store an "indentation counter" for each thread
	    (identified by ID, as in <command>tid</command>). It then returns a
	    string with some generic trace data along with an appropriate number
	    of indentation spaces.
	  </para>
		
	  <para>
	    The generic data included in the returned string includes a
	    timestamp (number of microseconds since the most recent initial
	    indentation), a process name, and the thread ID. This allows you to
	    identify what functions were called, who called them, and the
	    duration of each function call.
	  </para>	

	  <para>
	    If call entries and exits immediately precede each other, it is easy
	    to match them. However, in most cases, after a first function call
	    entry is made several other call entries and exits may be made
	    before the first call exits. The indentation counter helps you match
	    an entry with its corresponding exit by indenting the next function
	    call if it is not the exit of the previous one.
	  </para>
		
	  <para>
	    Consider the following example on the use of
	    <command>thread_indent()</command>:
	  </para>
		
<example id="thread_indent"><title>thread_indent.stp</title>
<programlisting>
probe kernel.function("*@net/socket.c") 
{
  printf ("%s -> %s\n", thread_indent(1), probefunc())
}
probe kernel.function("*@net/socket.c").return 
{
  printf ("%s &lt;- %s\n", thread_indent(-1), probefunc())
}
</programlisting>
</example>

	  <para>
	    <xref linkend="thread_indent"/> prints out the
	    <command>thread_indent()</command> and probe functions at each event
	    in the following format:</para>
	
<screen>
     0 ftp(7223): -&gt; sys_socketcall
  1159 ftp(7223):  -&gt; sys_socket
  2173 ftp(7223):   -&gt; __sock_create
  2286 ftp(7223):    -&gt; sock_alloc_inode
  2737 ftp(7223):    &lt;- sock_alloc_inode
  3349 ftp(7223):    -&gt; sock_alloc
  3389 ftp(7223):    &lt;- sock_alloc
  3417 ftp(7223):   &lt;- __sock_create
  4117 ftp(7223):   -&gt; sock_create
  4160 ftp(7223):   &lt;- sock_create
  4301 ftp(7223):   -&gt; sock_map_fd
  4644 ftp(7223):    -&gt; sock_map_file
  4699 ftp(7223):    &lt;- sock_map_file
  4715 ftp(7223):   &lt;- sock_map_fd
  4732 ftp(7223):  &lt;- sys_socket
  4775 ftp(7223): &lt;- sys_socketcall
</screen>

<remark>remember to add a reference later to "tapsets" from here, to clarify
that thread_indent is defined in tapsets as a special function of sorts</remark>
	
	</listitem>	
      </varlistentry>

      <varlistentry>
	<term>name</term>
	<listitem>
	  <para>Identifies the name of a specific system call. This function can
	  only be used in probes that use the event
	  <command>syscall.<replaceable>system_call</replaceable></command>.
	  </para>
	</listitem>	
      </varlistentry>

      <varlistentry>
	<term>target()</term>
	<listitem>
	  <para>
	    Used in conjunction with <command>stap
	    <replaceable>script</replaceable> -x <replaceable>process
	    ID</replaceable></command> or <command>stap
	    <replaceable>script</replaceable> -c
	    <replaceable>command</replaceable></command>. If you want to specify
	    a script to take an argument of a process ID or command, use
	    <command>target()</command> as the variable in the script to refer
	    to it. For example:
	  </para>
			
<example id="targetexample">
<title>targetexample.stp</title>
<programlisting>
probe syscall.* {
  if (pid() == target())
    printf("%s/n", name)
}	
</programlisting>
</example>

	  <para>
	    When <xref linkend="targetexample"/> is run with the argument
	    <command>-x <replaceable>process ID</replaceable></command>, it
	    watches all system calls (as specified by the event
	    <command>syscall.*</command>) and prints out the name of all system
	    calls made by the specified process.
	  </para>
	
	  <para>
	    This has the same effect as specifying <command>if (pid() ==
	    <replaceable>process ID</replaceable>)</command> each time you wish
	    to target a specific process. However, using
	    <command>target()</command> makes it easier for you to re-use the
	    script, giving you the ability to simply pass a process ID as an
	    argument each time you wish to run the script (e.g. <command>stap
	    targetexample.stp -x <replaceable>process ID</replaceable></command>).
	  </para>
<!--		
<note>
	<title>Note</title>
	<para>In <xref linkend="targetexample"/>, <command>name</command> instructs SystemTap to capture the name of the process</para>
</note>	-->

	</listitem>
      </varlistentry>

<!--	
<varlistentry>
	<term></term>
	<listitem>
		<para></para>
	</listitem>	
</varlistentry>
-->	
    </variablelist>		

    <para>For more information about supported SystemTap functions, refer to
      <command>man stapfuncs</command>.
    </para>

<remark>will need a complete listing of supported handler functions? also, SystemTap function descriptions seem ambiguous, please advise.</remark>

<!--	
<para>
	<replaceable>variable</replaceable> can be either <command>%s</command> for strings, or <command>%d</command> for numbers, depending on the <replaceable>handler function</replaceable> used. Each <command>printf ()</command> statement can contain multiple <replaceable>variable</replaceable>s, with each one corresponding to a matching <replaceable>handler function</replaceable>. Multiple <replaceable>handler function</replaceable>s are delimited by comma (<command>,</command>). 
</para>	

	<command>printf ()</command> is a SystemTap-supported C statement, and can also trap data using a wide variety
	
	SystemTap supports a wide variety of handler functions that can trap data when triggered by events. One way to display these functions is to use the <command>print()</command>   
</para>	
		
		
<para>
	<xref linkend="wildcards"/> illustrates an example of a SystemTap script that contains no handlers. SystemTap will still be able to run the script, but no information will be displayed. 	
</para>
-->

  </section>

</section>