1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
|
#include "PowerQuality.h"
PowerQuality::PowerQuality() {}
PowerQuality::~PowerQuality() {}
PowerQuality::PowerQuality(std::vector<Element*> elementList) { GetElementsFromList(elementList); }
void PowerQuality::CalculateHarmonicYbusList(double systemPowerBase)
{
// Clear and fill with zeros all the harmonic Ybuses
for(auto it = m_harmYbusList.begin(), itEnd = m_harmYbusList.end(); it != itEnd; ++it) {
HarmonicYbus harmYBus = *it;
harmYBus.yBus.clear();
for(unsigned int i = 0; i < m_busList.size(); i++) {
std::vector<std::complex<double> > line;
for(unsigned int j = 0; j < m_busList.size(); j++) { line.push_back(std::complex<double>(0.0, 0.0)); }
harmYBus.yBus.push_back(line);
}
*it = harmYBus;
}
// Fill all Ybuses
for(auto itYbus = m_harmYbusList.begin(), itYbusEnd = m_harmYbusList.end(); itYbus != itYbusEnd; ++itYbus) {
HarmonicYbus harmYBus = *itYbus;
CalculateHarmonicYbus(harmYBus.yBus, systemPowerBase, harmYBus.order);
*itYbus = harmYBus;
}
}
void PowerQuality::CalculateHarmonicYbus(std::vector<std::vector<std::complex<double> > >& yBus,
double systemPowerBase,
double order)
{
// Load
for(auto it = m_loadList.begin(), itEnd = m_loadList.end(); it != itEnd; ++it) {
Load* load = *it;
if(load->IsOnline()) {
int n = static_cast<Bus*>(load->GetParentList()[0])->GetElectricalData().number;
LoadElectricalData data = load->GetPUElectricalData(systemPowerBase);
std::complex<double> yLoad = std::complex<double>(data.activePower, -data.reactivePower / order);
std::complex<double> v = static_cast<Bus*>(load->GetParentList()[0])->GetElectricalData().voltage;
yLoad /= (std::abs(v) * std::abs(v));
yBus[n][n] += yLoad;
}
}
// Capacitor
for(auto it = m_capacitorList.begin(), itEnd = m_capacitorList.end(); it != itEnd; ++it) {
Capacitor* capacitor = *it;
if(capacitor->IsOnline()) {
int n = static_cast<Bus*>(capacitor->GetParentList()[0])->GetElectricalData().number;
CapacitorElectricalData data = capacitor->GetPUElectricalData(systemPowerBase);
yBus[n][n] += std::complex<double>(0.0, data.reactivePower) * order;
}
}
// Inductor
for(auto it = m_inductorList.begin(), itEnd = m_inductorList.end(); it != itEnd; ++it) {
Inductor* inductor = *it;
if(inductor->IsOnline()) {
int n = static_cast<Bus*>(inductor->GetParentList()[0])->GetElectricalData().number;
InductorElectricalData data = inductor->GetPUElectricalData(systemPowerBase);
yBus[n][n] += std::complex<double>(0.0, -data.reactivePower) / order;
}
}
// Power line
for(auto it = m_lineList.begin(), itEnd = m_lineList.end(); it != itEnd; ++it) {
Line* line = *it;
if(line->IsOnline()) {
LineElectricalData data = line->GetPUElectricalData(systemPowerBase);
int n1 = static_cast<Bus*>(line->GetParentList()[0])->GetElectricalData().number;
int n2 = static_cast<Bus*>(line->GetParentList()[1])->GetElectricalData().number;
yBus[n1][n2] -= 1.0 / std::complex<double>(data.resistance, data.indReactance * order);
yBus[n2][n1] -= 1.0 / std::complex<double>(data.resistance, data.indReactance * order);
yBus[n1][n1] += 1.0 / std::complex<double>(data.resistance, data.indReactance * order);
yBus[n2][n2] += 1.0 / std::complex<double>(data.resistance, data.indReactance * order);
yBus[n1][n1] += std::complex<double>(0.0, (data.capSusceptance * order) / 2.0);
yBus[n2][n2] += std::complex<double>(0.0, (data.capSusceptance * order) / 2.0);
}
}
// Transformer
for(auto it = m_transformerList.begin(), itEnd = m_transformerList.end(); it != itEnd; ++it) {
Transformer* transformer = *it;
if(transformer->IsOnline()) {
TransformerElectricalData data = transformer->GetPUElectricalData(systemPowerBase);
int n1 = static_cast<Bus*>(transformer->GetParentList()[0])->GetElectricalData().number;
int n2 = static_cast<Bus*>(transformer->GetParentList()[1])->GetElectricalData().number;
// If the transformer have nominal turns ratio (1.0) and no phase shifting, it will be modelled as
// series impedance.
if(data.turnsRatio == 1.0 && data.phaseShift == 0.0) {
yBus[n1][n2] += -1.0 / std::complex<double>(data.resistance, data.indReactance * order);
yBus[n2][n1] += -1.0 / std::complex<double>(data.resistance, data.indReactance * order);
yBus[n1][n1] += 1.0 / std::complex<double>(data.resistance, data.indReactance * order);
yBus[n2][n2] += 1.0 / std::complex<double>(data.resistance, data.indReactance * order);
}
// If the transformer have no-nominal turn ratio and/or phase shifting, it will be modelled in a
// different way (see references).
//[Ref. 1: Elementos de analise de sistemas de potencia - Stevenson - pg. 232]
//[Ref. 2:
// http://www.ee.washington.edu/research/real/Library/Reports/Tap_Adjustments_in_AC_Load_Flows.pdf]
// [Ref. 3: http://www.columbia.edu/~dano/courses/power/notes/power/andersson1.pdf]
else {
// Complex turns ratio
double radPhaseShift = wxDegToRad(data.phaseShift);
std::complex<double> a = std::complex<double>(data.turnsRatio * std::cos(radPhaseShift),
-data.turnsRatio * std::sin(radPhaseShift));
// Transformer admitance
std::complex<double> y = 1.0 / std::complex<double>(data.resistance, data.indReactance * order);
yBus[n1][n1] += y / (std::pow(std::abs(a), 2.0));
yBus[n1][n2] += -(y / std::conj(a));
yBus[n2][n1] += -(y / a);
yBus[n2][n2] += y;
}
}
}
// Synchronous generator
for(auto it = m_syncGeneratorList.begin(), itEnd = m_syncGeneratorList.end(); it != itEnd; ++it) {
SyncGenerator* syncGenerator = *it;
if(syncGenerator->IsOnline()) {
int n = static_cast<Bus*>(syncGenerator->GetParentList()[0])->GetElectricalData().number;
SyncGeneratorElectricalData data = syncGenerator->GetPUElectricalData(systemPowerBase);
yBus[n][n] += 1.0 / std::complex<double>(data.positiveResistance, data.positiveReactance * order);
}
}
// Synchronous motor
for(auto it = m_syncMotorList.begin(), itEnd = m_syncMotorList.end(); it != itEnd; ++it) {
SyncMotor* syncMotor = *it;
if(syncMotor->IsOnline()) {
int n = static_cast<Bus*>(syncMotor->GetParentList()[0])->GetElectricalData().number;
SyncMotorElectricalData data = syncMotor->GetPUElectricalData(systemPowerBase);
yBus[n][n] += 1.0 / std::complex<double>(data.positiveResistance, data.positiveReactance * order);
}
}
}
bool PowerQuality::CalculateDistortions(double systemPowerBase)
{
// Get harmonic orders
m_harmYbusList.clear();
std::vector<double> harmOrders = GetHarmonicOrdersList();
// Fill the Ybuses
for(unsigned int i = 0; i < harmOrders.size(); ++i) {
HarmonicYbus newYbus;
newYbus.order = harmOrders[i];
m_harmYbusList.push_back(newYbus);
}
CalculateHarmonicYbusList(systemPowerBase);
// Initialize current arrays with zeros
std::vector<std::vector<std::complex<double> > > iHarmInjList;
for(unsigned int i = 0; i < harmOrders.size(); i++) {
std::vector<std::complex<double> > line;
for(unsigned int j = 0; j < m_busList.size(); j++) { line.push_back(std::complex<double>(0.0, 0.0)); }
iHarmInjList.push_back(line);
}
// Fill the current array
for(unsigned int i = 0; i < harmOrders.size(); ++i) {
for(auto it = m_harmCurrentList.begin(), itEnd = m_harmCurrentList.end(); it != itEnd; ++it) {
HarmCurrent* harmCurrent = *it;
if(harmCurrent->IsOnline()) {
// Get only the current order in analysis
for(unsigned int k = 0; k < harmCurrent->GetElectricalData().harmonicOrder.size(); ++k) {
if(harmCurrent->GetElectricalData().harmonicOrder[k] == static_cast<int>(harmOrders[i])) {
Bus* parentBus = static_cast<Bus*>(harmCurrent->GetParentList()[0]);
auto busData = parentBus->GetElectricalData();
int j = busData.number;
// Bus voltage
double voltage = busData.nominalVoltage;
if(busData.nominalVoltageUnit == ElectricalUnit::UNIT_kV) voltage *= 1e3;
auto puData = harmCurrent->GetPUElectricalData(systemPowerBase, voltage);
iHarmInjList[i][j] += std::complex<double>(
puData.injHarmCurrent[k] * std::cos(wxDegToRad(puData.injHarmAngle[k])),
puData.injHarmCurrent[k] * std::sin(wxDegToRad(puData.injHarmAngle[k])));
}
}
}
}
}
// Calculate harmonic voltages
std::vector<std::vector<std::complex<double> > > vHarmList;
for(unsigned int i = 0; i < m_harmYbusList.size(); ++i) {
vHarmList.push_back(GaussianElimination(m_harmYbusList[i].yBus, iHarmInjList[i]));
}
for(auto it = m_busList.begin(), itEnd = m_busList.end(); it != itEnd; ++it) {
Bus* bus = *it;
auto data = bus->GetElectricalData();
data.harmonicOrder.clear();
data.harmonicVoltage.clear();
double thd = 0.0;
for(unsigned int i = 0; i < vHarmList.size(); ++i) {
thd += std::abs(vHarmList[i][data.number]) * std::abs(vHarmList[i][data.number]);
data.harmonicVoltage.push_back(vHarmList[i][data.number]);
data.harmonicOrder.push_back(static_cast<int>(harmOrders[i]));
}
// distortion = std::sqrt(distortion) / std::abs(data.voltage);
thd = std::sqrt(thd) * 100.0;
data.thd = thd;
bus->SetElectricalData(data);
}
return true;
}
std::vector<double> PowerQuality::GetHarmonicOrdersList()
{
std::vector<int> harmOrders;
auto harmCurrentList = GetHarmCurrentList();
// Check all harmonic sources and get all harmonic orders in the system
for(auto it = harmCurrentList.begin(), itEnd = harmCurrentList.end(); it != itEnd; ++it) {
HarmCurrent* harmCurrent = *it;
if(harmCurrent->IsOnline()) {
auto data = harmCurrent->GetElectricalData();
for(unsigned int i = 0; i < data.harmonicOrder.size(); ++i) {
int order = data.harmonicOrder[i];
// Check if this harmonic order have been added already
bool newOrder = true;
for(unsigned int j = 0; j < harmOrders.size(); ++j) {
if(order == harmOrders[j]) {
newOrder = false;
break;
}
}
if(newOrder) harmOrders.push_back(order);
}
}
}
std::vector<double> doubleHarmOrder;
for(unsigned int i = 0; i < harmOrders.size(); ++i) {
doubleHarmOrder.push_back(static_cast<double>(harmOrders[i]));
}
return doubleHarmOrder;
}
bool PowerQuality::CalculateFrequencyResponse(double systemFreq,
double initFreq,
double endFreq,
double stepFreq,
int injBusNumber,
double systemPowerBase)
{
// Clear all previous data
for(unsigned int i = 0; i < m_busList.size(); i++) {
auto data = m_busList[i]->GetElectricalData();
data.absImpedanceVector.clear();
data.absImpedanceVector.shrink_to_fit();
m_busList[i]->SetElectricalData(data);
}
// Create and fill with zeros the YBus
std::vector<std::vector<std::complex<double> > > yBus;
for(unsigned int i = 0; i < m_busList.size(); i++) {
std::vector<std::complex<double> > line;
for(unsigned int j = 0; j < m_busList.size(); j++) { line.push_back(std::complex<double>(0.0, 0.0)); }
yBus.push_back(line);
}
// Create and fill with zeros the injected current vector
std::vector<std::complex<double> > iInj;
for(unsigned int i = 0; i < m_busList.size(); i++) { iInj.push_back(std::complex<double>(0.0, 0.0)); }
iInj[injBusNumber] = std::complex<double>(1.0, 0.0);
if(initFreq < 1e-6) initFreq = stepFreq;
double currentFreq = initFreq;
while(currentFreq <= endFreq) {
m_frequencyList.push_back(currentFreq);
double order = currentFreq / systemFreq;
// Fill YBus with zeros
for(unsigned int i = 0; i < m_busList.size(); i++) {
for(unsigned int j = 0; j < m_busList.size(); j++) { yBus[i][j] = std::complex<double>(0.0, 0.0); }
}
CalculateHarmonicYbus(yBus, systemPowerBase, order);
for(unsigned int i = 0; i < m_busList.size(); i++) {
auto data = m_busList[i]->GetElectricalData();
if(data.plotPQData) {
auto zh = GaussianElimination(yBus, iInj);
data.absImpedanceVector.push_back(std::abs(zh[data.number]));
m_busList[i]->SetElectricalData(data);
}
}
currentFreq += stepFreq;
}
return false;
}
|