1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
|
<?xml version='1.0'?>
<!DOCTYPE section PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN" "http://www.oasis-open.org/docbook/xml/4.5/docbookx.dtd" [
]>
<section id="arrayoperators">
<title>Array Operations in SystemTap</title>
<indexterm>
<primary>array operations</primary>
<secondary>associative arrays</secondary>
</indexterm>
<indexterm>
<primary>operations</primary>
<secondary>associative arrays</secondary>
</indexterm>
<para>This section enumerates some of the most commonly used array operations in SystemTap.</para>
<section id="arrayops-assignvalue">
<title>Assigning an Associated Value</title>
<indexterm>
<primary>array operations</primary>
<secondary>assigning associated values</secondary>
</indexterm>
<indexterm>
<primary>assigning associated values</primary>
<secondary>array operations</secondary>
</indexterm>
<indexterm>
<primary>values, assignment of</primary>
<secondary>array operations</secondary>
</indexterm>
<para>Use <command>=</command> to set an associated value to indexed unique pairs, as in:</para>
<screen>
<replaceable>array_name</replaceable>[<replaceable>index_expression</replaceable>] = <replaceable>value</replaceable>
</screen>
<para><xref linkend="arraysimplestexample"/> shows a very basic example of how to set an explicit associated value to a unique key. You can also use a handler function as both your <command><replaceable>index_expression</replaceable></command> and <command><replaceable>value</replaceable></command>. For example, you can use arrays to set a timestamp as the associated value to a process name (which you wish to use as your unique key), as in:</para>
<indexterm>
<primary>assigning associated values</primary>
<secondary>array operations</secondary>
<tertiary>associating timestamps to process names</tertiary>
</indexterm>
<indexterm>
<primary>array operations</primary>
<secondary>assigning associated values</secondary>
<tertiary>associating timestamps to process names</tertiary>
</indexterm>
<indexterm>
<primary>operations</primary>
<secondary>assigning associated values</secondary>
<tertiary>associating timestamps to process names</tertiary>
</indexterm>
<indexterm>
<primary>assigning associated values</primary>
<secondary>associating timestamps to process names</secondary>
<tertiary>array operations</tertiary>
</indexterm>
<indexterm>
<primary>associating timestamps to process names</primary>
<secondary>assigning associated values</secondary>
<tertiary>array operations</tertiary>
</indexterm>
<indexterm>
<primary>timestamps, association thereof to process names</primary>
<secondary>assigning associated values</secondary>
<tertiary>array operations</tertiary>
</indexterm>
<example id="arrays-timestampprocessname">
<title>Associating Timestamps to Process Names</title>
<programlisting>
foo[tid()] = gettimeofday_s()
</programlisting>
</example>
<para>Whenever an event invokes the statement in <xref linkend="arrays-timestampprocessname"/>, SystemTap returns the appropriate <command>tid()</command> value (i.e. the ID of a thread, which is then used as the unique key). At the same time, SystemTap also uses the function <command>gettimeofday_s()</command> to set the corresponding timestamp as the associated value to the unique key defined by the function <command>tid()</command>. This creates an array composed of key pairs containing thread IDs and timestamps.</para>
<para>In this same example, if <command>tid()</command> returns a value that is already defined in the array <command>foo</command>, the operator will discard the original associated value to it, and replace it with the current timestamp from <command>gettimeofday_s()</command>.</para>
</section>
<section id="arrayops-readvalues">
<title>Reading Values From Arrays</title>
<indexterm>
<primary>reading values from arrays</primary>
<secondary>array operations</secondary>
</indexterm>
<indexterm>
<primary>array operations</primary>
<secondary>reading values from arrays</secondary>
</indexterm>
<indexterm>
<primary>operations</primary>
<secondary>reading values from arrays</secondary>
</indexterm>
<para>You can also read values from an array the same way you would read the value of a variable.
To do so, include the
<command><replaceable>array_name</replaceable>[<replaceable>index_expression</replaceable>]</command>
statement as an element in a mathematical expression. For example:</para>
<!--
<para>You can also use the <command>=</command> operator to read values from an array. This is accomplished by simply including the <command><replaceable>array_name</replaceable>[<replaceable>index_expression</replaceable>]</command> as an element in a mathematical expression. For example:</para>-->
<indexterm>
<primary>reading values from arrays</primary>
<secondary>array operations</secondary>
<tertiary>using arrays in simple computations</tertiary>
</indexterm>
<indexterm>
<primary>array operations</primary>
<secondary>reading values from arrays</secondary>
<tertiary>using arrays in simple computations</tertiary>
</indexterm>
<indexterm>
<primary>operations</primary>
<secondary>reading values from arrays</secondary>
<tertiary>using arrays in simple computations</tertiary>
</indexterm>
<indexterm>
<primary>using arrays in simple computations</primary>
<secondary>reading values from arrays</secondary>
<tertiary>array operations</tertiary>
</indexterm>
<indexterm>
<primary>algebraic formulas using arrays</primary>
<secondary>reading values from arrays</secondary>
<tertiary>array operations</tertiary>
</indexterm>
<indexterm>
<primary>array operations</primary>
<secondary>reading values from arrays</secondary>
<tertiary>computing for timestamp deltas</tertiary>
</indexterm>
<indexterm>
<primary>operations</primary>
<secondary>reading values from arrays</secondary>
<tertiary>computing for timestamp deltas</tertiary>
</indexterm>
<indexterm>
<primary>computing for timestamp deltas</primary>
<secondary>reading values from arrays</secondary>
<tertiary>array operations</tertiary>
</indexterm>
<indexterm>
<primary>reading values from arrays</primary>
<secondary>computing for timestamp deltas</secondary>
<tertiary>array operations</tertiary>
</indexterm>
<indexterm>
<primary>timestamp deltas, computing for</primary>
<secondary>reading values from arrays</secondary>
<tertiary>array operations</tertiary>
</indexterm>
<example id="arrayreadingvaluesfrom">
<title>Using Array Values in Simple Computations</title>
<screen>
delta = gettimeofday_s() - foo[tid()]
</screen>
</example>
<para>
This example assumes that the array <command>foo</command> was built using the construct in
<xref linkend="arrays-timestampprocessname"/> (from <xref linkend="arrayops-assignvalue"/>). This
sets a timestamp that will serve as a <emphasis>reference point</emphasis>, to be used in
computing for <literal>delta</literal>.
</para>
<para>
The construct in <xref linkend="arrayreadingvaluesfrom"/> computes a value for the variable
<literal>delta</literal> by subtracting the associated value of the key <literal>tid()</literal>
from the current <command>gettimeofday_s()</command>. The construct does this by
<emphasis>reading</emphasis> the value of <literal>tid()</literal> from the array. This particular
construct is useful for determining the time between two events, such as the start and completion
of a read operation.
</para>
<!--
<para>
In <xref linkend="arrayreadingvaluesfrom"/>, the first statement sets a timestamp associated
with the returned value of the handler function <command>tid()</command> as a
<emphasis>reference point</emphasis>.
The second statement computes a value for the variable
<command>delta</command> by subtracting the associated value the reference point from the
current <command>gettimeofday_s()</command>. Note that the first statement writes the value
of <command>gettimeofday_s()</command> into the appropriate key of array
<literal>foo</literal>, while in the second statement the value of
<command>foo[tid()]</command> is <emphasis>read</emphasis> from the array in order to compute
for <literal>delta</literal>.
</para>
-->
<indexterm>
<primary>reading values from arrays</primary>
<secondary>array operations</secondary>
<tertiary>empty unique keys</tertiary>
</indexterm>
<indexterm>
<primary>array operations</primary>
<secondary>reading values from arrays</secondary>
<tertiary>empty unique keys</tertiary>
</indexterm>
<indexterm>
<primary>operations</primary>
<secondary>reading values from arrays</secondary>
<tertiary>empty unique keys</tertiary>
</indexterm>
<indexterm>
<primary>empty unique keys</primary>
<secondary>reading values from arrays</secondary>
<tertiary>array operations</tertiary>
</indexterm>
<note>
<title>Note</title>
<para>
If the <command><replaceable>index_expression</replaceable></command> cannot
find the unique key, it returns a value of 0 (for numerical operations, such as
<xref linkend="arrayreadingvaluesfrom"/>) or a null/empty string value (for string operations) by
default.
</para>
</note>
</section>
<section id="arrayops-increment">
<title>Incrementing Associated Values</title>
<indexterm>
<primary>array operations</primary>
<secondary>incrementing associated values</secondary>
</indexterm>
<indexterm>
<primary>incrementing associated values</primary>
<secondary>array operations</secondary>
</indexterm>
<indexterm>
<primary>operations</primary>
<secondary>incrementing associated values</secondary>
</indexterm>
<para>Use <command>++</command> to increment the associated value of a unique key in an array, as in:</para>
<screen>
<replaceable>array_name</replaceable>[<replaceable>index_expression</replaceable>] ++
</screen>
<para>Again, you can also use a handler function for your <command><replaceable>index_expression</replaceable></command>. For example, if you wanted to tally how many times a specific process performed a read to the virtual file system (using the event <command>vfs.read</command>), you can use the following probe:</para>
<!-- next 3 indexterms for tallying virtual file system reads (VFS reads) -->
<indexterm>
<primary>incrementing associated values</primary>
<secondary>array operations</secondary>
<tertiary>tallying virtual file system reads (VFS reads)</tertiary>
</indexterm>
<indexterm>
<primary>array operations</primary>
<secondary>incrementing associated values</secondary>
<tertiary>tallying virtual file system reads (VFS reads)</tertiary>
</indexterm>
<indexterm>
<primary>operations</primary>
<secondary>incrementing associated values</secondary>
<tertiary>tallying virtual file system reads (VFS reads)</tertiary>
</indexterm>
<indexterm>
<primary>tallying virtual file system reads (VFS reads)</primary>
<secondary>incrementing associated values</secondary>
<tertiary>array operations</tertiary>
</indexterm>
<indexterm>
<primary>VFS reads, tallying of</primary>
<secondary>incrementing associated values</secondary>
<tertiary>array operations</tertiary>
</indexterm>
<example id="simplesimplevfsread">
<title>vfsreads.stp</title>
<programlisting>
probe vfs.read
{
reads[execname()] ++
}
</programlisting>
</example>
<para>In <xref linkend="simplesimplevfsread"/>, the first time that the probe returns the process name <command>gnome-terminal</command> (i.e. the first time <command>gnome-terminal</command> performs a VFS read), that process name is set as the unique key <literal>gnome-terminal</literal> with an associated value of 1. The next time that the probe returns the process name <command>gnome-terminal</command>, SystemTap increments the associated value of <literal>gnome-terminal</literal> by 1. SystemTap performs this operation for <emphasis>all</emphasis> process names as the probe returns them.</para>
</section>
<section id="arrayops-foreach">
<title>Processing Multiple Elements in an Array</title>
<indexterm>
<primary>multiple elements in an array</primary>
<secondary>array operations</secondary>
</indexterm>
<indexterm>
<primary>array operations</primary>
<secondary>multiple elements in an array</secondary>
</indexterm>
<indexterm>
<primary>operations</primary>
<secondary>multiple elements in an array</secondary>
</indexterm>
<indexterm>
<primary>array operations</primary>
<secondary>processing multiple elements in an array</secondary>
</indexterm>
<indexterm>
<primary>processing multiple elements in an array</primary>
<secondary>array operations</secondary>
</indexterm>
<indexterm>
<primary>operations</primary>
<secondary>processing multiple elements in an array</secondary>
</indexterm>
<!-- <title>Processing Elements in a Tuple as Iterations</title> -->
<para>Once you've collected enough information in an array, you will need to retrieve and process all elements in that array to make it useful. Consider <xref linkend="simplesimplevfsread"/>: the script collects information about how many VFS reads each process performs, but does not specify what to do with it. The obvious means for making <xref linkend="simplesimplevfsread"/> useful is to print the key pairs in the array <command>reads</command>, but how?</para>
<!-- next 3 indexterms for foreach -->
<indexterm>
<primary>array operations</primary>
<secondary>processing multiple elements in an array</secondary>
<tertiary>foreach</tertiary>
</indexterm>
<indexterm>
<primary>operations</primary>
<secondary>processing multiple elements in an array</secondary>
<tertiary>foreach</tertiary>
</indexterm>
<indexterm>
<primary>processing multiple elements in an array</primary>
<secondary>foreach</secondary>
<tertiary>array operations</tertiary>
</indexterm>
<indexterm>
<primary>foreach</primary>
<secondary>processing multiple elements in an array</secondary>
<tertiary>array operations</tertiary>
</indexterm>
<!-- next 2 indexterms for iterations, processing elements in an array as -->
<indexterm>
<primary>array operations</primary>
<secondary>processing multiple elements in an array</secondary>
<tertiary>iterations, processing elements in an array as</tertiary>
</indexterm>
<indexterm>
<primary>operations</primary>
<secondary>processing multiple elements in an array</secondary>
<tertiary>iterations, processing elements in an array as</tertiary>
</indexterm>
<indexterm>
<primary>iterations, processing elements in an array as</primary>
<secondary>processing multiple elements in an array</secondary>
<tertiary>array operations</tertiary>
</indexterm>
<para>The best way to process all key pairs in an array (as an iteration) is to use the <command>foreach</command> statement. Consider the following example:</para>
<!-- <para>The best way to process all elements in a tuple (treating each element as an iteration) is to use the <command>foreach</command> statement. Consider the following example:</para>-->
<!-- next 2 indexterms for cumulative virtual file system reads, tallying -->
<indexterm>
<primary>array operations</primary>
<secondary>processing multiple elements in an array</secondary>
<tertiary>cumulative virtual file system reads, tallying</tertiary>
</indexterm>
<indexterm>
<primary>operations</primary>
<secondary>processing multiple elements in an array</secondary>
<tertiary>cumulative virtual file system reads, tallying</tertiary>
</indexterm>
<indexterm>
<primary>cumulative virtual file system reads, tallying</primary>
<secondary>processing multiple elements in an array</secondary>
<tertiary>array operations</tertiary>
</indexterm>
<indexterm>
<primary>processing multiple elements in an array</primary>
<secondary>cumulative virtual file system reads, tallying</secondary>
<tertiary>array operations</tertiary>
</indexterm>
<indexterm>
<primary>virtual file system reads (cumulative), tallying</primary>
<secondary>processing multiple elements in an array</secondary>
<tertiary>array operations</tertiary>
</indexterm>
<example id="simplevfsreadprint">
<title>cumulative-vfsreads.stp</title>
<programlisting>
global reads
probe vfs.read
{
reads[execname()] ++
}
probe timer.s(3)
{
foreach (count in reads)
printf("%s : %d \n", count, reads[count])
}
</programlisting>
</example>
<para>In the second probe of <xref linkend="simplevfsreadprint"/>, the <command>foreach</command> statement uses the variable <command>count</command> to reference each iteration of a unique key in the array <command>reads</command>. The <command>reads[count]</command> array statement in the same probe retrieves the associated value of each unique key.</para>
<para>Given what we know about the first probe in <xref linkend="simplevfsreadprint"/>, the script prints VFS-read statistics every 3 seconds, displaying names of processes that performed a VFS-read along with a corresponding VFS-read count.</para>
<indexterm>
<primary>array operations</primary>
<secondary>processing multiple elements in an array</secondary>
<tertiary>limiting the output of foreach</tertiary>
</indexterm>
<indexterm>
<primary>operations</primary>
<secondary>processing multiple elements in an array</secondary>
<tertiary>limiting the output of foreach</tertiary>
</indexterm>
<indexterm>
<primary>processing multiple elements in an array</primary>
<secondary>limiting the output of foreach</secondary>
<tertiary>array operations</tertiary>
</indexterm>
<indexterm>
<primary>limiting the output of foreach</primary>
<secondary>processing multiple elements in an array</secondary>
<tertiary>array operations</tertiary>
</indexterm>
<!-- next 2 indexterms for ordering the output of foreach -->
<indexterm>
<primary>array operations</primary>
<secondary>processing multiple elements in an array</secondary>
<tertiary>ordering the output of foreach</tertiary>
</indexterm>
<indexterm>
<primary>operations</primary>
<secondary>processing multiple elements in an array</secondary>
<tertiary>ordering the output of foreach</tertiary>
</indexterm>
<indexterm>
<primary>processing multiple elements in an array</primary>
<secondary>ordering the output of foreach</secondary>
<tertiary>array operations</tertiary>
</indexterm>
<indexterm>
<primary>ordering the output of foreach</primary>
<secondary>processing multiple elements in an array</secondary>
<tertiary>array operations</tertiary>
</indexterm>
<para>Now, remember that the <command>foreach</command> statement in <xref linkend="simplevfsreadprint"/> prints <emphasis>all</emphasis> iterations of process names in the array, and in no particular order. You can instruct the script to process the iterations in a particular order by using <command>+</command> (ascending) or <command>-</command> (descending). In addition, you can also limit the number of iterations the script needs to process with the <command>limit <replaceable>value</replaceable></command> option.</para>
<para>For example, consider the following replacement probe:</para>
<screen>
probe timer.s(3)
{
foreach (count in reads- limit 10)
printf("%s : %d \n", count, reads[count])
}
</screen>
<para>This <command>foreach</command> statement instructs the script to process the elements in the array <command>reads</command> in descending order (of associated value). The <command>limit 10</command> option instructs the <command>foreach</command> to only process the first ten iterations (i.e. print the first 10, starting with the highest value).</para>
</section>
<section id="arrayops-deleting">
<title>Clearing/Deleting Arrays and Array Elements</title>
<indexterm>
<primary>array operations</primary>
<secondary>deleting arrays and array elements</secondary>
</indexterm>
<indexterm>
<primary>operations</primary>
<secondary>deleting arrays and array elements</secondary>
</indexterm>
<indexterm>
<primary>array operations</primary>
<secondary>clearing arrays/array elements</secondary>
</indexterm>
<indexterm>
<primary>operations</primary>
<secondary>clearing arrays/array elements</secondary>
</indexterm>
<indexterm>
<primary>clearing arrays/array elements</primary>
<secondary>array operations</secondary>
</indexterm>
<para>Sometimes, you may need to clear the associated values in array elements, or reset an entire array for re-use in another probe. <xref linkend="simplevfsreadprint"/> in <xref linkend="arrayops-foreach"/> allows you to track how the number of VFS reads per process grows over time, but it does not show you the number of VFS reads each process makes per 3-second period.</para>
<!-- next 3 indexterms for delete operator -->
<indexterm>
<primary>array operations</primary>
<secondary>clearing arrays/array elements</secondary>
<tertiary>delete operator</tertiary>
</indexterm>
<indexterm>
<primary>operations</primary>
<secondary>clearing arrays/array elements</secondary>
<tertiary>delete operator</tertiary>
</indexterm>
<indexterm>
<primary>clearing arrays/array elements</primary>
<secondary>array operations</secondary>
<tertiary>delete operator</tertiary>
</indexterm>
<indexterm>
<primary>delete operator</primary>
<secondary>clearing arrays/array elements</secondary>
<tertiary>array operations</tertiary>
</indexterm>
<para>To do that, you will need to clear the values accumulated by the array. You can accomplish this using the <command>delete</command> operator to delete elements in an array, or an entire array. Consider the following example:</para>
<indexterm>
<primary>array operations</primary>
<secondary>clearing arrays/array elements</secondary>
<tertiary>virtual file system reads (non-cumulative), tallying</tertiary>
</indexterm>
<indexterm>
<primary>operations</primary>
<secondary>clearing arrays/array elements</secondary>
<tertiary>virtual file system reads (non-cumulative), tallying</tertiary>
</indexterm>
<indexterm>
<primary>clearing arrays/array elements</primary>
<secondary>array operations</secondary>
<tertiary>virtual file system reads (non-cumulative), tallying</tertiary>
</indexterm>
<indexterm>
<primary>virtual file system reads (non-cumulative), tallying</primary>
<secondary>clearing arrays/array elements</secondary>
<tertiary>array operations</tertiary>
</indexterm>
<example id="simplevfsreadprintnotcumulative">
<title>noncumulative-vfsreads.stp</title>
<programlisting>
global reads
probe vfs.read
{
reads[execname()] ++
}
probe timer.s(3)
{
foreach (count in reads)
printf("%s : %d \n", count, reads[count])
delete reads
}
</programlisting>
</example>
<!--
<example id="simplevfsreadprintnotcumulative">
<title>vfsreads-per-2secs.stp</title>
<programlisting>
global reads
probe vfs.read
{
reads[execname()] ++
}
probe timer.s(3)
{
printf("=======\n")
foreach (count in reads+)
printf("%s : %d \n", count, reads[count])
delete reads
}
</programlisting>
</example>-->
<para>In <xref linkend="simplevfsreadprintnotcumulative"/>, the second probe prints the number of VFS reads each process made <emphasis>within the probed 3-second period only</emphasis>. The <command>delete reads</command> statement clears the <command>reads</command> array within the probe.</para>
<note>
<title>Note</title>
<!-- next 2 indexterms for multiple array operations within the same probe -->
<indexterm>
<primary>array operations</primary>
<secondary>clearing arrays/array elements</secondary>
<tertiary>multiple array operations within the same probe</tertiary>
</indexterm>
<indexterm>
<primary>operations</primary>
<secondary>clearing arrays/array elements</secondary>
<tertiary>multiple array operations within the same probe</tertiary>
</indexterm>
<indexterm>
<primary>clearing arrays/array elements</primary>
<secondary>array operations</secondary>
<tertiary>multiple array operations within the same probe</tertiary>
</indexterm>
<indexterm>
<primary>multiple array operations within the same probe</primary>
<secondary>clearing arrays/array elements</secondary>
<tertiary>array operations</tertiary>
</indexterm>
<para>You can have multiple array operations within the same probe. Using the examples from <xref linkend="arrayops-foreach"/> and <xref linkend="arrayops-deleting"/> , you can track the number of VFS reads each process makes per 3-second period <emphasis>and</emphasis> tally the cumulative VFS reads of those same processes. Consider the following example:</para>
<screen>
global reads, totalreads
probe vfs.read
{
reads[execname()] ++
totalreads[execname()] ++
}
probe timer.s(3)
{
printf("=======\n")
foreach (count in reads-)
printf("%s : %d \n", count, reads[count])
delete reads
}
probe end
{
printf("TOTALS\n")
foreach (total in totalreads-)
printf("%s : %d \n", total, totalreads[total])
}
</screen>
<para>In this example, the arrays <command>reads</command> and <command>totalreads</command> track the same information, and are printed out in a similar fashion. The only difference here is that <command>reads</command> is cleared every 3-second period, whereas <command>totalreads</command> keeps growing.</para>
</note>
</section>
<section id="arrayops-conditionals">
<title>Using Arrays in Conditional Statements</title>
<indexterm>
<primary>array operations</primary>
<secondary>conditional statements, using arrays in</secondary>
</indexterm>
<indexterm>
<primary>operations</primary>
<secondary>conditional statements, using arrays in</secondary>
</indexterm>
<indexterm>
<primary>conditional statements, using arrays in</primary>
<secondary>array operations</secondary>
</indexterm>
<indexterm>
<primary>if/else statements, using arrays in</primary>
<secondary>array operations</secondary>
</indexterm>
<para>You can also use associative arrays in <command>if</command> statements. This is useful if you want to execute a subroutine once a value in the array matches a certain condition. Consider the following example:</para>
<example id="simplevfsreadprintif">
<title>vfsreads-print-if-1kb.stp</title>
<programlisting>
global reads
probe vfs.read
{
reads[execname()] ++
}
probe timer.s(3)
{
printf("=======\n")
foreach (count in reads-)
if (reads[count] >= 1024)
printf("%s : %dkB \n", count, reads[count]/1024)
else
printf("%s : %dB \n", count, reads[count])
}
</programlisting>
</example>
<para>Every three seconds, <xref linkend="simplevfsreadprintif"/> prints out a list of all processes, along with how many times each process performed a VFS read. If the associated value of a process name is equal or greater than 1024, the <command>if</command> statement in the script converts and prints it out in <command>kB</command>.</para>
<!-- <title>vfsreads-stop-on-stapio.stp</title>
<programlisting>
global reads
probe kernel.function("vfs_read")
{
reads[execname()] ++
}
probe timer.s(3)
{
printf("=======\n")
foreach (count in reads+)
printf("%s : %d \n", count, reads[count])
if(reads["stapio"] >= 20) {
exit()
}
}
</programlisting>
</example>
<para>The <command>if(reads["stapio"] >= 20)</command> instructs the script to execute the subroutine <command>exit()</command> once the value associated with the unique key <command>stapio</command> (in the array <command>reads</command>) is greater than or equal to 20.</para>
-->
<formalpara>
<title>Testing for Membership</title>
<!-- next 3 indexterms for testing for array membership -->
<indexterm>
<primary>array operations</primary>
<secondary>conditional statements, using arrays in</secondary>
<tertiary>testing for array membership</tertiary>
</indexterm>
<indexterm>
<primary>operations</primary>
<secondary>conditional statements, using arrays in</secondary>
<tertiary>testing for array membership</tertiary>
</indexterm>
<indexterm>
<primary>conditional statements, using arrays in</primary>
<secondary>array operations</secondary>
<tertiary>testing for array membership</tertiary>
</indexterm>
<indexterm>
<primary>testing for array membership</primary>
<secondary>conditional statements, using arrays in</secondary>
<tertiary>array operations</tertiary>
</indexterm>
<indexterm>
<primary>membership (in array), testing for</primary>
<secondary>conditional statements, using arrays in</secondary>
<tertiary>array operations</tertiary>
</indexterm>
<para>You can also test whether a specific unique key is a member of an array. Further, membership in an array can be used in <command>if</command> statements, as in:</para>
</formalpara>
<screen>
if([<replaceable>index_expression</replaceable>] in <replaceable>array_name</replaceable>) <replaceable>statement</replaceable>
</screen>
<para>To illustrate this, consider the following example:</para>
<example id="simplesimplevfsreadprintifmember">
<title>vfsreads-stop-on-stapio2.stp</title>
<programlisting>
global reads
probe vfs.read
{
reads[execname()] ++
}
probe timer.s(3)
{
printf("=======\n")
foreach (count in reads+)
printf("%s : %d \n", count, reads[count])
if(["stapio"] in reads) {
printf("stapio read detected, exiting\n")
exit()
}
}
</programlisting>
</example>
<para>The <command>if(["stapio"] in reads)</command> statement instructs the script to print <computeroutput>stapio read detected, exiting</computeroutput> once the unique key <command>stapio</command> is added to the array <command>reads</command>.</para>
</section>
<section id="arrayops-aggregates">
<title>Computing for Statistical Aggregates</title>
<indexterm>
<primary>statistical aggregates</primary>
<secondary>array operations</secondary>
</indexterm>
<indexterm>
<primary>aggregates (statistical)</primary>
<secondary>array operations</secondary>
</indexterm>
<indexterm>
<primary>array operations</primary>
<secondary>computing for statistical aggregates</secondary>
</indexterm>
<indexterm>
<primary>operations</primary>
<secondary>computing for statistical aggregates</secondary>
</indexterm>
<indexterm>
<primary>computing for statistical aggregates</primary>
<secondary>array operations</secondary>
</indexterm>
<para>Statistical aggregates are used to collect statistics on numerical values where it is important to accumulate new data quickly and in large volume (i.e. storing only aggregated stream statistics). Statistical aggregates can be used in global variables or as elements in an array.</para>
<!-- next 3 indexterms for adding values to statistical aggregatest -->
<indexterm>
<primary>array operations</primary>
<secondary>computing for statistical aggregates</secondary>
<tertiary>adding values to statistical aggregates</tertiary>
</indexterm>
<indexterm>
<primary>operations</primary>
<secondary>computing for statistical aggregates</secondary>
<tertiary>adding values to statistical aggregates</tertiary>
</indexterm>
<indexterm>
<primary>computing for statistical aggregates</primary>
<secondary>array operations</secondary>
<tertiary>adding values to statistical aggregates</tertiary>
</indexterm>
<indexterm>
<primary>adding values to statistical aggregates</primary>
<secondary>computing for statistical aggregates</secondary>
<tertiary>array operations</tertiary>
</indexterm>
<para>To add value to a statistical aggregate, use the operator <command><<< <replaceable>value</replaceable></command>.</para>
<remark>need more examples of supported rvalues, e.g. length, count, and what each one does.</remark>
<example id="simpleaggregates">
<title>stat-aggregates.stp</title>
<programlisting>
global reads
probe vfs.read
{
reads[execname()] <<< count
}
</programlisting>
</example>
<!-- next 2 indexterms for count operator -->
<indexterm>
<primary>array operations</primary>
<secondary>computing for statistical aggregates</secondary>
<tertiary>count (operator)</tertiary>
</indexterm>
<indexterm>
<primary>operations</primary>
<secondary>computing for statistical aggregates</secondary>
<tertiary>count (operator)</tertiary>
</indexterm>
<indexterm>
<primary>computing for statistical aggregates</primary>
<secondary>array operations</secondary>
<tertiary>count (operator)</tertiary>
</indexterm>
<indexterm>
<primary>count operator</primary>
<secondary>computing for statistical aggregates</secondary>
<tertiary>array (operator)</tertiary>
</indexterm>
<para>In <xref linkend="simpleaggregates"/>, the operator <command><<< count</command> <emphasis>stores</emphasis> the amount returned by <literal>count</literal> to to the associated value of the corresponding <command>execname()</command> in the <literal>reads</literal> array. Remember, these values are <emphasis>stored</emphasis>; they are not added to the associated values of each unique key, nor are they used to replace the current associated values. In a manner of speaking, think of it as having each unique key (<command>execname()</command>) having multiple associated values, accumulating with each probe handler run.</para>
<note>
<title>Note</title>
<para>In the context of <xref linkend="simpleaggregates"/>, <literal>count</literal> returns the amount of data written by the returned <command>execname()</command> to the virtual file system.</para>
</note>
<!-- next 2 indexterms for extracting data collected by statistical aggregates -->
<indexterm>
<primary>array operations</primary>
<secondary>computing for statistical aggregates</secondary>
<tertiary>extracting data collected by statistical aggregates</tertiary>
</indexterm>
<indexterm>
<primary>operations</primary>
<secondary>computing for statistical aggregates</secondary>
<tertiary>extracting data collected by statistical aggregates</tertiary>
</indexterm>
<indexterm>
<primary>computing for statistical aggregates</primary>
<secondary>array operations</secondary>
<tertiary>extracting data collected by statistical aggregates</tertiary>
</indexterm>
<indexterm>
<primary>extracting data collected by statistical aggregates</primary>
<secondary>computing for statistical aggregates</secondary>
<tertiary>array operations</tertiary>
</indexterm>
<indexterm>
<primary>integer extractors</primary>
<secondary>computing for statistical aggregates</secondary>
<tertiary>array operations</tertiary>
</indexterm>
<para>To extract data collected by statistical aggregates, use the syntax format <command>@<replaceable>extractor</replaceable>(<replaceable>variable/array index expression</replaceable>)</command>. <command><replaceable>extractor</replaceable></command> can be any of the following integer extractors:</para>
<variablelist>
<varlistentry>
<term>count</term>
<listitem>
<indexterm>
<primary>array operations</primary>
<secondary>computing for statistical aggregates</secondary>
<tertiary>@count (integer extractor)</tertiary>
</indexterm>
<indexterm>
<primary>operations</primary>
<secondary>computing for statistical aggregates</secondary>
<tertiary>@count (integer extractor)</tertiary>
</indexterm>
<indexterm>
<primary>computing for statistical aggregates</primary>
<secondary>array operations</secondary>
<tertiary>@count (integer extractor)</tertiary>
</indexterm>
<indexterm>
<primary>@count (integer extractor)</primary>
<secondary>computing for statistical aggregates</secondary>
<tertiary>array operations</tertiary>
</indexterm>
<para>
Returns the number of all values stored into the variable/array index expression. Given the sample probe in <xref linkend="simpleaggregates"/>, the expression <command>@count(writes[execname()])</command> will return <emphasis>how many values are stored</emphasis> in each unique key in array <literal>writes</literal>.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>sum</term>
<listitem>
<!-- next 2 indexterms for sum (integer extractor) -->
<indexterm>
<primary>array operations</primary>
<secondary>computing for statistical aggregates</secondary>
<tertiary>@sum (integer extractor)</tertiary>
</indexterm>
<indexterm>
<primary>operations</primary>
<secondary>computing for statistical aggregates</secondary>
<tertiary>@sum (integer extractor)</tertiary>
</indexterm>
<indexterm>
<primary>computing for statistical aggregates</primary>
<secondary>array operations</secondary>
<tertiary>@sum (integer extractor)</tertiary>
</indexterm>
<indexterm>
<primary>@sum (integer extractor)</primary>
<secondary>computing for statistical aggregates</secondary>
<tertiary>array operations</tertiary>
</indexterm>
<para>
Returns the sum of all values stored into the variable/array index expression. Again, given sample probe in <xref linkend="simpleaggregates"/>, the expression <command>@sum(writes[execname()])</command> will return <emphasis>the total of all values stored</emphasis> in each unique key in array <literal>writes</literal>.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>min</term>
<listitem>
<!-- next 2 indexterms for min (integer extractor) -->
<indexterm>
<primary>array operations</primary>
<secondary>computing for statistical aggregates</secondary>
<tertiary>@min (integer extractor)</tertiary>
</indexterm>
<indexterm>
<primary>operations</primary>
<secondary>computing for statistical aggregates</secondary>
<tertiary>@min (integer extractor)</tertiary>
</indexterm>
<indexterm>
<primary>computing for statistical aggregates</primary>
<secondary>array operations</secondary>
<tertiary>@min (integer extractor)</tertiary>
</indexterm>
<indexterm>
<primary>@min (integer extractor)</primary>
<secondary>computing for statistical aggregates</secondary>
<tertiary>array operations</tertiary>
</indexterm>
<para>
Returns the smallest among all the values stored in the variable/array index expression.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>max</term>
<listitem>
<!-- next 2 indexterms for max (integer extractor) -->
<indexterm>
<primary>array operations</primary>
<secondary>computing for statistical aggregates</secondary>
<tertiary>@max (integer extractor)</tertiary>
</indexterm>
<indexterm>
<primary>operations</primary>
<secondary>computing for statistical aggregates</secondary>
<tertiary>@max (integer extractor)</tertiary>
</indexterm>
<indexterm>
<primary>computing for statistical aggregates</primary>
<secondary>array operations</secondary>
<tertiary>@max (integer extractor)</tertiary>
</indexterm>
<indexterm>
<primary>@max (integer extractor)</primary>
<secondary>computing for statistical aggregates</secondary>
<tertiary>array operations</tertiary>
</indexterm>
<para>
Returns the largest among all the values stored in the variable/array index expression.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>avg</term>
<listitem>
<!-- next 2 indexterms for avg (integer extractor) -->
<indexterm>
<primary>array operations</primary>
<secondary>computing for statistical aggregates</secondary>
<tertiary>@avg (integer extractor)</tertiary>
</indexterm>
<indexterm>
<primary>operations</primary>
<secondary>computing for statistical aggregates</secondary>
<tertiary>@avg (integer extractor)</tertiary>
</indexterm>
<indexterm>
<primary>computing for statistical aggregates</primary>
<secondary>array operations</secondary>
<tertiary>@avg (integer extractor)</tertiary>
</indexterm>
<indexterm>
<primary>@avg (integer extractor)</primary>
<secondary>computing for statistical aggregates</secondary>
<tertiary>array operations</tertiary>
</indexterm>
<para>
Returns the average of all values stored in the variable/array index expression.
</para>
</listitem>
</varlistentry>
<!--
<varlistentry>
<term></term>
<listitem>
<para>
</para>
</listitem>
</varlistentry>
-->
</variablelist>
<para>
When using statistical aggregates, you can also build array constructs that use multiple index
expressions (to a maximum of 5). This is helpful in capturing additional contextual information
during a probe. For example:
</para>
<example id="multiplearrayindices">
<title>Multiple Array Indexes</title>
<programlisting>
global reads
probe vfs.read
{
reads[execname(),pid()] <<< 1
}
probe timer.s(3)
{
foreach([var1,var2] in reads)
printf("%s (%d) : %d \n", var1, var2, @count(reads[var1,var2]))
}
</programlisting>
</example>
<para>
In <xref linkend="multiplearrayindices"/>, the first probe tracks how many times each process
performs a VFS read. What makes this different from earlier examples is that this array associates
a performed read to both a process name <emphasis>and</emphasis> its corresponding process ID.
</para>
<para>
The second probe in <xref linkend="multiplearrayindices"/> demonstrates how to process and print
the information collected by the array <literal>reads</literal>. Note how the
<command>foreach</command> statement uses the same number of variables (i.e.
<literal>var1</literal> and <literal>var2</literal>) contained in the first instance of the array
<literal>reads</literal> from the first probe.
</para>
</section>
</section>
|