1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
|
/*
* Copyright (C) 2017 Thales Lima Oliveira <thales@ufu.br>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include "IndMotor.h"
#include "IndMotorForm.h"
IndMotor::IndMotor() : Machines() {}
IndMotor::IndMotor(wxString name) : Machines() { m_electricalData.name = name; }
IndMotor::~IndMotor() {}
void IndMotor::DrawSymbol() const
{
std::vector<wxPoint2DDouble> mPts;
mPts.push_back(wxPoint2DDouble(-10, 13) + m_position);
mPts.push_back(wxPoint2DDouble(-10, -13) + m_position);
mPts.push_back(wxPoint2DDouble(0, 2) + m_position);
mPts.push_back(wxPoint2DDouble(10, -13) + m_position);
mPts.push_back(wxPoint2DDouble(10, 13) + m_position);
DrawLine(mPts);
}
void IndMotor::DrawDCSymbol(wxGraphicsContext* gc) const
{
std::vector<wxPoint2DDouble> mPts;
mPts.push_back(wxPoint2DDouble(-10, 13) + m_position);
mPts.push_back(wxPoint2DDouble(-10, -13) + m_position);
mPts.push_back(wxPoint2DDouble(0, 2) + m_position);
mPts.push_back(wxPoint2DDouble(10, -13) + m_position);
mPts.push_back(wxPoint2DDouble(10, 13) + m_position);
gc->DrawLines(mPts.size(), &mPts[0]);
}
bool IndMotor::GetContextMenu(wxMenu& menu)
{
menu.Append(ID_EDIT_ELEMENT, _("Edit induction motor"));
GeneralMenuItens(menu);
return true;
}
bool IndMotor::ShowForm(wxWindow* parent, Element* element)
{
IndMotorForm* indMotorForm = new IndMotorForm(parent, this);
if(indMotorForm->ShowModal() == wxID_OK) {
indMotorForm->Destroy();
return true;
}
indMotorForm->Destroy();
return false;
}
IndMotorElectricalData IndMotor::GetPUElectricalData(double systemPowerBase)
{
IndMotorElectricalData data = m_electricalData;
switch(data.activePowerUnit) {
case ElectricalUnit::UNIT_W: {
data.activePower = data.activePower / systemPowerBase;
data.activePowerUnit = ElectricalUnit::UNIT_PU;
} break;
case ElectricalUnit::UNIT_kW: {
data.activePower = (data.activePower * 1e3) / systemPowerBase;
data.activePowerUnit = ElectricalUnit::UNIT_PU;
} break;
case ElectricalUnit::UNIT_MW: {
data.activePower = (data.activePower * 1e6) / systemPowerBase;
data.activePowerUnit = ElectricalUnit::UNIT_PU;
} break;
default:
break;
}
switch(data.reactivePowerUnit) {
case ElectricalUnit::UNIT_var: {
data.reactivePower = data.reactivePower / systemPowerBase;
data.reactivePowerUnit = ElectricalUnit::UNIT_PU;
} break;
case ElectricalUnit::UNIT_kvar: {
data.reactivePower = (data.reactivePower * 1e3) / systemPowerBase;
data.reactivePowerUnit = ElectricalUnit::UNIT_PU;
} break;
case ElectricalUnit::UNIT_Mvar: {
data.reactivePower = (data.reactivePower * 1e6) / systemPowerBase;
data.reactivePowerUnit = ElectricalUnit::UNIT_PU;
} break;
default:
break;
}
return data;
}
Element* IndMotor::GetCopy()
{
IndMotor* copy = new IndMotor();
*copy = *this;
return copy;
}
wxString IndMotor::GetTipText() const
{
wxString tipText = m_electricalData.name;
tipText += "\n";
double activePower = m_electricalData.activePower;
if(!m_online) activePower = 0.0;
tipText += _("\nP = ") + wxString::FromDouble(activePower, 5);
switch(m_electricalData.activePowerUnit) {
case ElectricalUnit::UNIT_PU: {
tipText += _(" p.u.");
} break;
case ElectricalUnit::UNIT_W: {
tipText += _(" W");
} break;
case ElectricalUnit::UNIT_kW: {
tipText += _(" kW");
} break;
case ElectricalUnit::UNIT_MW: {
tipText += _(" MW");
} break;
default:
break;
}
double reactivePower = m_electricalData.reactivePower;
if(!m_online) reactivePower = 0.0;
tipText += _("\nQ = ") + wxString::FromDouble(reactivePower, 5);
switch(m_electricalData.reactivePowerUnit) {
case ElectricalUnit::UNIT_PU: {
tipText += _(" p.u.");
} break;
case ElectricalUnit::UNIT_var: {
tipText += _(" VAr");
} break;
case ElectricalUnit::UNIT_kvar: {
tipText += _(" kVAr");
} break;
case ElectricalUnit::UNIT_Mvar: {
tipText += _(" MVAr");
} break;
default:
break;
}
return tipText;
}
rapidxml::xml_node<>* IndMotor::SaveElement(rapidxml::xml_document<>& doc, rapidxml::xml_node<>* elementListNode)
{
auto elementNode = XMLParser::AppendNode(doc, elementListNode, "IndMotor");
XMLParser::SetNodeAttribute(doc, elementNode, "ID", m_elementID);
SaveCADProperties(doc, elementNode);
// Element properties
// General
auto electricalProp = XMLParser::AppendNode(doc, elementNode, "ElectricalProperties");
auto isOnline = XMLParser::AppendNode(doc, electricalProp, "IsOnline");
XMLParser::SetNodeValue(doc, isOnline, m_online);
auto name = XMLParser::AppendNode(doc, electricalProp, "Name");
XMLParser::SetNodeValue(doc, name, m_electricalData.name);
auto ratedPower = XMLParser::AppendNode(doc, electricalProp, "RatedPower");
XMLParser::SetNodeValue(doc, ratedPower, m_electricalData.ratedPower);
XMLParser::SetNodeAttribute(doc, ratedPower, "UnitID", static_cast<int>(m_electricalData.activePowerUnit));
auto activePower = XMLParser::AppendNode(doc, electricalProp, "ActivePower");
XMLParser::SetNodeValue(doc, activePower, m_electricalData.activePower);
XMLParser::SetNodeAttribute(doc, activePower, "UnitID", static_cast<int>(m_electricalData.activePowerUnit));
auto reactivePower = XMLParser::AppendNode(doc, electricalProp, "ReactivePower");
XMLParser::SetNodeValue(doc, reactivePower, m_electricalData.reactivePower);
XMLParser::SetNodeAttribute(doc, reactivePower, "UnitID", static_cast<int>(m_electricalData.reactivePowerUnit));
auto useMachineBase = XMLParser::AppendNode(doc, electricalProp, "UseMachineBase");
XMLParser::SetNodeValue(doc, useMachineBase, m_electricalData.useMachinePowerAsBase);
// Stability
auto stability = XMLParser::AppendNode(doc, electricalProp, "Stability");
auto plotMotor = XMLParser::AppendNode(doc, stability, "PlotIndMachine");
XMLParser::SetNodeValue(doc, plotMotor, m_electricalData.plotIndMachine);
auto inertia = XMLParser::AppendNode(doc, stability, "Inertia");
XMLParser::SetNodeValue(doc, inertia, m_electricalData.inertia);
auto r1 = XMLParser::AppendNode(doc, stability, "StatorResistence");
XMLParser::SetNodeValue(doc, r1, m_electricalData.r1);
auto x1 = XMLParser::AppendNode(doc, stability, "StatorReactance");
XMLParser::SetNodeValue(doc, x1, m_electricalData.x1);
auto r2 = XMLParser::AppendNode(doc, stability, "RotorResistence");
XMLParser::SetNodeValue(doc, r2, m_electricalData.r2);
auto x2 = XMLParser::AppendNode(doc, stability, "RotorReactance");
XMLParser::SetNodeValue(doc, x2, m_electricalData.x2);
auto xm = XMLParser::AppendNode(doc, stability, "MagnetizingReactance");
XMLParser::SetNodeValue(doc, xm, m_electricalData.xm);
auto useCageFactor = XMLParser::AppendNode(doc, stability, "UseCageFactor");
XMLParser::SetNodeValue(doc, useCageFactor, m_electricalData.useKf);
auto cageFactor = XMLParser::AppendNode(doc, stability, "CageFactor");
XMLParser::SetNodeValue(doc, cageFactor, m_electricalData.kf);
auto loadChar = XMLParser::AppendNode(doc, stability, "LoadCharacteristic");
auto aw = XMLParser::AppendNode(doc, loadChar, "Constant");
XMLParser::SetNodeValue(doc, aw, m_electricalData.aw);
auto bw = XMLParser::AppendNode(doc, loadChar, "Linear");
XMLParser::SetNodeValue(doc, bw, m_electricalData.bw);
auto cw = XMLParser::AppendNode(doc, loadChar, "Quadratic");
XMLParser::SetNodeValue(doc, cw, m_electricalData.cw);
SaveSwitchingData(doc, electricalProp);
return elementNode;
}
bool IndMotor::OpenElement(rapidxml::xml_node<>* elementNode, std::vector<Element*> parentList)
{
if(!OpenCADProperties(elementNode, parentList)) return false;
auto electricalProp = elementNode->first_node("ElectricalProperties");
if(!electricalProp) return false;
// Element properties
SetOnline(XMLParser::GetNodeValueInt(electricalProp, "IsOnline"));
m_electricalData.name = electricalProp->first_node("Name")->value();
m_electricalData.ratedPower = XMLParser::GetNodeValueDouble(electricalProp, "RatedPower");
m_electricalData.ratedPowerUnit =
static_cast<ElectricalUnit>(XMLParser::GetAttributeValueInt(electricalProp, "RatedPower", "UnitID"));
m_electricalData.activePower = XMLParser::GetNodeValueDouble(electricalProp, "ActivePower");
m_electricalData.activePowerUnit =
static_cast<ElectricalUnit>(XMLParser::GetAttributeValueInt(electricalProp, "ActivePower", "UnitID"));
m_electricalData.reactivePower = XMLParser::GetNodeValueDouble(electricalProp, "ReactivePower");
m_electricalData.reactivePowerUnit =
static_cast<ElectricalUnit>(XMLParser::GetAttributeValueInt(electricalProp, "ReactivePower", "UnitID"));
m_electricalData.useMachinePowerAsBase = XMLParser::GetNodeValueInt(electricalProp, "UseMachineBase");
// Stability
auto stability = electricalProp->first_node("Stability");
m_electricalData.plotIndMachine = XMLParser::GetNodeValueInt(stability, "PlotIndMachine");
m_electricalData.inertia = XMLParser::GetNodeValueDouble(stability, "Inertia");
m_electricalData.r1 = XMLParser::GetNodeValueDouble(stability, "StatorResistence");
m_electricalData.x1 = XMLParser::GetNodeValueDouble(stability, "StatorReactance");
m_electricalData.r2 = XMLParser::GetNodeValueDouble(stability, "RotorResistence");
m_electricalData.x2 = XMLParser::GetNodeValueDouble(stability, "RotorReactance");
m_electricalData.xm = XMLParser::GetNodeValueDouble(stability, "MagnetizingReactance");
m_electricalData.useKf = XMLParser::GetNodeValueInt(stability, "UseCageFactor");
m_electricalData.kf = XMLParser::GetNodeValueDouble(stability, "CageFactor");
auto loadChar = stability->first_node("LoadCharacteristic");
m_electricalData.aw = XMLParser::GetNodeValueDouble(loadChar, "Constant");
m_electricalData.bw = XMLParser::GetNodeValueDouble(loadChar, "Linear");
m_electricalData.cw = XMLParser::GetNodeValueDouble(loadChar, "Quadratic");
if(!OpenSwitchingData(electricalProp)) return false;
if(m_swData.swTime.size() != 0) SetDynamicEvent(true);
m_inserted = true;
return true;
}
bool IndMotor::GetPlotData(ElementPlotData& plotData, PlotStudy study)
{
if(!m_electricalData.plotIndMachine) return false;
plotData.SetName(m_electricalData.name);
plotData.SetCurveType(ElementPlotData::CurveType::CT_IND_MOTOR);
plotData.AddData(m_electricalData.terminalVoltageVector, _("Terminal voltage"));
plotData.AddData(m_electricalData.activePowerVector, _("Active power"));
plotData.AddData(m_electricalData.reactivePowerVector, _("Reactive power"));
plotData.AddData(m_electricalData.currentVector, _("Current"));
plotData.AddData(m_electricalData.electricalTorqueVector, _("Electrical torque"));
plotData.AddData(m_electricalData.mechanicalTorqueVector, _("Mechanical torque"));
plotData.AddData(m_electricalData.velocityVector, _("Speed"));
plotData.AddData(m_electricalData.slipVector, _("Slip"));
return true;
}
void IndMotor::InitPowerFlowMotor(double systemPowerBase, int busNumber)
{
double k = 1.0; // Power base change factor.
if(m_electricalData.useMachinePowerAsBase) {
double oldBase = GetValueFromUnit(m_electricalData.ratedPower, m_electricalData.ratedPowerUnit);
k = systemPowerBase / oldBase;
}
// Calculate the induction machine transient constants at the machine base
m_electricalData.r1t = m_electricalData.r1 * k;
m_electricalData.r2t = m_electricalData.r2 * k;
m_electricalData.x1t = m_electricalData.x1 * k;
m_electricalData.x2t = m_electricalData.x2 * k;
m_electricalData.xmt = m_electricalData.xm * k;
m_electricalData.xt = m_electricalData.x1t +
(m_electricalData.x2t * m_electricalData.xmt) / (m_electricalData.x2t + m_electricalData.xmt);
m_electricalData.x0 = m_electricalData.x1t + m_electricalData.xmt;
double r1 = m_electricalData.r1t;
double r2 = m_electricalData.r2t;
if(m_electricalData.useKf) r2 *= (1.0 + m_electricalData.kf * m_electricalData.r2t);
double x1 = m_electricalData.x1t;
double x2 = m_electricalData.x2t;
double xm = m_electricalData.xmt;
m_electricalData.k1 = x2 + xm;
m_electricalData.k2 = -x1 * m_electricalData.k1 - x2 * xm;
m_electricalData.k3 = xm + x1;
m_electricalData.k4 = r1 * m_electricalData.k1;
auto puData = GetPUElectricalData(systemPowerBase);
m_electricalData.p0 = puData.activePower;
m_electricalData.busNum = busNumber;
}
bool IndMotor::CalculateReactivePower(double voltage)
{
double a = m_electricalData.p0 *
(m_electricalData.r1t * m_electricalData.r1t + m_electricalData.k3 * m_electricalData.k3) -
voltage * voltage * m_electricalData.r1t;
double b = 2.0 * m_electricalData.p0 *
(m_electricalData.r1t * m_electricalData.k2 + m_electricalData.k3 * m_electricalData.k4) -
voltage * voltage * (m_electricalData.k2 + m_electricalData.k1 * m_electricalData.k3);
double c =
m_electricalData.p0 * (m_electricalData.k2 * m_electricalData.k2 + m_electricalData.k4 * m_electricalData.k4) -
voltage * voltage * m_electricalData.k1 * m_electricalData.k4;
double d = (b * b - 4.0 * a * c);
if(d < 0.0) return false;
double r2_s = (-b + std::sqrt(d)) / (2.0 * a);
double qa = m_electricalData.k1 * (r2_s * m_electricalData.r1t - m_electricalData.x1t * m_electricalData.k1 -
m_electricalData.x2t * m_electricalData.xmt);
double qb =
r2_s * (r2_s * (m_electricalData.xmt + m_electricalData.x1t) + m_electricalData.r1t * m_electricalData.k1);
double qc = r2_s * m_electricalData.r1t - m_electricalData.x1t * m_electricalData.k1 -
m_electricalData.x2t * m_electricalData.xmt;
double qd = r2_s * (m_electricalData.xmt + m_electricalData.x1t) + m_electricalData.r1t * m_electricalData.k1;
m_electricalData.qValue = (-voltage * voltage * (qa - qb)) / (qc * qc + qd * qd);
return true;
}
|