1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
|
/*
* Copyright (C) 2017 Thales Lima Oliveira <thales@ufu.br>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include "SyncMachineForm.h"
#include "SyncGenerator.h"
#include "ControlElementContainer.h"
SyncGenerator::SyncGenerator() : Machines() { Init(); }
SyncGenerator::SyncGenerator(wxString name) : Machines()
{
Init();
m_electricalData.name = name;
}
SyncGenerator::~SyncGenerator() {}
void SyncGenerator::Init()
{
int numPtsSine = 10;
double mx = 15.0;
double my = 10.0;
double pi = 3.14159265359;
for(int i = 0; i <= numPtsSine; i++) {
double x = (2.0 * pi / double(numPtsSine)) * double(i) - pi;
double y = std::sin(x);
m_sinePts.push_back(wxPoint2DDouble((x / pi) * mx, y * my));
}
m_electricalData.avr = new ControlElementContainer();
m_electricalData.speedGov = new ControlElementContainer();
}
void SyncGenerator::DrawSymbol() const
{
// Draw sine.
std::vector<wxPoint2DDouble> sinePts;
for(int i = 0; i < (int)m_sinePts.size(); i++) {
sinePts.push_back(m_sinePts[i] + m_position);
}
DrawLine(sinePts);
}
bool SyncGenerator::GetContextMenu(wxMenu& menu)
{
menu.Append(ID_EDIT_ELEMENT, _("Edit Generator"));
GeneralMenuItens(menu);
return true;
}
bool SyncGenerator::ShowForm(wxWindow* parent, Element* element)
{
SyncMachineForm* generatorForm = new SyncMachineForm(parent, this);
generatorForm->SetTitle(_("Generator"));
if(generatorForm->ShowModal() == wxID_OK) {
generatorForm->Destroy();
return true;
}
generatorForm->Destroy();
return false;
}
SyncGeneratorElectricalData SyncGenerator::GetPUElectricalData(double systemPowerBase)
{
SyncGeneratorElectricalData data = m_electricalData;
double machineBasePower = 1.0;
if(data.useMachineBase) {
machineBasePower = GetValueFromUnit(data.nominalPower, data.nominalPowerUnit);
}
// Active power
double activePower = GetValueFromUnit(data.activePower, data.activePowerUnit);
if(!m_online) activePower = 0.0;
if(data.activePowerUnit == UNIT_PU) {
if(data.useMachineBase) data.activePower = (activePower * machineBasePower) / systemPowerBase;
} else {
data.activePower = activePower / systemPowerBase;
}
data.activePowerUnit = UNIT_PU;
// Reactive power
double reactivePower = GetValueFromUnit(data.reactivePower, data.reactivePowerUnit);
if(!m_online) reactivePower = 0.0;
if(data.reactivePowerUnit == UNIT_PU) {
if(data.useMachineBase) data.reactivePower = (reactivePower * machineBasePower) / systemPowerBase;
} else {
data.reactivePower = reactivePower / systemPowerBase;
}
data.reactivePowerUnit = UNIT_PU;
// Max reactive power
double maxReactive = GetValueFromUnit(data.maxReactive, data.maxReactiveUnit);
if(data.maxReactiveUnit == UNIT_PU) {
if(data.useMachineBase) data.maxReactive = (maxReactive * machineBasePower) / systemPowerBase;
} else {
data.maxReactive = maxReactive / systemPowerBase;
}
data.maxReactiveUnit = UNIT_PU;
// Min reactive power
double minReactive = GetValueFromUnit(data.minReactive, data.minReactiveUnit);
if(data.minReactiveUnit == UNIT_PU) {
if(data.useMachineBase) data.minReactive = (minReactive * machineBasePower) / systemPowerBase;
} else {
data.minReactive = minReactive / systemPowerBase;
}
data.minReactiveUnit = UNIT_PU;
double baseVoltage = GetValueFromUnit(data.nominalVoltage, data.nominalVoltageUnit);
double systemBaseImpedance = (baseVoltage * baseVoltage) / systemPowerBase;
double machineBaseImpedance = (baseVoltage * baseVoltage) / machineBasePower;
// Fault data
if(data.useMachineBase) {
data.positiveResistance = (data.positiveResistance * machineBaseImpedance) / systemBaseImpedance;
data.positiveReactance = (data.positiveReactance * machineBaseImpedance) / systemBaseImpedance;
data.negativeResistance = (data.negativeResistance * machineBaseImpedance) / systemBaseImpedance;
data.negativeReactance = (data.negativeReactance * machineBaseImpedance) / systemBaseImpedance;
data.zeroResistance = (data.zeroResistance * machineBaseImpedance) / systemBaseImpedance;
data.zeroReactance = (data.zeroReactance * machineBaseImpedance) / systemBaseImpedance;
data.groundResistance = (data.groundResistance * machineBaseImpedance) / systemBaseImpedance;
data.groundReactance = (data.groundReactance * machineBaseImpedance) / systemBaseImpedance;
}
if(!m_online) {
data.faultCurrent[0] = std::complex<double>(0, 0);
data.faultCurrent[1] = std::complex<double>(0, 0);
data.faultCurrent[2] = std::complex<double>(0, 0);
}
return data;
}
void SyncGenerator::SetNominalVoltage(std::vector<double> nominalVoltage,
std::vector<ElectricalUnit> nominalVoltageUnit)
{
if(nominalVoltage.size() > 0) {
m_electricalData.nominalVoltage = nominalVoltage[0];
m_electricalData.nominalVoltageUnit = nominalVoltageUnit[0];
}
}
Element* SyncGenerator::GetCopy()
{
SyncGenerator* copy = new SyncGenerator();
*copy = *this;
auto data = copy->GetElectricalData();
// Copy AVR
std::vector<ConnectionLine*> cLineList;
std::vector<ControlElement*> elementList;
m_electricalData.avr->GetContainerCopy(elementList, cLineList);
ControlElementContainer* avrCopy = new ControlElementContainer();
avrCopy->FillContainer(elementList, cLineList);
data.avr = avrCopy;
// Copy Speed Governor
cLineList.clear();
elementList.clear();
m_electricalData.speedGov->GetContainerCopy(elementList, cLineList);
ControlElementContainer* speedGovCopy = new ControlElementContainer();
speedGovCopy->FillContainer(elementList, cLineList);
data.speedGov = speedGovCopy;
copy->SetElectricalData(data);
return copy;
}
wxString SyncGenerator::GetTipText() const
{
wxString tipText = m_electricalData.name;
tipText += "\n";
double activePower = m_electricalData.activePower;
if(!m_online) activePower = 0.0;
tipText += _("\nP = ") + wxString::FromDouble(activePower, 5);
switch(m_electricalData.activePowerUnit) {
case UNIT_PU: {
tipText += _(" p.u.");
} break;
case UNIT_W: {
tipText += _(" W");
} break;
case UNIT_kW: {
tipText += _(" kW");
} break;
case UNIT_MW: {
tipText += _(" MW");
} break;
default:
break;
}
double reactivePower = m_electricalData.reactivePower;
if(!m_online) reactivePower = 0.0;
tipText += _("\nQ = ") + wxString::FromDouble(reactivePower, 5);
switch(m_electricalData.reactivePowerUnit) {
case UNIT_PU: {
tipText += _(" p.u.");
} break;
case UNIT_VAr: {
tipText += _(" VAr");
} break;
case UNIT_kVAr: {
tipText += _(" kVAr");
} break;
case UNIT_MVAr: {
tipText += _(" MVAr");
} break;
default:
break;
}
return tipText;
}
bool SyncGenerator::GetPlotData(ElementPlotData& plotData)
{
if(!m_electricalData.plotSyncMachine) return false;
plotData.SetName(m_electricalData.name);
plotData.SetCurveType(ElementPlotData::CT_SYNC_GENERATOR);
std::vector<double> absTerminalVoltage, activePower, reactivePower;
for(unsigned int i = 0; i < m_electricalData.terminalVoltageVector.size(); ++i) {
absTerminalVoltage.push_back(std::abs(m_electricalData.terminalVoltageVector[i]));
activePower.push_back(std::real(m_electricalData.electricalPowerVector[i]));
reactivePower.push_back(std::imag(m_electricalData.electricalPowerVector[i]));
}
plotData.AddData(absTerminalVoltage, _("Terminal voltage"));
plotData.AddData(activePower, _("Active power"));
plotData.AddData(reactivePower, _("Reactive power"));
plotData.AddData(m_electricalData.mechanicalPowerVector, _("Mechanical power"));
plotData.AddData(m_electricalData.freqVector, _("Frequency"));
plotData.AddData(m_electricalData.fieldVoltageVector, _("Field voltage"));
plotData.AddData(m_electricalData.deltaVector, _("Delta"));
return true;
}
|