diff options
| author | Greg Hudson <ghudson@mit.edu> | 2011-03-11 04:20:17 +0000 |
|---|---|---|
| committer | Greg Hudson <ghudson@mit.edu> | 2011-03-11 04:20:17 +0000 |
| commit | e8720a1caf469a233feabfea7883c0b5146d08d6 (patch) | |
| tree | 00780be006af72d3ebc9406b472115185e491390 /src/lib/crypto/krb | |
| parent | 01f37143f5623686b07b2ffa80e1564eb52f9ccc (diff) | |
| download | krb5-e8720a1caf469a233feabfea7883c0b5146d08d6.tar.gz krb5-e8720a1caf469a233feabfea7883c0b5146d08d6.tar.xz krb5-e8720a1caf469a233feabfea7883c0b5146d08d6.zip | |
Move the des and AFS string-to-key implementations into lib/crypto/krb,
since they aren't standard crypto primitives. Revise the module SPI
accordingly. Add tests for AFS string-to-key to t_str2key.c to replace
the ones in the (now defunct) t_afss2k.c.
git-svn-id: svn://anonsvn.mit.edu/krb5/trunk@24699 dc483132-0cff-0310-8789-dd5450dbe970
Diffstat (limited to 'src/lib/crypto/krb')
| -rw-r--r-- | src/lib/crypto/krb/crypto_int.h | 15 | ||||
| -rw-r--r-- | src/lib/crypto/krb/random_to_key.c | 4 | ||||
| -rw-r--r-- | src/lib/crypto/krb/s2k_des.c | 668 |
3 files changed, 664 insertions, 23 deletions
diff --git a/src/lib/crypto/krb/crypto_int.h b/src/lib/crypto/krb/crypto_int.h index 3b46fc627..fa20cc526 100644 --- a/src/lib/crypto/krb/crypto_int.h +++ b/src/lib/crypto/krb/crypto_int.h @@ -432,16 +432,11 @@ extern const struct krb5_hash_provider krb5int_hash_sha1; /* Modules must implement the following functions. */ -/* Set the parity bits in a DES key. */ -void mit_des_fixup_key_parity(unsigned char *key); - -/* Convert a password to a DES key (see RFC 3961). */ -krb5_error_code mit_afs_string_to_key(krb5_keyblock *keyblock, - const krb5_data *password, - const krb5_data *salt); -krb5_error_code mit_des_string_to_key_int(krb5_keyblock *key, - const krb5_data *password, - const krb5_data *salt); +/* Set the parity bits to the correct values in keybits. */ +void k5_des_fixup_key_parity(unsigned char *keybits); + +/* Return true if keybits is a weak or semi-weak DES key. */ +krb5_boolean k5_des_is_weak_key(unsigned char *keybits); /* Compute an HMAC using the provided hash function, key, and data, storing the * result into output (caller-allocated). */ diff --git a/src/lib/crypto/krb/random_to_key.c b/src/lib/crypto/krb/random_to_key.c index 93d033eb7..157462526 100644 --- a/src/lib/crypto/krb/random_to_key.c +++ b/src/lib/crypto/krb/random_to_key.c @@ -92,7 +92,7 @@ k5_rand2key_des(const krb5_data *randombits, krb5_keyblock *keyblock) * 8 key bytes, then compute the parity bits. */ memcpy(keyblock->contents, randombits->data, randombits->length); eighth_byte(keyblock->contents); - mit_des_fixup_key_parity(keyblock->contents); + k5_des_fixup_key_parity(keyblock->contents); return 0; } @@ -112,7 +112,7 @@ k5_rand2key_des3(const krb5_data *randombits, krb5_keyblock *keyblock) for (i = 0; i < 3; i++) { memcpy(&keyblock->contents[i * 8], &randombits->data[i * 7], 7); eighth_byte(&keyblock->contents[i * 8]); - mit_des_fixup_key_parity(&keyblock->contents[i * 8]); + k5_des_fixup_key_parity(&keyblock->contents[i * 8]); } return 0; } diff --git a/src/lib/crypto/krb/s2k_des.c b/src/lib/crypto/krb/s2k_des.c index 751aa72da..fd2143054 100644 --- a/src/lib/crypto/krb/s2k_des.c +++ b/src/lib/crypto/krb/s2k_des.c @@ -25,26 +25,672 @@ * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. */ +/* + * RFC 3961 and AFS string to key. These are not standard crypto primitives + * (RFC 3961 string-to-key is implemented in OpenSSL for historical reasons but + * it doesn't get weak keys right), so we have to implement them here. + */ + +#include <ctype.h> #include "crypto_int.h" +#undef min +#define min(a,b) ((a)>(b)?(b):(a)) + +/* Compute a CBC checksum of in (with length len) using the specified key and + * ivec. The result is written into out. */ +static krb5_error_code +des_cbc_mac(const unsigned char *keybits, const unsigned char *ivec, + const unsigned char *in, size_t len, unsigned char *out) +{ + krb5_error_code ret; + krb5_keyblock kb; + krb5_key key; + krb5_crypto_iov iov[2]; + unsigned char zero[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; + krb5_data outd, ivecd; + + /* Make a key from keybits. */ + kb.magic = KV5M_KEYBLOCK; + kb.enctype = ENCTYPE_DES_CBC_CRC; + kb.length = 8; + kb.contents = (unsigned char *)keybits; + ret = krb5_k_create_key(NULL, &kb, &key); + if (ret) + return ret; + + /* Make iovs for the input data, padding it out to the block size. */ + iov[0].flags = KRB5_CRYPTO_TYPE_DATA; + iov[0].data = make_data((unsigned char *)in, len); + iov[1].flags = KRB5_CRYPTO_TYPE_DATA; + iov[1].data = make_data(zero, krb5_roundup(len, 8) - len); + + /* Make krb5_data structures for the ivec and output. */ + ivecd = make_data((unsigned char *)ivec, 8); + outd = make_data(out, 8); + + /* Call the cbc_mac operation of the module's DES enc-provider. */ + ret = krb5int_enc_des.cbc_mac(key, iov, 2, &ivecd, &outd); + krb5_k_free_key(NULL, key); + return ret; +} + +/*** AFS string-to-key constants ***/ + +/* Initial permutation */ +static const char IP[] = { + 58,50,42,34,26,18,10, 2, + 60,52,44,36,28,20,12, 4, + 62,54,46,38,30,22,14, 6, + 64,56,48,40,32,24,16, 8, + 57,49,41,33,25,17, 9, 1, + 59,51,43,35,27,19,11, 3, + 61,53,45,37,29,21,13, 5, + 63,55,47,39,31,23,15, 7, +}; + +/* Final permutation, FP = IP^(-1) */ +static const char FP[] = { + 40, 8,48,16,56,24,64,32, + 39, 7,47,15,55,23,63,31, + 38, 6,46,14,54,22,62,30, + 37, 5,45,13,53,21,61,29, + 36, 4,44,12,52,20,60,28, + 35, 3,43,11,51,19,59,27, + 34, 2,42,10,50,18,58,26, + 33, 1,41, 9,49,17,57,25, +}; + +/* + * Permuted-choice 1 from the key bits to yield C and D. + * Note that bits 8,16... are left out: They are intended for a parity check. + */ +static const char PC1_C[] = { + 57,49,41,33,25,17, 9, + 1,58,50,42,34,26,18, + 10, 2,59,51,43,35,27, + 19,11, 3,60,52,44,36, +}; + +static const char PC1_D[] = { + 63,55,47,39,31,23,15, + 7,62,54,46,38,30,22, + 14, 6,61,53,45,37,29, + 21,13, 5,28,20,12, 4, +}; + +/* Sequence of shifts used for the key schedule */ +static const char shifts[] = { + 1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1, +}; + +/* Permuted-choice 2, to pick out the bits from the CD array that generate the + * key schedule */ +static const char PC2_C[] = { + 14,17,11,24, 1, 5, + 3,28,15, 6,21,10, + 23,19,12, 4,26, 8, + 16, 7,27,20,13, 2, +}; + +static const char PC2_D[] = { + 41,52,31,37,47,55, + 30,40,51,45,33,48, + 44,49,39,56,34,53, + 46,42,50,36,29,32, +}; + +/* The E bit-selection table */ +static const char e[] = { + 32, 1, 2, 3, 4, 5, + 4, 5, 6, 7, 8, 9, + 8, 9,10,11,12,13, + 12,13,14,15,16,17, + 16,17,18,19,20,21, + 20,21,22,23,24,25, + 24,25,26,27,28,29, + 28,29,30,31,32, 1, +}; + +/* P is a permutation on the selected combination of the current L and key. */ +static const char P[] = { + 16, 7,20,21, + 29,12,28,17, + 1,15,23,26, + 5,18,31,10, + 2, 8,24,14, + 32,27, 3, 9, + 19,13,30, 6, + 22,11, 4,25, +}; + +/* + * The 8 selection functions. + * For some reason, they give a 0-origin + * index, unlike everything else. + */ +static const char S[8][64] = { + {14, 4,13, 1, 2,15,11, 8, 3,10, 6,12, 5, 9, 0, 7, + 0,15, 7, 4,14, 2,13, 1,10, 6,12,11, 9, 5, 3, 8, + 4, 1,14, 8,13, 6, 2,11,15,12, 9, 7, 3,10, 5, 0, + 15,12, 8, 2, 4, 9, 1, 7, 5,11, 3,14,10, 0, 6,13}, + + {15, 1, 8,14, 6,11, 3, 4, 9, 7, 2,13,12, 0, 5,10, + 3,13, 4, 7,15, 2, 8,14,12, 0, 1,10, 6, 9,11, 5, + 0,14, 7,11,10, 4,13, 1, 5, 8,12, 6, 9, 3, 2,15, + 13, 8,10, 1, 3,15, 4, 2,11, 6, 7,12, 0, 5,14, 9}, + + {10, 0, 9,14, 6, 3,15, 5, 1,13,12, 7,11, 4, 2, 8, + 13, 7, 0, 9, 3, 4, 6,10, 2, 8, 5,14,12,11,15, 1, + 13, 6, 4, 9, 8,15, 3, 0,11, 1, 2,12, 5,10,14, 7, + 1,10,13, 0, 6, 9, 8, 7, 4,15,14, 3,11, 5, 2,12}, + + { 7,13,14, 3, 0, 6, 9,10, 1, 2, 8, 5,11,12, 4,15, + 13, 8,11, 5, 6,15, 0, 3, 4, 7, 2,12, 1,10,14, 9, + 10, 6, 9, 0,12,11, 7,13,15, 1, 3,14, 5, 2, 8, 4, + 3,15, 0, 6,10, 1,13, 8, 9, 4, 5,11,12, 7, 2,14}, + + { 2,12, 4, 1, 7,10,11, 6, 8, 5, 3,15,13, 0,14, 9, + 14,11, 2,12, 4, 7,13, 1, 5, 0,15,10, 3, 9, 8, 6, + 4, 2, 1,11,10,13, 7, 8,15, 9,12, 5, 6, 3, 0,14, + 11, 8,12, 7, 1,14, 2,13, 6,15, 0, 9,10, 4, 5, 3}, + + {12, 1,10,15, 9, 2, 6, 8, 0,13, 3, 4,14, 7, 5,11, + 10,15, 4, 2, 7,12, 9, 5, 6, 1,13,14, 0,11, 3, 8, + 9,14,15, 5, 2, 8,12, 3, 7, 0, 4,10, 1,13,11, 6, + 4, 3, 2,12, 9, 5,15,10,11,14, 1, 7, 6, 0, 8,13}, + + { 4,11, 2,14,15, 0, 8,13, 3,12, 9, 7, 5,10, 6, 1, + 13, 0,11, 7, 4, 9, 1,10,14, 3, 5,12, 2,15, 8, 6, + 1, 4,11,13,12, 3, 7,14,10,15, 6, 8, 0, 5, 9, 2, + 6,11,13, 8, 1, 4,10, 7, 9, 5, 0,15,14, 2, 3,12}, + + {13, 2, 8, 4, 6,15,11, 1,10, 9, 3,14, 5, 0,12, 7, + 1,15,13, 8,10, 3, 7, 4,12, 5, 6,11, 0,14, 9, 2, + 7,11, 4, 1, 9,12,14, 2, 0, 6,10,13,15, 3, 5, 8, + 2, 1,14, 7, 4,10, 8,13,15,12, 9, 0, 3, 5, 6,11}, +}; + + +/* Set up the key schedule from the key. */ +static void +afs_crypt_setkey(char *key, char *E, char (*KS)[48]) +{ + int i, j, k, t; + char C[28], D[28]; /* Used to calculate key schedule. */ + + /* + * First, generate C and D by permuting + * the key. The low order bit of each + * 8-bit char is not used, so C and D are only 28 + * bits apiece. + */ + for (i = 0; i < 28; i++) { + C[i] = key[PC1_C[i] - 1]; + D[i] = key[PC1_D[i] - 1]; + } + /* + * To generate Ki, rotate C and D according + * to schedule and pick up a permutation + * using PC2. + */ + for (i = 0; i < 16; i++) { + /* Rotate. */ + for (k = 0; k < shifts[i]; k++) { + t = C[0]; + for (j = 0; j < 28 - 1; j++) + C[j] = C[j + 1]; + C[27] = t; + t = D[0]; + for (j = 0; j < 28 - 1; j++) + D[j] = D[j + 1]; + D[27] = t; + } + /* Get Ki. Note C and D are concatenated. */ + for (j = 0; j < 24; j++) { + KS[i][j] = C[PC2_C[j]-1]; + KS[i][j+24] = D[PC2_D[j]-28-1]; + } + } + + memcpy(E, e, 48); +} + +/* + * The payoff: encrypt a block. + */ + +static void +afs_encrypt_block(char *block, char *E, char (*KS)[48]) +{ + const long edflag = 0; + int i, ii; + int t, j, k; + char tempL[32]; + char f[32]; + char L[64]; /* Current block divided into two halves */ + char *const R = &L[32]; + /* The combination of the key and the input, before selection. */ + char preS[48]; + + /* First, permute the bits in the input. */ + for (j = 0; j < 64; j++) + L[j] = block[IP[j] - 1]; + /* Perform an encryption operation 16 times. */ + for (ii = 0; ii < 16; ii++) { + /* Set direction. */ + i = (edflag) ? 15 - ii : ii; + /* Save the R array, which will be the new L. */ + memcpy(tempL, R, 32); + /* Expand R to 48 bits using the E selector; exclusive-or with the + * current key bits. */ + for (j = 0; j < 48; j++) + preS[j] = R[E[j] - 1] ^ KS[i][j]; + /* + * The pre-select bits are now considered in 8 groups of 6 bits each. + * The 8 selection functions map these 6-bit quantities into 4-bit + * quantities and the results permuted to make an f(R, K). The + * indexing into the selection functions is peculiar; it could be + * simplified by rewriting the tables. + */ + for (j = 0; j < 8; j++) { + t = 6 * j; + k = S[j][(preS[t + 0] << 5) + + (preS[t + 1] << 3) + + (preS[t + 2] << 2) + + (preS[t + 3] << 1) + + (preS[t + 4] << 0) + + (preS[t + 5] << 4)]; + t = 4 * j; + f[t + 0] = (k >> 3) & 1; + f[t + 1] = (k >> 2) & 1; + f[t + 2] = (k >> 1) & 1; + f[t + 3] = (k >> 0) & 1; + } + /* The new R is L ^ f(R, K). The f here has to be permuted first, + * though. */ + for (j = 0; j < 32; j++) + R[j] = L[j] ^ f[P[j] - 1]; + /* Finally, the new L (the original R) is copied back. */ + memcpy(L, tempL, 32); + } + /* The output L and R are reversed. */ + for (j = 0; j < 32; j++) { + t = L[j]; + L[j] = R[j]; + R[j] = t; + } + /* The final output gets the inverse permutation of the very original. */ + for (j = 0; j < 64; j++) + block[j] = L[FP[j] - 1]; +} + +/* iobuf must be at least 16 bytes */ +static char * +afs_crypt(const char *pw, const char *salt, char *iobuf) +{ + int i, j, c; + int temp; + char block[66]; + char E[48]; + char KS[16][48]; /* Key schedule, generated from key */ + + for (i = 0; i < 66; i++) + block[i] = 0; + for (i = 0; (c = *pw) != '\0' && i < 64; pw++){ + for(j = 0; j < 7; j++, i++) + block[i] = (c >> (6 - j)) & 01; + i++; + } + + afs_crypt_setkey(block, E, KS); + + for (i = 0; i < 66; i++) + block[i] = 0; + + for (i = 0; i < 2; i++) { + c = *salt++; + iobuf[i] = c; + if (c > 'Z') + c -= 6; + if (c > '9') + c -= 7; + c -= '.'; + for (j = 0; j < 6; j++) { + if ((c >> j) & 01) { + temp = E[6 * i + j]; + E[6 * i + j] = E[6 * i + j + 24]; + E[6 * i + j + 24] = temp; + } + } + } + + for (i = 0; i < 25; i++) + afs_encrypt_block(block, E, KS); + + for (i = 0; i < 11; i++) { + c = 0; + for (j = 0; j < 6; j++) { + c <<= 1; + c |= block[6 * i + j]; + } + c += '.'; + if (c > '9') + c += 7; + if (c > 'Z') + c += 6; + iobuf[i + 2] = c; + } + iobuf[i + 2] = 0; + if (iobuf[1] == 0) + iobuf[1] = iobuf[0]; + return iobuf; +} + +static krb5_error_code +afs_s2k_oneblock(const krb5_data *data, const krb5_data *salt, + unsigned char *key_out) +{ + unsigned int i; + unsigned char password[9]; /* trailing nul for crypt() */ + char afs_crypt_buf[16]; + + /* + * Run afs_crypt and use the first eight returned bytes after the copy of + * the (fixed) salt. + * + * Since the returned bytes are alphanumeric, the output is limited to + * 2**48 possibilities; for each byte, only 64 possible values can be used. + */ + + memset(password, 0, sizeof(password)); + memcpy(password, salt->data, min(salt->length, 8)); + for (i = 0; i < 8; i++) { + if (isupper(password[i])) + password[i] = tolower(password[i]); + } + for (i = 0; i < data->length; i++) + password[i] ^= data->data[i]; + for (i = 0; i < 8; i++) { + if (password[i] == '\0') + password[i] = 'X'; + } + password[8] = '\0'; + /* Out-of-bounds salt characters are equivalent to a salt string + * of "p1". */ + strncpy((char *)key_out, + (char *)afs_crypt((char *)password, "#~", afs_crypt_buf) + 2, 8); + for (i = 0; i < 8; i++) + key_out[i] <<= 1; + /* Fix up key parity again. */ + k5_des_fixup_key_parity(key_out); + zap(password, sizeof(password)); + return 0; +} + +static krb5_error_code +afs_s2k_multiblock(const krb5_data *data, const krb5_data *salt, + unsigned char *key_out) +{ + krb5_error_code ret; + unsigned char ivec[8], tkey[8], *password; + size_t pw_len = salt->length + data->length; + unsigned int i, j; + + /* Do a CBC checksum, twice, and use the result as the new key. */ + + password = malloc(pw_len); + if (!password) + return ENOMEM; + + memcpy(password, data->data, data->length); + for (i = data->length, j = 0; j < salt->length; i++, j++) { + password[i] = salt->data[j]; + if (isupper(password[i])) + password[i] = tolower(password[i]); + } + + memcpy(ivec, "kerberos", sizeof(ivec)); + memcpy(tkey, ivec, sizeof(tkey)); + k5_des_fixup_key_parity(tkey); + ret = des_cbc_mac(tkey, ivec, password, pw_len, tkey); + if (ret) + goto cleanup; + + memcpy(ivec, tkey, sizeof(ivec)); + k5_des_fixup_key_parity(tkey); + ret = des_cbc_mac(tkey, ivec, password, pw_len, key_out); + if (ret) + goto cleanup; + k5_des_fixup_key_parity(key_out); + +cleanup: + zapfree(password, pw_len); + return ret; +} + +static krb5_error_code +afs_s2k(const krb5_data *data, const krb5_data *salt, unsigned char *key_out) +{ + if (data->length <= 8) + return afs_s2k_oneblock(data, salt, key_out); + else + return afs_s2k_multiblock(data, salt, key_out); +} + +static krb5_error_code +des_s2k(const krb5_data *pw, const krb5_data *salt, unsigned char *key_out) +{ + union { + /* 8 "forward" bytes, 8 "reverse" bytes */ + unsigned char uc[16]; + krb5_ui_4 ui[4]; + } temp; + unsigned int i; + krb5_ui_4 x, y, z; + unsigned char *p, *copy; + size_t copylen; + krb5_error_code ret; + + /* As long as the architecture is big-endian or little-endian, it + doesn't matter which it is. Think of it as reversing the + bytes, and also reversing the bits within each byte. But this + current algorithm is dependent on having four 8-bit char values + exactly overlay a 32-bit integral type. */ + if (sizeof(temp.uc) != sizeof(temp.ui) + || (unsigned char)~0 != 0xFF + || (krb5_ui_4)~(krb5_ui_4)0 != 0xFFFFFFFF + || (temp.uc[0] = 1, temp.uc[1] = 2, temp.uc[2] = 3, temp.uc[3] = 4, + !(temp.ui[0] == 0x01020304 + || temp.ui[0] == 0x04030201))) + abort(); +#define FETCH4(VAR, IDX) VAR = temp.ui[IDX/4] +#define PUT4(VAR, IDX) temp.ui[IDX/4] = VAR + + copylen = pw->length + (salt ? salt->length : 0); + /* Don't need NUL termination, at this point we're treating it as + a byte array, not a string. */ + copy = malloc(copylen); + if (copy == NULL) + return ENOMEM; + memcpy(copy, pw->data, pw->length); + if (salt) + memcpy(copy + pw->length, salt->data, salt->length); + + memset(&temp, 0, sizeof(temp)); + p = temp.uc; + /* Handle the fan-fold xor operation by splitting the data into + forward and reverse sections, and combine them later, rather + than having to do the reversal over and over again. */ + for (i = 0; i < copylen; i++) { + *p++ ^= copy[i]; + if (p == temp.uc+16) { + p = temp.uc; +#ifdef PRINT_TEST_VECTORS + { + int j; + printf("after %d input bytes:\nforward block:\t", i+1); + for (j = 0; j < 8; j++) + printf(" %02x", temp.uc[j] & 0xff); + printf("\nreverse block:\t"); + for (j = 8; j < 16; j++) + printf(" %02x", temp.uc[j] & 0xff); + printf("\n"); + } +#endif + } + } + +#ifdef PRINT_TEST_VECTORS + if (p != temp.uc) { + int j; + printf("at end, after %d input bytes:\nforward block:\t", i); + for (j = 0; j < 8; j++) + printf(" %02x", temp.uc[j] & 0xff); + printf("\nreverse block:\t"); + for (j = 8; j < 16; j++) + printf(" %02x", temp.uc[j] & 0xff); + printf("\n"); + } +#endif +#define REVERSE(VAR) \ + { \ + krb5_ui_4 old = VAR, temp1 = 0; \ + int j; \ + for (j = 0; j < 32; j++) { \ + temp1 = (temp1 << 1) | (old & 1); \ + old >>= 1; \ + } \ + VAR = temp1; \ + } + + FETCH4 (x, 8); + FETCH4 (y, 12); + /* Ignore high bits of each input byte. */ + x &= 0x7F7F7F7F; + y &= 0x7F7F7F7F; + /* Reverse the bit strings -- after this, y is "before" x. */ + REVERSE (x); + REVERSE (y); +#ifdef PRINT_TEST_VECTORS + { + int j; + union { unsigned char uc[4]; krb5_ui_4 ui; } t2; + printf("after reversal, reversed block:\n\t\t"); + t2.ui = y; + for (j = 0; j < 4; j++) + printf(" %02x", t2.uc[j] & 0xff); + t2.ui = x; + for (j = 0; j < 4; j++) + printf(" %02x", t2.uc[j] & 0xff); + printf("\n"); + } +#endif + /* Ignored bits are now at the bottom of each byte, where we'll + * put the parity bits. Good. */ + FETCH4 (z, 0); + z &= 0x7F7F7F7F; + /* Ignored bits for z are at the top of each byte; fix that. */ + z <<= 1; + /* Finish the fan-fold xor for these four bytes. */ + z ^= y; + PUT4 (z, 0); + /* Now do the second four bytes. */ + FETCH4 (z, 4); + z &= 0x7F7F7F7F; + /* Ignored bits for z are at the top of each byte; fix that. */ + z <<= 1; + /* Finish the fan-fold xor for these four bytes. */ + z ^= x; + PUT4 (z, 4); + +#ifdef PRINT_TEST_VECTORS + { + int j; + printf("after reversal, combined block:\n\t\t"); + for (j = 0; j < 8; j++) + printf(" %02x", temp.uc[j] & 0xff); + printf("\n"); + } +#endif + +#define FIXUP(k) (k5_des_fixup_key_parity(k), \ + k5_des_is_weak_key(k) ? (k[7] ^= 0xF0) : 0) + + /* Now temp.cb is the temporary key, with invalid parity. */ + FIXUP(temp.uc); + +#ifdef PRINT_TEST_VECTORS + { + int j; + printf("after fixing parity and weak keys:\n\t\t"); + for (j = 0; j < 8; j++) + printf(" %02x", temp.uc[j] & 0xff); + printf("\n"); + } +#endif + + ret = des_cbc_mac(temp.uc, temp.uc, copy, copylen, temp.uc); + if (ret) + goto cleanup; + +#ifdef PRINT_TEST_VECTORS + { + int j; + printf("cbc checksum:\n\t\t"); + for (j = 0; j < 8; j++) + printf(" %02x", temp.uc[j] & 0xff); + printf("\n"); + } +#endif + + FIXUP(temp.uc); + +#ifdef PRINT_TEST_VECTORS + { + int j; + printf("after fixing parity and weak keys:\n\t\t"); + for (j = 0; j < 8; j++) + printf(" %02x", temp.uc[j] & 0xff); + printf("\n"); + } +#endif + + memcpy(key_out, temp.uc, 8); + +cleanup: + zap(&temp, sizeof(temp)); + zapfree(copy, copylen); + return ret; +} + krb5_error_code krb5int_des_string_to_key(const struct krb5_keytypes *ktp, const krb5_data *string, const krb5_data *salt, - const krb5_data *parm, krb5_keyblock *key) + const krb5_data *parm, krb5_keyblock *keyblock) { int type; - if (parm) { + krb5_data afssalt; + + if (parm != NULL) { if (parm->length != 1) return KRB5_ERR_BAD_S2K_PARAMS; type = parm->data[0]; + if (type != 0 && type != 1) + return KRB5_ERR_BAD_S2K_PARAMS; + } else + type = 0; + + /* Use AFS string to key if we were told to. */ + if (type == 1) + return afs_s2k(string, salt, keyblock->contents); + + /* Also use AFS string to key if the salt indicates it. */ + if (salt != NULL && (salt->length == SALT_TYPE_AFS_LENGTH + || salt->length == (unsigned)-1)) { + afssalt = make_data(salt->data, strcspn(salt->data, "@")); + return afs_s2k(string, &afssalt, keyblock->contents); } - else type = 0; - switch(type) { - case 0: - return(mit_des_string_to_key_int(key, string, salt)); - case 1: - return mit_afs_string_to_key(key, string, salt); - default: - return KRB5_ERR_BAD_S2K_PARAMS; - } + + return des_s2k(string, salt, keyblock->contents); } |
