summaryrefslogtreecommitdiffstats
path: root/Project/Fault.cpp
blob: 058b4ea1cdc14184fd8648d52ff54ed8def6f2df (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
#include "Fault.h"

Fault::Fault()
    : ElectricCalculation()
{
}

Fault::Fault(std::vector<Element*> elementList) { GetElementsFromList(elementList); }

Fault::~Fault() {}

bool Fault::RunFaultCalculation(double systemPowerBase)
{
    int numberOfBuses = static_cast<int>(m_busList.size());
    if(numberOfBuses == 0) {
        m_errorMsg = _("There is no buses in the system.");
        return false;
    }

    // Get adimittance matrices.
    std::vector<std::vector<std::complex<double> > > yBusPos;
    GetYBus(yBusPos, systemPowerBase, POSITIVE_SEQ, true);
    std::vector<std::vector<std::complex<double> > > yBusNeg;
    GetYBus(yBusNeg, systemPowerBase, NEGATIVE_SEQ, true);
    std::vector<std::vector<std::complex<double> > > yBusZero;
    GetYBus(yBusZero, systemPowerBase, ZERO_SEQ, true);

    // Calculate the impedance matrices.
    if(!InvertMatrix(yBusPos, m_zBusPos)) {
        m_errorMsg = _("Fail to invert the positive sequence admittance matrix.");
        return false;
    }
    if(!InvertMatrix(yBusNeg, m_zBusNeg)) {
        m_errorMsg = _("Fail to invert the negative sequence admittance matrix.");
        return false;
    }
    if(!InvertMatrix(yBusZero, m_zBusZero)) {
        m_errorMsg = _("Fail to invert the zero sequence admittance matrix.");
        return false;
    }

    // Pre-fault voltages (power flow solution).
    std::vector<std::complex<double> > preFaultVoltages;

    // Get fault parameters.
    int fNumber = -1;
    FaultData fType = FAULT_THREEPHASE;
    FaultData fLocation = FAULT_LINE_A;
    std::complex<double> fImpedance = std::complex<double>(0.0, 0.0);
    for(auto it = m_busList.begin(), itEnd = m_busList.end(); it != itEnd; ++it) {
        Bus* bus = *it;
        BusElectricalData data = bus->GetEletricalData();
        preFaultVoltages.push_back(data.voltage);
        if(data.hasFault) {
            fNumber = data.number;
            fType = data.faultType;
            fLocation = data.faultLocation;
            fImpedance = std::complex<double>(data.faultResistance, data.faultReactance);
        }
    }

    if(fNumber == -1) {
        m_errorMsg = _("There is no fault in the system.");
        return false;
    }

    // Fault calculation.
    std::complex<double> fCurrentPos = std::complex<double>(0.0, 0.0);
    std::complex<double> fCurrentNeg = std::complex<double>(0.0, 0.0);
    std::complex<double> fCurrentZero = std::complex<double>(0.0, 0.0);

    std::complex<double> preFaultVoltage = preFaultVoltages[fNumber];
    std::complex<double> a = std::complex<double>(-0.5, 0.866025403784);
    std::complex<double> a2 = std::complex<double>(-0.5, -0.866025403784);

    switch(fType) {
        case FAULT_THREEPHASE: {
            fCurrentPos = preFaultVoltage / (m_zBusPos[fNumber][fNumber] + fImpedance);
        } break;
        case FAULT_2LINE: {
            fCurrentPos = preFaultVoltage / (m_zBusPos[fNumber][fNumber] + m_zBusNeg[fNumber][fNumber] + fImpedance);

            switch(fLocation) {
                case FAULT_LINE_A: {
                    fCurrentNeg = -a2 * fCurrentPos;
                } break;
                case FAULT_LINE_B: {
                    fCurrentNeg = -fCurrentPos;
                } break;
                case FAULT_LINE_C: {
                    fCurrentNeg = -a * fCurrentPos;
                } break;
                default:
                    break;
            }
        } break;
        case FAULT_2LINE_GROUND: {
            std::complex<double> z1 = m_zBusPos[fNumber][fNumber];
            std::complex<double> z2 = m_zBusNeg[fNumber][fNumber];
            std::complex<double> z0 = m_zBusZero[fNumber][fNumber];
            std::complex<double> zf_3 = std::complex<double>(3.0, 0.0) * fImpedance;

            fCurrentPos = (preFaultVoltage * (z2 + z0 + zf_3)) / (z1 * z2 + z2 * z0 + z2 * zf_3 + z1 * z0 + z1 * zf_3);

            switch(fLocation) {
                case FAULT_LINE_A: {
                    fCurrentNeg = -a2 * ((preFaultVoltage - z1 * fCurrentPos) / z2);
                    fCurrentZero = -a * ((preFaultVoltage - z1 * fCurrentPos) / (z0 + zf_3));
                } break;
                case FAULT_LINE_B: {
                    fCurrentNeg = -((preFaultVoltage - z1 * fCurrentPos) / z2);
                    fCurrentZero = -((preFaultVoltage - z1 * fCurrentPos) / (z0 + zf_3));
                } break;
                case FAULT_LINE_C: {
                    fCurrentNeg = -a * ((preFaultVoltage - z1 * fCurrentPos) / z2);
                    fCurrentZero = -a2 * ((preFaultVoltage - z1 * fCurrentPos) / (z0 + zf_3));
                } break;
                default:
                    break;
            }
        } break;
        case FAULT_LINE_GROUND: {
            fCurrentPos =
                preFaultVoltage / (m_zBusPos[fNumber][fNumber] + m_zBusNeg[fNumber][fNumber] +
                                      m_zBusZero[fNumber][fNumber] + std::complex<double>(3.0, 0.0) * fImpedance);
            switch(fLocation) {
                case FAULT_LINE_A: {
                    fCurrentNeg = fCurrentPos;
                    fCurrentZero = fCurrentPos;
                } break;
                case FAULT_LINE_B: {
                    fCurrentNeg = a * fCurrentPos;
                    fCurrentZero = a2 * fCurrentPos;
                } break;
                case FAULT_LINE_C: {
                    fCurrentNeg = a2 * fCurrentPos;
                    fCurrentZero = a * fCurrentPos;
                } break;
                default:
                    break;
            }
        } break;
        default:
            break;
    }

    // Convert sequence currents to ABC. [Iabc] = [A]*[I012]
    m_fCurrentA = fCurrentPos + fCurrentNeg + fCurrentZero;
    m_fCurrentB = fCurrentPos + a2 * fCurrentNeg + a * fCurrentZero;
    m_fCurrentC = fCurrentPos + a * fCurrentNeg + a2 * fCurrentZero;

    // Pos-fault voltages calculation
    m_posFaultVoltagePos.clear();
    m_posFaultVoltageNeg.clear();
    m_posFaultVoltageZero.clear();
    m_posFaultVoltageA.clear();
    m_posFaultVoltageB.clear();
    m_posFaultVoltageC.clear();

    for(int i = 0; i < numberOfBuses; ++i) {
        m_posFaultVoltagePos.push_back(preFaultVoltages[i] - m_zBusPos[i][fNumber] * fCurrentPos);
        m_posFaultVoltageNeg.push_back(-m_zBusNeg[i][fNumber] * fCurrentNeg);
        m_posFaultVoltageZero.push_back(-m_zBusZero[i][fNumber] * fCurrentZero);

        // V012 -> Vabc
        m_posFaultVoltageA.push_back(m_posFaultVoltagePos[i] + m_posFaultVoltageNeg[i] + m_posFaultVoltageZero[i]);
        m_posFaultVoltageB.push_back(
            m_posFaultVoltagePos[i] + a2 * m_posFaultVoltageNeg[i] + a * m_posFaultVoltageZero[i]);
        m_posFaultVoltageC.push_back(
            m_posFaultVoltagePos[i] + a * m_posFaultVoltageNeg[i] + a2 * m_posFaultVoltageZero[i]);
    }

    UpdateElementsFault(systemPowerBase);
    return true;
}

void Fault::UpdateElementsFault(double systemPowerBase)
{
    std::complex<double> a = std::complex<double>(-0.5, 0.866025403784);
    std::complex<double> a2 = std::complex<double>(-0.5, -0.866025403784);

    for(auto it = m_busList.begin(), itEnd = m_busList.end(); it != itEnd; ++it) {
        Bus* bus = *it;
        auto data = bus->GetEletricalData();
        if(data.hasFault) {
            data.faultCurrent[0] = m_fCurrentA;
            data.faultCurrent[1] = m_fCurrentB;
            data.faultCurrent[2] = m_fCurrentC;
        } else {
            data.faultCurrent[0] = data.faultCurrent[1] = data.faultCurrent[2] = std::complex<double>(0.0, 0.0);
        }
        data.faultVoltage[0] = m_posFaultVoltageA[data.number];
        data.faultVoltage[1] = m_posFaultVoltageB[data.number];
        data.faultVoltage[2] = m_posFaultVoltageC[data.number];
        bus->SetElectricalData(data);
    }

    for(auto it = m_lineList.begin(), itEnd = m_lineList.end(); it != itEnd; ++it) {
        Line* line = *it;
        if(line->IsOnline()) {
            int n1 = static_cast<Bus*>(line->GetParentList()[0])->GetEletricalData().number;
            int n2 = static_cast<Bus*>(line->GetParentList()[1])->GetEletricalData().number;
            auto data = line->GetElectricalData();
            std::complex<double> vPos[2] = { m_posFaultVoltagePos[n1], m_posFaultVoltagePos[n2] };
            std::complex<double> vNeg[2] = { m_posFaultVoltageNeg[n1], m_posFaultVoltageNeg[n2] };
            std::complex<double> vZero[2] = { m_posFaultVoltageZero[n1], m_posFaultVoltageZero[n2] };
            std::complex<double> zPos(data.resistance, data.indReactance);
            std::complex<double> bPos(0.0, data.capSusceptance / 2.0);
            std::complex<double> zZero(data.zeroResistance, data.zeroIndReactance);
            std::complex<double> bZero(0.0, data.zeroCapSusceptance / 2.0);

            std::complex<double> lineCurrentPos[2];
            std::complex<double> lineCurrentNeg[2];
            std::complex<double> lineCurrentZero[2];

            lineCurrentPos[0] = ((vPos[0] - vPos[1]) / zPos) + (vPos[0] * bPos);
            lineCurrentNeg[0] = ((vNeg[0] - vNeg[1]) / zPos) + (vNeg[0] * bPos);
            lineCurrentZero[0] = ((vZero[0] - vZero[1]) / zZero) + (vZero[0] * bZero);
            lineCurrentPos[1] = ((vPos[1] - vPos[0]) / zPos) + (vPos[1] * bPos);
            lineCurrentNeg[1] = ((vNeg[1] - vNeg[0]) / zPos) + (vNeg[1] * bPos);
            lineCurrentZero[1] = ((vZero[1] - vZero[0]) / zZero) + (vZero[1] * bZero);

            data.faultCurrent[0][0] = lineCurrentPos[0] + lineCurrentNeg[0] + lineCurrentZero[0];
            data.faultCurrent[1][0] = lineCurrentPos[0] + a2 * lineCurrentNeg[0] + a * lineCurrentZero[0];
            data.faultCurrent[2][0] = lineCurrentPos[0] + a * lineCurrentNeg[0] + a2 * lineCurrentZero[0];
            data.faultCurrent[0][1] = lineCurrentPos[1] + lineCurrentNeg[1] + lineCurrentZero[1];
            data.faultCurrent[1][1] = lineCurrentPos[1] + a2 * lineCurrentNeg[1] + a * lineCurrentZero[1];
            data.faultCurrent[2][1] = lineCurrentPos[1] + a * lineCurrentNeg[1] + a2 * lineCurrentZero[1];

            line->SetElectricalData(data);
        }
    }
    
    for(auto it = m_transformerList.begin(), itEnd = m_transformerList.end(); it != itEnd; ++it) {
        Transformer* transformer = *it;
        
    }
}