summaryrefslogtreecommitdiffstats
path: root/doc/SystemTap_Beginners_Guide/en-US/Scripts.xml
blob: d6f7733fe7c375050dd9c9547b8f181efa4479a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
<?xml version='1.0'?>
<!DOCTYPE section PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN" "http://www.oasis-open.org/docbook/xml/4.5/docbookx.dtd" [
]>

<section id="scripts">
  <title>SystemTap Scripts</title>
<indexterm>
<primary>scripts</primary>
<secondary>introduction</secondary>
</indexterm>	
 <indexterm>
<primary>SystemTap scripts</primary>
<secondary>introduction</secondary>
</indexterm> 



<para>
    For the most part, SystemTap scripts are the foundation of each SystemTap
    session. SystemTap scripts instruct SystemTap on what type of information to
    collect, and what to do once that information is collected.
  </para>
<indexterm>
<primary>scripts</primary>
<secondary>introduction</secondary>
<tertiary>components</tertiary>
</indexterm>
<indexterm>
<primary>SystemTap scripts</primary>
<secondary>introduction</secondary>
<tertiary>components</tertiary>
</indexterm>

<indexterm>
	<primary>components</primary>
	<secondary>SystemTap scripts</secondary>
	<tertiary>introduction</tertiary>
</indexterm>

<indexterm>
<primary>scripts</primary>
<secondary>introduction</secondary>
<tertiary>events and handlers</tertiary>
</indexterm>
<indexterm>
<primary>SystemTap scripts</primary>
<secondary>introduction</secondary>
<tertiary>events and handlers</tertiary>
</indexterm>
<indexterm>
<primary>handlers and events</primary>
<secondary>SystemTap scripts</secondary>
<tertiary>introduction</tertiary>
</indexterm>
  <para>
    As stated in <xref linkend="understanding-how-systemtap-works"/>, SystemTap
    scripts are made up of two components: <emphasis>events</emphasis> and
    <emphasis>handlers</emphasis>. Once a SystemTap session is underway,
    SystemTap monitors the operating system for the specified events and
    executes the handlers as they occur.
  </para>

  <note>
    <title>Note</title>
<indexterm>
<primary>scripts</primary>
<secondary>introduction</secondary>
<tertiary>probes</tertiary>
</indexterm>
<indexterm>
<primary>SystemTap scripts</primary>
<secondary>introduction</secondary>
<tertiary>probes</tertiary>
</indexterm>
<indexterm>
<primary>probes</primary>
<secondary>SystemTap scripts</secondary>
<tertiary>introduction</tertiary>
</indexterm>
    <para>
      An event and its corresponding handler is collectively called a
      <emphasis>probe</emphasis>. A SystemTap script can have multiple probes.
    </para>
	
    <para>
      A probe's handler is commonly referred to as a <emphasis>probe
      body</emphasis>.
    </para>
  </note>

  <para>
    In terms of application development, using events and handlers is similar to
    instrumenting the code by inserting diagnostic print statements in a
    program's sequence of commands. These diagnostic print statements allow you
    to view a history of commands executed once the program is run.
  </para>
<!--	<para>
		In terms of application development, using events and handlers is similar to inserting <command>print</command> statements in a program's sequence of commands. These <command>print</command> statements allow you to view a history of commands executed once the program is run. 
	</para>	-->
	
  <para>
    SystemTap scripts allow insertion of the instrumentation code without
    recompilation of the code and allows more flexibility with regard to
    handlers. Events serve as the triggers for handlers to run; handlers can be
    specified to record specified data and print it in a certain manner.
  </para>
	
  <formalpara id="scriptformats">
    <title>Format</title>
<indexterm>
<primary>scripts</primary>
<secondary>introduction</secondary>
<tertiary>format and syntax</tertiary>
</indexterm>
<indexterm>
<primary>SystemTap scripts</primary>
<secondary>introduction</secondary>
<tertiary>format and syntax</tertiary>
</indexterm>
<indexterm>
<primary>format and syntax</primary>
<secondary>SystemTap scripts</secondary>
<tertiary>introduction</tertiary>
</indexterm>
<indexterm>
<primary>syntax and format</primary>
<secondary>SystemTap scripts</secondary>
<tertiary>introduction</tertiary>
</indexterm>
    <para>
      SystemTap scripts use the file extension <filename>.stp</filename>, and
      contains probes written in the following format:
    </para>
  </formalpara>	
<screen>
probe	<replaceable>event</replaceable> {<replaceable>statements</replaceable>}
</screen>

  <para>
    SystemTap supports multiple events per probe; multiple events are delimited
    by a comma (<command>,</command>). If multiple events are specified in a
    single probe, SystemTap will execute the handler when any of the specified
    events occur.
  </para>
<indexterm>
<primary>scripts</primary>
<secondary>introduction</secondary>
<tertiary>statement blocks</tertiary>
</indexterm>  
<indexterm>
<primary>SystemTap scripts</primary>
<secondary>introduction</secondary>
<tertiary>statement blocks</tertiary>
</indexterm>
<indexterm>
<primary>statement blocks</primary>
<secondary>SystemTap scripts</secondary>
<tertiary>introduction</tertiary>
</indexterm>
  <para>
	Each probe has a corresponding <firstterm>statement block</firstterm>. This statement block is 
	enclosed in braces (<command>{ }</command>) and contains the statements to be executed per event. 
	SystemTap executes these statements in sequence; special separators or 
	terminators are generally not necessary between multiple statements.
  </para>

<note>
	<title>Note</title>
	<para>
		Statement blocks in SystemTap scripts follow the same syntax and semantics as the C 
		programming language. A statement block can be nested within another statement block.
  	</para>
</note>	
<indexterm>
<primary>scripts</primary>
<secondary>introduction</secondary>
<tertiary>functions</tertiary>
</indexterm>
<indexterm>
<primary>SystemTap scripts</primary>
<secondary>introduction</secondary>
<tertiary>functions</tertiary>
</indexterm>
<indexterm>
<primary>functions</primary>
<secondary>SystemTap scripts</secondary>
<tertiary>introduction</tertiary>
</indexterm>
  <para>
    Systemtap allows you to write functions to factor out code to be used by a
    number of probes. Thus, rather than repeatedly writing the same 
    series of statements in multiple probes, you can just place the instructions
    in a <firstterm>function</firstterm>, as in:
  </para>

<screen>
function <replaceable>function_name</replaceable>(<replaceable>arguments</replaceable>) {<replaceable>statements</replaceable>}
probe <replaceable>event</replaceable> {<replaceable>function_name</replaceable>(<replaceable>arguments</replaceable>)}
</screen>

  <para>
    The <command><replaceable>statements</replaceable></command> in
    <replaceable>function_name</replaceable> are executed when the probe for
    <replaceable>event</replaceable> executes. The
    <replaceable>arguments</replaceable> are optional values passed into the
    function.
  </para>

<!--
	<para>The <replaceable>exit()</replaceable> condition is optional; this condition safely terminates the session once the script successfully collects the required information the first time.</para>	
	-->
  <important>
    <title>Important</title>
    <para>
      <xref linkend="scripts"/> is designed to introduce readers to the basics
      of SystemTap scripts. To understand SystemTap scripts better, it is
      advisable that you refer to <xref linkend="useful-systemtap-scripts"/>;
      each section therein provides a detailed explanation of the script, its
      events, handlers, and expected output.
    </para>
  </important>

  <section id="systemtapscript-events">
    <title>Event</title>
<indexterm>
<primary>Events</primary>
<secondary>introduction</secondary>
</indexterm>	
    <para>
      SystemTap events can be broadly classified into two types:
      <firstterm>synchronous</firstterm> and
      <firstterm>asynchronous</firstterm>.
    </para>

    <formalpara>
      <title>Synchronous Events</title>
<indexterm>
<primary>Events</primary>
<secondary>synchronous events</secondary>
</indexterm>

<indexterm>
<primary>synchronous events</primary>
<secondary>Events</secondary>
</indexterm>
      <para>
	A <firstterm>synchronous</firstterm> event occurs when any process
	executes an instruction at a particular location in kernel
	code. This gives other events a reference point from which more
	contextual data may be available.
      </para>
    </formalpara>

<!--<para>A <firstterm>synchronous</firstterm> event occurs when any processor executes an instruction matched by the specification. This gives other events a reference point (or instruction address) from which more contextual data may be available.</para>-->

<!--<para>Synchronous events reference particular locations in kernel code. As a result, when synchronous events are used SystemTap can determine contextual  information regarding the location (such as function parameters).</para>-->
<indexterm>
<primary>Events</primary>
<secondary>examples of synchronous and asynchronous events</secondary>
</indexterm>

<indexterm>
<primary>examples of synchronous and asynchronous events</primary>
<secondary>Events</secondary>
</indexterm>
    <para>Examples of synchronous events include:</para>

<variablelist>

<varlistentry>
	<term>syscall.<replaceable>system_call</replaceable></term>
	<listitem>
<indexterm>
<primary>Events</primary>
<secondary><command>syscall.<replaceable>system_call</replaceable></command></secondary>
</indexterm>

<indexterm>
<primary><command>syscall.<replaceable>system_call</replaceable></command></primary>
<secondary>Events</secondary>
</indexterm>

	  <para>
	    The entry to the system call
	    <replaceable>system_call</replaceable>. If the exit from a syscall
	    is desired, appending a <command>.return</command> to the event
	    monitor the exit of the system call instead. For example, to specify
	    the entry and exit of the system call <command>close</command>, use 
	    <command>syscall.close</command> and
	    <command>syscall.close.return</command> respectively.
	  </para>
	</listitem>	
</varlistentry>
	
<varlistentry>
	<term>vfs.<replaceable>file_operation</replaceable></term>
	<listitem>
<indexterm>
<primary>Events</primary>
<secondary><command>vfs.<replaceable>file_operation</replaceable></command></secondary>
</indexterm>

<indexterm>
<primary><command>vfs.<replaceable>file_operation</replaceable></command></primary>
<secondary>Events</secondary>
</indexterm>

	  <para>
	    The entry to the <replaceable>file_operation</replaceable> event for
	    Virtual File System (VFS). Similar to <command>syscall</command>
	    event, appending a <command>.return</command> to the event monitors
	    the exit of the <replaceable>file_operation</replaceable> operation.
	  </para>
	</listitem>	
</varlistentry>
	
<varlistentry>
	<term>kernel.function("<replaceable>function</replaceable>")</term>
	<listitem>
<indexterm>
<primary>Events</primary>
<secondary><command>kernel.function("<replaceable>function</replaceable>")</command></secondary>
</indexterm>

<indexterm>
<primary><command>kernel.function("<replaceable>function</replaceable>")</command></primary>
<secondary>Events</secondary>
</indexterm>
	  <para>
	    The entry to the kernel function
	    <replaceable>function</replaceable>. For example,
	    <command>kernel.function("sys_open")</command> refers to the "event"
	    that occurs when the kernel function <command>sys_open</command> is
	    called by any thread in the system. To specify the
	    <emphasis>return</emphasis> of the kernel function
	    <command>sys_open</command>, append the <command>return</command>
	    string to the event statement;
	    i.e. <command>kernel.function("sys_open").return</command>.
	  </para>
<indexterm>
<primary>Events</primary>
<secondary>wildcards</secondary>
</indexterm>

<indexterm>
<primary>wildcards in events</primary>
</indexterm>
<indexterm>
	<primary>events wildcards</primary>
</indexterm>
	  <para>
	    When defining probe events, you can use asterisk (<literal>*</literal>)
	    for wildcards. You can also trace the entry or exit of a function in
	    a kernel source file. Consider the following example:
	  </para>

<example id="wildcards">
<title>wildcards.stp</title>
<programlisting>
probe kernel.function("*@net/socket.c") { }
probe kernel.function("*@net/socket.c").return { }
</programlisting>	
</example>

	  <remark>Wild cards also work for other types of events, e.g. syscall.*</remark>

	  <para>
	    In the previous example, the first probe's event specifies the entry
	    of ALL functions in the kernel source file
	    <filename>net/socket.c</filename>. The second probe specifies the
	    exit of all those functions. Note that in this example, 
	    there are no statements in the handler;
	    as such, no information will be collected or displayed.
	  </para>
	</listitem>

      </varlistentry>

      <varlistentry>
	<term>kernel.trace("<replaceable>tracepoint</replaceable>")</term>
	<listitem>
<indexterm><primary>tracepoint</primary></indexterm>
<indexterm>
<primary>Events</primary>
<secondary><command>kernel.trace("<replaceable>tracepoint</replaceable>")</command></secondary>
</indexterm>

<indexterm>
<primary><command>kernel.trace("<replaceable>tracepoint</replaceable>")</command></primary>
<secondary>Events</secondary>
</indexterm>
	  <para>
	    The static probe for <replaceable>tracepoint</replaceable>.
	    Recent kernels (2.6.30 and newer)
	    include instrumentation for specific events in the kernel. These
	    events are statically marked with tracepoints.  One example of a
	    tracepoint available in systemtap is
	    <command>kernel.trace("kfree_skb")</command> which indicates each
	    time a network buffer is freed in the kernel.
	  </para>
	</listitem>

      </varlistentry>

      <varlistentry>
	<term>module("<replaceable>module</replaceable>").function("<replaceable>function</replaceable>")</term>
	<listitem>
<indexterm>
<primary>Events</primary>
<secondary><command>module("<replaceable>module</replaceable>")</command></secondary>
</indexterm>

<indexterm>
	<primary><command>module("<replaceable>module</replaceable>")</command></primary>
<secondary>Events</secondary>
</indexterm>
	  <para>Allows you to probe functions within modules. For example:</para>
		
<example id="eventsmodules"><title>moduleprobe.stp</title>
<programlisting>
probe module("ext3").function("*") { }
probe module("ext3").function("*").return { }
</programlisting>	
</example>
		
		<para>
			The first probe in <xref linkend="eventsmodules"/>
		points to the entry of <emphasis>all</emphasis> functions for
		the <filename>ext3</filename> module. The second probe points to
		the exits of all functions for that same module; the use of the
		<command>.return</command> suffix is similar to
		<command>kernel.function()</command>. Note that the probes in
		<xref linkend="eventsmodules"/> do not contain statements
		in the probe handlers, and as such will not print any useful
		data (as in <xref linkend="wildcards"/>).
	        </para>
		
		<para>
			A system's kernel modules are typically located in <filename>/lib/modules/<replaceable>kernel_version</replaceable></filename>, where <replaceable>kernel_version</replaceable> refers to the currently loaded kernel version. Modules use the filename extension <filename>.ko</filename>. 
		</para>	
		
	</listitem>
      </varlistentry>
    </variablelist>

    <formalpara>
      <title>Asynchronous Events</title>
<indexterm>
<primary>Events</primary>
<secondary>asynchronous events</secondary>
</indexterm>

<indexterm>
<primary>asynchronous events</primary>
<secondary>Events</secondary>
</indexterm>

      <para>
	<firstterm>Asynchronous</firstterm> events are not tied to a particular
	instruction or location in code. This family of probe points consists
	mainly of counters, timers, and similar constructs.
      </para>
<!--	<para><firstterm>Asynchronous</firstterm> events, on the other hand, do not point to any reference point. This family of probe points consists mainly of counters, timers, and similar constructs.</para>-->
    </formalpara>

    <para>Examples of asynchronous events include:</para>

    <variablelist>

      <varlistentry>
	<term>begin</term>
	<listitem>
<indexterm>
<primary>Events</primary>
<secondary><command>begin</command></secondary>
</indexterm>

<indexterm>
<primary><command>begin</command></primary>
<secondary>Events</secondary>
</indexterm>		
	  <para>
	    The startup of a SystemTap session; i.e. as soon as the SystemTap
	    script is run.
	  </para>
	</listitem>	
      </varlistentry>	

      <varlistentry>
	<term>end</term>
	<listitem>
<indexterm>
<primary>Events</primary>
<secondary><command>end</command></secondary>
</indexterm>

<indexterm>
<primary><command>end</command></primary>
<secondary>Events</secondary>
</indexterm>
	  <para>The end of a SystemTap session.</para>
	</listitem>	
      </varlistentry>
      <varlistentry>
	<term>timer events</term>
	<listitem>
<indexterm>
<primary>Events</primary>
<secondary>timer events</secondary>
</indexterm>

<indexterm>
<primary>timer events</primary>
<secondary>Events</secondary>
</indexterm>

	  <para>
	    An event that specifies a handler to be executed periodically.
	    For example:
	  </para>
		
<example id="timer"><title>timer-s.stp</title>
<programlisting>
probe timer.s(4)
{
  printf("hello world\n")
}
</programlisting>
</example>

	  <para>
	    <xref linkend="timer"/> is an example of a probe that prints
	    <command>hello world</command> every 4 seconds. Note that you can
	    also use the following timer events:
	  </para>
	
<itemizedlist>
<listitem><para><command>timer.ms(<replaceable>milliseconds</replaceable>)</command></para></listitem>

<listitem><para><command>timer.us(<replaceable>microseconds</replaceable>)</command></para></listitem>

<listitem><para><command>timer.ns(<replaceable>nanoseconds</replaceable>)</command></para></listitem>

<listitem><para><command>timer.hz(<replaceable>hertz</replaceable>)</command></para></listitem>

<listitem><para><command>timer.jiffies(<replaceable>jiffies</replaceable>)</command></para></listitem>
</itemizedlist>

	  <para>
	    When used in conjunction with other probes that collect information,
	    timer events allows you to print out get periodic updates and see
	    how that information changes over time.
	  </para>

	</listitem>
      </varlistentry>

  </variablelist>

    <important>
      <title>Important</title>
      <para>
	SystemTap supports the use of a large collection of probe events. For
	more information about supported events, refer to <command>man
	stapprobes</command>. The <citetitle>SEE ALSO</citetitle> section of
	<command>man stapprobes</command> also contains links to other
	<command>man</command> pages that discuss supported events for specific
	subsystems and components.
      </para>
    </important>

<remark>is reference appropriate? too advanced for readers (it seems so to me)? please advise.</remark> 

  </section>
<!-- stophere -->
<section id="systemtapscript-handler">
	<title>Systemtap Handler/Body</title>
	<indexterm>
		<primary>handlers</primary>
		<secondary>introduction</secondary>
	</indexterm>
	<para> Consider the following sample script: </para>
	
<example id="helloworld"><title>helloworld.stp</title>
<programlisting>
probe begin
{
  printf ("hello world\n")
  exit ()
}
</programlisting>	
</example>
	
	<para>
		In <xref linkend="helloworld"/>, the event <command>begin</command>
		(i.e. the start of the session) triggers the handler enclosed in
		<command>{ }</command>, which simply prints <command>hello
			world</command> followed by a new-line, then exits.
	</para>	
	
	<note>
		<title>Note</title>
		<indexterm>
			<primary>functions (used in handlers)</primary>
			<secondary><command>exit()</command></secondary>
		</indexterm>
		
		<indexterm>
			<primary><command>exit()</command></primary>
			<secondary>functions</secondary>
		</indexterm>
		<para>
			SystemTap scripts continue to run until the
			<command>exit()</command> function executes. If the users wants to stop
			the execution of the script, it can interrupted manually with
			<keycombo><keycap>Ctrl</keycap><keycap>C</keycap></keycombo>.
		</para>
	</note>
	
	<formalpara id="printf">
		<title>printf ( ) Statements</title>
		<indexterm>
			<primary><command>printf()</command></primary>
			<secondary>format strings</secondary>
		</indexterm>
		
		<para>
			The <command>printf ()</command> statement is one of the simplest
			functions for printing data. <command>printf ()</command> can also be
			used to display data using a wide variety of SystemTap functions in the
			following format:
		</para>
	</formalpara>
	
	
	<programlisting>
		printf ("<replaceable>format string</replaceable>\n", <replaceable>arguments</replaceable>)
	</programlisting>
	<indexterm>
		<primary><command>printf()</command></primary>
		<secondary>format strings</secondary>
	</indexterm>
	
	<indexterm>
		<primary>format strings</primary>
		<secondary><command>printf()</command></secondary>
	</indexterm>
	<para>
		The <replaceable>format string</replaceable> specifies how
		<replaceable>arguments</replaceable> should be printed. The format string
		of <xref linkend="helloworld"/> simply instructs SystemTap to print
		<command>hello world</command>, and contains no format specifiers.
	</para>
	<indexterm>
		<primary><command>printf()</command></primary>
		<secondary>format specifiers</secondary>
	</indexterm>
	
	<indexterm>
		<primary>format specifiers</primary>
		<secondary><command>printf()</command></secondary>
	</indexterm>
	<para>
		You can use the format specifiers <command>%s</command> (for strings)
		and <command>%d</command> (for numbers) in format strings, depending on
		your list of arguments. Format strings can have multiple format
		specifiers, each matching a corresponding argument; multiple arguments
		are delimited by a comma (<command>,</command>).
	</para>
	
	<note>
		<title>Note</title>
		<indexterm>
			<primary><command>printf()</command></primary>
			<secondary>syntax and format</secondary>
		</indexterm>
		
		<indexterm>
			<primary>syntax and format</primary>
			<secondary><command>printf()</command></secondary>
		</indexterm>
		<indexterm>
			<primary>format and syntax</primary>
			<secondary><command>printf()</command></secondary>
		</indexterm>
		<para>Semantically, the SystemTap <command>printf</command> function is
			very similar to its C language counterpart. The aforementioned syntax
			and format for SystemTap's <command>printf</command> function is
			identical to that of the C-style <command>printf</command>.
		</para>
	</note>
	
	<para> To illustrate this, consider the following probe example: </para>
	
<example id="syscall-open">
<title>variables-in-printf-statements.stp</title>
<programlisting>
probe syscall.open
{
  printf ("%s(%d) open\n", execname(), pid())
}
</programlisting>
</example>
	
	<para>
		<xref linkend="syscall-open"/> instructs SystemTap to probe all entries to
		the system call <command>open</command>; for each event, it prints the
		current <command>execname()</command> (a string with the executable name) and
		<command>pid()</command> (the current process ID number), followed by the word
		<command>open</command>. A snippet of this probe's output would look like:
	</para>
	
	<remark>editorial review: does a clarification that "format specifier1" is
		to "argument1", "format specifier2" is to "argument2", or is this clear
		enough? </remark>
	
<screen>
vmware-guestd(2206) open
hald(2360) open
hald(2360) open
hald(2360) open
df(3433) open
df(3433) open
df(3433) open
hald(2360) open
</screen>
	
	<formalpara id="systemtapscript-functions">
		<title>SystemTap Functions</title>
		<indexterm>
			<primary>functions</primary>
		</indexterm>
		
		<indexterm>
			<primary>SystemTap script functions</primary>
		</indexterm>
		
		<indexterm>
			<primary>handler functions</primary>
		</indexterm>
		
		<para>
			SystemTap supports a wide variety of functions that can be used as
			<command>printf ()</command> arguments. <xref linkend="syscall-open"/>
			uses the SystemTap functions <command>execname()</command> (name of the
			process that called a kernel function/performed a system call) and
			<command>pid()</command> (current process ID).
		</para>
	</formalpara>		
	
	<remark>is "handler function" an appropriate term? wcohen: use "SystemTap functions" to match up language in man pages</remark>
	
	<para>The following is a list of commonly-used SystemTap functions:</para>	
	<variablelist>
		
		<varlistentry>
			<term>tid()</term>
			<listitem>
				<indexterm>
					<primary>functions</primary>
					<secondary><command>tid()</command></secondary>
<!-- 					<tertiary><command>tid()</command></tertiary> -->
				</indexterm>
				
				<indexterm>
					<primary>functions</primary>
					<secondary><command>tid()</command></secondary>
<!-- 					<tertiary></tertiary> -->
				</indexterm>
				
				<indexterm>
					<primary><command>tid()</command></primary>
					<secondary>functions</secondary>
<!-- 					<tertiary>handler </tertiary> -->
				</indexterm>
				
				<para>The ID of the current thread.</para>
			</listitem>	
		</varlistentry>	
		
		<varlistentry>
			<term>uid()</term>
			<listitem>
				<indexterm>
					<primary>functions</primary>
					<!--<secondary>handler functions</secondary>-->
					<secondary><command>uid()</command></secondary>
				</indexterm>
<!--				
				<indexterm>
					<primary>handler functions</primary>
					<secondary>Handlers</secondary>
					<tertiary><command>uid()</command></tertiary>
				</indexterm>
				-->
				<indexterm>
					<primary><command>uid()</command></primary>
					<secondary>functions</secondary>
<!-- 					<tertiary>handler functions</tertiary> -->
				</indexterm>
				<para>The ID of the current user.</para>
			</listitem>	
		</varlistentry>
		
		<varlistentry>
			<term>cpu()</term>
			<listitem>
				<indexterm>
					<primary>functions</primary>
					<!--<secondary>handler functions</secondary>-->
					<secondary><command>cpu()</command></secondary>
				</indexterm>
<!--				
				<indexterm>
					<primary>handler functions</primary>
					<secondary>Handlers</secondary>
					<tertiary><command>cpu()</command></tertiary>
				</indexterm>
				-->
				<indexterm>
					<primary><command>cpu()</command></primary>
					<secondary>functions</secondary>
<!-- 					<tertiary>handler functions</tertiary> -->
				</indexterm>		
				<para>The current CPU number.</para>
			</listitem>	
		</varlistentry>
		
		<varlistentry>
			<term>gettimeofday_s()</term>
			<listitem>
				<indexterm>
					<primary>functions</primary>
					<!--<secondary>handler functions</secondary>-->
					<secondary><command>gettimeofday_s()</command></secondary>
				</indexterm>
<!--				
				<indexterm>
					<primary>handler functions</primary>
					<secondary>Handlers</secondary>
					<tertiary><command>gettimeofday_s()</command></tertiary>
				</indexterm>
				-->
				<indexterm>
					<primary><command>gettimeofday_s()</command></primary>
					<secondary>functions</secondary>
<!-- 					<tertiary>handler functions</tertiary> -->
				</indexterm>
				
				<para>The number of seconds since UNIX epoch (January 1, 1970).</para>
			</listitem>	
		</varlistentry>
		
		<varlistentry>
			<term>ctime()</term>
			<listitem>
				<indexterm>
					<primary>functions</primary>
					<!--<secondary>handler functions</secondary>-->
					<secondary><command>ctime()</command></secondary>
				</indexterm>
<!--				
				<indexterm>
					<primary>handler functions</primary>
					<secondary>Handlers</secondary>
					<tertiary><command>ctime()</command></tertiary>
				</indexterm>
				-->
				<indexterm>
					<primary><command>ctime()</command></primary>
					<secondary>functions</secondary>
<!-- 					<tertiary>handler functions</tertiary> -->
				</indexterm>				
				<para>
					Convert number of seconds since UNIX epoch to date.
				</para>
			</listitem>	
		</varlistentry>
		
		<!--
		    <varlistentry>
			    <term>get_cycles()</term>
			    <listitem>
				    <para>A snapshot of the hardware cycle counter.</para>
			    </listitem>	
		    </varlistentry>
		    -->
		    
		    <varlistentry>
			    <term>pp()</term>
			    <listitem>
				    <indexterm>
					    <primary>functions</primary>
					    <!--<secondary>handler functions</secondary>-->
					    <secondary><command>pp()</command></secondary>
				    </indexterm>
<!--				    
				    <indexterm>
					    <primary>handler functions</primary>
					    <secondary>Handlers</secondary>
					    <tertiary><command>pp()</command></tertiary>
				    </indexterm>
				    -->
				    <indexterm>
					    <primary><command>pp()</command></primary>
					    <secondary>functions</secondary>
<!-- 					    <tertiary>handler functions</tertiary> -->
				    </indexterm>
				    <para>A string describing the probe point currently being handled.</para>
			    </listitem>	
		    </varlistentry>
		    <!-- removed, doesnt work as expected anymore
			 <varlistentry>
				 <term>probefunc()</term>
				 <listitem>
					 <para>If known, the name of the function in which the probe was placed.</para>
				 </listitem>	
			 </varlistentry>
			 -->
			 
			 <varlistentry>
				 <term>thread_indent()</term>
				 <listitem>
					 <indexterm>
						 <primary>functions</primary>
						 <!--<secondary>handler functions</secondary>-->
						 <secondary><command>thread_indent()</command></secondary>
					 </indexterm>
<!--					 
					 <indexterm>
						 <primary>handler functions</primary>
						 <secondary>Handlers</secondary>
						 <tertiary><command>thread_indent()</command></tertiary>
					 </indexterm>
					 -->
					 <indexterm>
						 <primary><command>thread_indent()</command></primary>
						 <secondary>functions</secondary>
<!-- 						 <tertiary>handler functions</tertiary> -->
					 </indexterm>
					 <para>
						 This particular function is quite useful, providing you with a way
						 to better organize your print results. The function takes one
						 argument, an indentation delta, which indicates how many
						 spaces to add or remove from a thread's "indentation counter".
						 It then returns a
						 string with some generic trace data along with an appropriate number
						 of indentation spaces.
					 </para>
					 
					 <para>
						 The generic data included in the returned string includes a
						 timestamp (number of microseconds since the 
						 first call to <command>thread_indent()</command> by the thread),
						 a process name, and the thread ID. This allows you to
						 identify what functions were called, who called them, and the
						 duration of each function call.
					 </para>	
					 
					 <para>
						 If call entries and exits immediately precede each other, it is easy
						 to match them. However, in most cases, after a first function call
						 entry is made several other call entries and exits may be made
						 before the first call exits. The indentation counter helps you match
						 an entry with its corresponding exit by indenting the next function
						 call if it is not the exit of the previous one.
					 </para>
					 
					 <para>
						 Consider the following example on the use of
						 <command>thread_indent()</command>:
					 </para>
					 
<example id="thread_indent"><title>thread_indent.stp</title>
<programlisting>
probe kernel.function("*@net/socket.c") 
{
  printf ("%s -> %s\n", thread_indent(1), probefunc())
}
probe kernel.function("*@net/socket.c").return 
{
  printf ("%s &lt;- %s\n", thread_indent(-1), probefunc())
}
</programlisting>
</example>
					 
					 <para>
						 <xref linkend="thread_indent"/> prints out the
						 <command>thread_indent()</command> and probe functions at each event
						 in the following format:</para>
					 
<screen>
0 ftp(7223): -&gt; sys_socketcall
1159 ftp(7223):  -&gt; sys_socket
2173 ftp(7223):   -&gt; __sock_create
2286 ftp(7223):    -&gt; sock_alloc_inode
2737 ftp(7223):    &lt;- sock_alloc_inode
3349 ftp(7223):    -&gt; sock_alloc
3389 ftp(7223):    &lt;- sock_alloc
3417 ftp(7223):   &lt;- __sock_create
4117 ftp(7223):   -&gt; sock_create
4160 ftp(7223):   &lt;- sock_create
4301 ftp(7223):   -&gt; sock_map_fd
4644 ftp(7223):    -&gt; sock_map_file
4699 ftp(7223):    &lt;- sock_map_file
4715 ftp(7223):   &lt;- sock_map_fd
4732 ftp(7223):  &lt;- sys_socket
4775 ftp(7223): &lt;- sys_socketcall
</screen>
					 
					 <para>This sample output contains the following information:</para>
					 
					 <itemizedlist>
						 <listitem><para>The time (in microseconds) since the initial <command>thread_ident()</command> call for the thread (included in the string from <command>thread_ident()</command>).</para></listitem>
						 
						 <listitem><para>The process name (and its corresponding ID) that made the function call (included in the string from <command>thread_ident()</command>).</para></listitem>
						 
						 <listitem><para>An arrow signifying whether the call was an entry (<computeroutput>&lt;-</computeroutput>) or an exit (<computeroutput>-></computeroutput>); the indentations help you match specific function call entries with their corresponding exits.</para></listitem>
						 
						 <listitem><para>The name of the function called by the process.</para></listitem>
					 </itemizedlist>	
					 
					 <remark>remember to add a reference later to "tapsets" from here, to clarify
						 that thread_indent is defined in tapsets as a special function of sorts</remark>
					 
				 </listitem>	
			 </varlistentry>
			 
			 <varlistentry>
				 <term>name</term>
				 <listitem>
<indexterm>
<primary>local variables</primary>
<secondary>name</secondary>
</indexterm>

<indexterm>
<primary>variables (local)</primary>
<secondary>name</secondary>
</indexterm>

<indexterm>
<primary>name</primary>
<secondary>local variables</secondary>
</indexterm>					 
<!--					 <indexterm>
						 <primary>functions</primary>
						 <secondary>handler functions</secondary>
						 <tertiary><command>name</command></tertiary>
					 </indexterm>
					 
					 <indexterm>
						 <primary>handler functions</primary>
						 <secondary>Handlers</secondary>
						 <tertiary><command>name</command></tertiary>
					 </indexterm>
					 
					 <indexterm>
						 <primary><command>name</command></primary>
						 <secondary>Handlers</secondary>
						 <tertiary>handler functions</tertiary>
					 </indexterm>-->
					 <para>Identifies the name of a specific system call. This variable can
						 only be used in probes that use the event
						 <command>syscall.<replaceable>system_call</replaceable></command>.
					 </para>
				 </listitem>	
			 </varlistentry>
			 
			 <varlistentry>
				 <term>target()</term>
				 <listitem>
					 
					 <indexterm>
						 <primary>functions</primary>
<!-- 						 <secondary>handler functions</secondary> -->
						 <secondary><command>target()</command></secondary>
					 </indexterm>
<!--					 
					 <indexterm>
						 <primary>handler functions</primary>
						 <secondary>Handlers</secondary>
						 <tertiary><command>target()</command></tertiary>
					 </indexterm>
					 -->
					 <indexterm>
						 <primary><command>target()</command></primary>
						 <secondary>functions</secondary>
<!-- 						 <tertiary>handler functions</tertiary> -->
					 </indexterm>
					 <para>
						 Used in conjunction with <command>stap
							 <replaceable>script</replaceable> -x <replaceable>process
								 ID</replaceable></command> or <command>stap
							 <replaceable>script</replaceable> -c
							 <replaceable>command</replaceable></command>. If you want to specify
						 a script to take an argument of a process ID or command, use
						 <command>target()</command> as the variable in the script to refer
						 to it. For example:
					 </para>
					 
<example id="targetexample">
<title>targetexample.stp</title>
<programlisting>
probe syscall.* {
  if (pid() == target())
    printf("%s/n", name)
}	
</programlisting>
</example>
					 
					 <para>
						 When <xref linkend="targetexample"/> is run with the argument
						 <command>-x <replaceable>process ID</replaceable></command>, it
						 watches all system calls (as specified by the event
						 <command>syscall.*</command>) and prints out the name of all system
						 calls made by the specified process.
					 </para>
					 
					 <para>
						 This has the same effect as specifying <command>if (pid() ==
							 <replaceable>process ID</replaceable>)</command> each time you wish
						 to target a specific process. However, using
						 <command>target()</command> makes it easier for you to re-use the
						 script, giving you the ability to simply pass a process ID as an
						 argument each time you wish to run the script (e.g. <command>stap
							 targetexample.stp -x <replaceable>process ID</replaceable></command>).
					 </para>
					 <!--		
							<note>
								<title>Note</title>
								<para>In <xref linkend="targetexample"/>, <command>name</command> instructs SystemTap to capture the name of the process</para>
							</note>	-->
							
						</listitem>
					</varlistentry>
					
					<!--	
						<varlistentry>
							<term></term>
							<listitem>
								<para></para>
							</listitem>	
						</varlistentry>
						-->	
					</variablelist>		
					
					<para>For more information about supported SystemTap functions, refer to
						<command>man stapfuncs</command>.
					</para>
					
					<remark>will need a complete listing of supported handler functions? also, SystemTap function descriptions seem ambiguous, please advise.</remark>
					
					<!--	
						<para>
							<replaceable>variable</replaceable> can be either <command>%s</command> for strings, or <command>%d</command> for numbers, depending on the <replaceable>handler function</replaceable> used. Each <command>printf ()</command> statement can contain multiple <replaceable>variable</replaceable>s, with each one corresponding to a matching <replaceable>handler function</replaceable>. Multiple <replaceable>handler function</replaceable>s are delimited by comma (<command>,</command>). 
						</para>	
						
						<command>printf ()</command> is a SystemTap-supported C statement, and can also trap data using a wide variety
						
						SystemTap supports a wide variety of handler functions that can trap data when triggered by events. One way to display these functions is to use the <command>print()</command>   
					</para>	
					
					
					<para>
						<xref linkend="wildcards"/> illustrates an example of a SystemTap script that contains no handlers. SystemTap will still be able to run the script, but no information will be displayed. 	
					</para>
					-->
					
  </section>
</section>