summaryrefslogtreecommitdiffstats
path: root/Project/PowerFlow.cpp
blob: 023ce269e79d80964fa02890165737eefaf91005 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
#include "PowerFlow.h"

PowerFlow::PowerFlow(std::vector<Element*> elementList) : ElectricCalculation() { GetElementsFromList(elementList); }
PowerFlow::~PowerFlow() {}
bool PowerFlow::RunGaussSeidel(double systemPowerBase,
                               int maxIteration,
                               double error,
                               double initAngle,
                               double accFactor)
{
    // Calculate the Ybus.
    if(!GetYBus(m_yBus, systemPowerBase)) {
        m_errorMsg = _("No buses found on the system.");
        return false;
    }

    // Number of buses on the system.
    int numberOfBuses = (int)m_busList.size();

    std::vector<BusType> busType;                  // Bus type
    std::vector<std::complex<double> > voltage;    // Voltage of buses
    std::vector<std::complex<double> > power;      // Injected power
    std::vector<std::complex<double> > loadPower;  // Only the load power
    std::vector<ReactiveLimits> reactiveLimit;     // Limit of reactive power on PV buses

    reactiveLimit.resize(numberOfBuses);

    int busNumber = 0;
    for(auto itb = m_busList.begin(); itb != m_busList.end(); itb++) {
        Bus* bus = *itb;
        BusElectricalData data = bus->GetEletricalData();

        // Fill the bus type
        if(data.slackBus) busType.push_back(BUS_SLACK);
        // If the bus have controlled voltage, check if at least one synchronous machine is connected, then set the
        // bus type.
        else if(data.isVoltageControlled) {
            bool hasSyncMachine = false;
            // Synchronous generator
            for(auto itsg = m_syncGeneratorList.begin(); itsg != m_syncGeneratorList.end(); itsg++) {
                SyncGenerator* syncGenerator = *itsg;
                if(bus == syncGenerator->GetParentList()[0] && syncGenerator->IsOnline()) hasSyncMachine = true;
            }
            // Synchronous motor
            for(auto itsm = m_syncMotorList.begin(); itsm != m_syncMotorList.end(); itsm++) {
                SyncMotor* syncMotor = *itsm;
                if(bus == syncMotor->GetParentList()[0] && syncMotor->IsOnline()) hasSyncMachine = true;
            }
            if(hasSyncMachine)
                busType.push_back(BUS_PV);
            else
                busType.push_back(BUS_PQ);
        } else
            busType.push_back(BUS_PQ);

        // Fill the voltages array
        if(data.isVoltageControlled && busType[busNumber] != BUS_PQ) {
            voltage.push_back(std::complex<double>(data.controlledVoltage, 0.0));
        } else {
            voltage.push_back(std::complex<double>(1.0, 0.0));
        }

        // Fill the power array
        power.push_back(std::complex<double>(0.0, 0.0));  // Initial value
        loadPower.push_back(std::complex<double>(0.0, 0.0));

        // Synchronous generator
        for(auto itsg = m_syncGeneratorList.begin(); itsg != m_syncGeneratorList.end(); itsg++) {
            SyncGenerator* syncGenerator = *itsg;
            if(syncGenerator->IsOnline()) {
                if(bus == syncGenerator->GetParentList()[0]) {
                    SyncGeneratorElectricalData childData = syncGenerator->GetPUElectricalData(systemPowerBase);
                    power[busNumber] += std::complex<double>(childData.activePower, childData.reactivePower);

                    if(busType[busNumber] == BUS_PV) {
                        if(childData.haveMaxReactive && reactiveLimit[busNumber].maxLimitType != RL_UNLIMITED_SOURCE) {
                            reactiveLimit[busNumber].maxLimitType = RL_LIMITED;
                            reactiveLimit[busNumber].maxLimit += childData.maxReactive;
                        } else if(!childData.haveMaxReactive)
                            reactiveLimit[busNumber].maxLimitType = RL_UNLIMITED_SOURCE;

                        if(childData.haveMinReactive && reactiveLimit[busNumber].minLimitType != RL_UNLIMITED_SOURCE) {
                            reactiveLimit[busNumber].minLimitType = RL_LIMITED;
                            reactiveLimit[busNumber].minLimit += childData.minReactive;
                        } else if(!childData.haveMinReactive)
                            reactiveLimit[busNumber].minLimitType = RL_UNLIMITED_SOURCE;
                    }
                }
            }
        }
        // Synchronous motor
        for(auto itsm = m_syncMotorList.begin(); itsm != m_syncMotorList.end(); itsm++) {
            SyncMotor* syncMotor = *itsm;
            if(syncMotor->IsOnline()) {
                if(bus == syncMotor->GetParentList()[0]) {
                    SyncMotorElectricalData childData = syncMotor->GetPUElectricalData(systemPowerBase);
                    power[busNumber] += std::complex<double>(-childData.activePower, childData.reactivePower);
                    loadPower[busNumber] += std::complex<double>(-childData.activePower, 0.0);

                    if(busType[busNumber] == BUS_PV) {
                        if(childData.haveMaxReactive && reactiveLimit[busNumber].maxLimitType != RL_UNLIMITED_SOURCE) {
                            reactiveLimit[busNumber].maxLimitType = RL_LIMITED;
                            reactiveLimit[busNumber].maxLimit += childData.maxReactive;
                        } else if(!childData.haveMaxReactive)
                            reactiveLimit[busNumber].maxLimitType = RL_UNLIMITED_SOURCE;

                        if(childData.haveMinReactive && reactiveLimit[busNumber].minLimitType != RL_UNLIMITED_SOURCE) {
                            reactiveLimit[busNumber].minLimitType = RL_LIMITED;
                            reactiveLimit[busNumber].minLimit += childData.minReactive;
                        } else if(!childData.haveMinReactive)
                            reactiveLimit[busNumber].minLimitType = RL_UNLIMITED_SOURCE;
                    }
                }
            }
        }
        // Load
        for(auto itl = m_loadList.begin(); itl != m_loadList.end(); itl++) {
            Load* load = *itl;
            if(load->IsOnline()) {
                if(bus == load->GetParentList()[0]) {
                    LoadElectricalData childData = load->GetPUElectricalData(systemPowerBase);
                    if(childData.loadType == CONST_POWER) {
                        power[busNumber] += std::complex<double>(-childData.activePower, -childData.reactivePower);
                        loadPower[busNumber] += std::complex<double>(-childData.activePower, -childData.reactivePower);
                    }
                }
            }
        }

        // Induction motor
        for(auto itim = m_indMotorList.begin(); itim != m_indMotorList.end(); itim++) {
            IndMotor* indMotor = *itim;
            if(indMotor->IsOnline()) {
                if(bus == indMotor->GetParentList()[0]) {
                    IndMotorElectricalData childData = indMotor->GetPUElectricalData(systemPowerBase);
                    power[busNumber] += std::complex<double>(-childData.activePower, -childData.reactivePower);
                    loadPower[busNumber] += std::complex<double>(-childData.activePower, -childData.reactivePower);
                }
            }
        }

        busNumber++;
    }

    // Check if have slack bus and if have generation on the slack bus
    bool haveSlackBus = false;
    bool slackBusHaveGeneration = false;
    for(int i = 0; i < (int)busType.size(); i++) {
        if(busType[i] == BUS_SLACK) {
            auto itb = m_busList.begin();
            std::advance(itb, i);
            Bus* bus = *itb;

            for(auto itsg = m_syncGeneratorList.begin(); itsg != m_syncGeneratorList.end(); itsg++) {
                SyncGenerator* syncGenerator = *itsg;
                if(syncGenerator->IsOnline() && bus == syncGenerator->GetParentList()[0]) slackBusHaveGeneration = true;
            }
            haveSlackBus = true;
        }
    }
    if(!haveSlackBus) {
        m_errorMsg = _("There is no slack bus on the system.");
        return false;
    }
    if(!slackBusHaveGeneration) {
        m_errorMsg = _("The slack bus don't have generation.");
        return false;
    }

    // Gauss-Seidel method
    std::vector<std::complex<double> > oldVoltage;  // Old voltage array.
    oldVoltage.resize(voltage.size());

    auto oldBusType = busType;

    int iteration = 0;  // Current itaration number.

    while(true) {
        // Reach the max number of iterations.
        if(iteration >= maxIteration) {
            m_errorMsg = _("The maximum number of iterations was reached.");
            return false;
        }

        // Update the old voltage array to current iteration values.
        for(int i = 0; i < numberOfBuses; i++) oldVoltage[i] = voltage[i];

        double iterationError = 0.0;

        for(int i = 0; i < numberOfBuses; i++) {
            if(busType[i] == BUS_PQ) {
                std::complex<double> yeSum(0.0, 0.0);
                for(int k = 0; k < numberOfBuses; k++) {
                    if(i != k) {
                        // Sum { Y[i,k] * E[k] } | k = 1->n; k diff i
                        yeSum += m_yBus[i][k] * voltage[k];
                    }
                }

                // E[i] = (1/Y[i,i])*((P[i]-jQ[i])/E*[i] - Sum { Y[i,k] * E[k] (k diff i) })
                std::complex<double> newVolt =
                    (1.0 / m_yBus[i][i]) * (std::conj(power[i]) / std::conj(voltage[i]) - yeSum);

                // Apply the acceleration factor.
                newVolt = std::complex<double>(accFactor * (newVolt.real() - voltage[i].real()) + voltage[i].real(),
                                               accFactor * (newVolt.imag() - voltage[i].imag()) + voltage[i].imag());

                voltage[i] = newVolt;
            }
            if(busType[i] == BUS_PV) {
                std::complex<double> yeSum(0.0, 0.0);
                for(int k = 0; k < numberOfBuses; k++) {
                    if(i != k) {
                        // Sum { Y[i,k] * E[k] } | k = 1->n; k diff i
                        yeSum += m_yBus[i][k] * voltage[k];
                    }
                }
                std::complex<double> yeSumT = yeSum + (m_yBus[i][i] * voltage[i]);

                // Q[i] = - Im( E*[i] * Sum { Y[i,k] * E[k] } )
                std::complex<double> qCalc = std::conj(voltage[i]) * yeSumT;
                power[i] = std::complex<double>(power[i].real(), -qCalc.imag());

                // E[i] = (1/Y[i,i])*((P[i]-jQ[i])/E*[i] - Sum { Y[i,k] * E[k] (k diff i) })
                std::complex<double> newVolt =
                    (1.0 / m_yBus[i][i]) * (std::conj(power[i]) / std::conj(voltage[i]) - yeSum);

                // Apply the acceleration factor.
                newVolt = std::complex<double>(accFactor * (newVolt.real() - voltage[i].real()) + voltage[i].real(),
                                               accFactor * (newVolt.imag() - voltage[i].imag()) + voltage[i].imag());

                // Keep the same voltage magnitude.
                voltage[i] = std::complex<double>(std::abs(voltage[i]) * std::cos(std::arg(newVolt)),
                                                  std::abs(voltage[i]) * std::sin(std::arg(newVolt)));
            }

            double busError = std::max(std::abs(voltage[i].real() - oldVoltage[i].real()),
                                       std::abs(voltage[i].imag() - oldVoltage[i].imag()));

            if(busError > iterationError) iterationError = busError;
        }

        if(iterationError < error) {
            bool limitReach = false;
            for(int i = 0; i < numberOfBuses; i++) {
                if(busType[i] == BUS_PV) {
                    if(reactiveLimit[i].maxLimitType == RL_LIMITED) {
                        if(power[i].imag() - loadPower[i].imag() > reactiveLimit[i].maxLimit) {
                            power[i] = std::complex<double>(power[i].real(), reactiveLimit[i].maxLimit + loadPower[i].imag());
                            busType[i] = BUS_PQ;
                            reactiveLimit[i].limitReached = RL_MAX_REACHED;
                            limitReach = true;
                        }
                    }
                    if(reactiveLimit[i].minLimitType == RL_LIMITED) {
                        if(power[i].imag() - loadPower[i].imag() < reactiveLimit[i].minLimit) {
                            power[i] = std::complex<double>(power[i].real(), reactiveLimit[i].minLimit + loadPower[i].imag());
                            busType[i] = BUS_PQ;
                            reactiveLimit[i].limitReached = RL_MIN_REACHED;
                            limitReach = true;
                        }
                    }
                }
            }
            if(!limitReach) break;
        }

        iteration++;
    }

    // Adjust the power array.
    // TODO: Only the slack bus??
    for(int i = 0; i < numberOfBuses; i++) {
        std::complex<double> sBus = std::complex<double>(0.0, 0.0);
        for(int j = 0; j < numberOfBuses; j++) sBus += voltage[i] * std::conj(voltage[j]) * std::conj(m_yBus[i][j]);
        power[i] = sBus;
    }

    UpdateElementsPowerFlow(voltage, power, oldBusType, reactiveLimit, systemPowerBase);

    wxString str = "";
    for(auto itb = m_busList.begin(); itb != m_busList.end(); itb++) {
        Bus* bus = *itb;
        BusElectricalData data = bus->GetEletricalData();
        str += wxString::Format("%.5f/_%.2f\n", std::abs(data.voltage), wxRadToDeg(std::arg(data.voltage)));
    }
    wxLogMessage(str);

    return true;
}