1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
|
#include "ElectricCalculation.h"
#include "Element.h"
#include "Bus.h"
#include "Capacitor.h"
#include "IndMotor.h"
#include "Inductor.h"
#include "Line.h"
#include "Load.h"
#include "SyncGenerator.h"
#include "SyncMotor.h"
#include "Transformer.h"
ElectricCalculation::ElectricCalculation() {}
ElectricCalculation::~ElectricCalculation() {}
void ElectricCalculation::GetElementsFromList(std::vector<Element*> elementList)
{
m_busList.clear();
m_capacitorList.clear();
m_indMotorList.clear();
m_inductorList.clear();
m_lineList.clear();
m_loadList.clear();
m_syncGeneratorList.clear();
m_syncMotorList.clear();
m_transformerList.clear();
// Bad design?
for(auto it = elementList.begin(); it != elementList.end(); it++) {
Element* element = *it;
if(typeid(*element) == typeid(Bus))
m_busList.push_back((Bus*)element);
else if(typeid(*element) == typeid(Capacitor))
m_capacitorList.push_back((Capacitor*)element);
else if(typeid(*element) == typeid(IndMotor))
m_indMotorList.push_back((IndMotor*)element);
else if(typeid(*element) == typeid(Inductor))
m_inductorList.push_back((Inductor*)element);
else if(typeid(*element) == typeid(Line))
m_lineList.push_back((Line*)element);
else if(typeid(*element) == typeid(Load))
m_loadList.push_back((Load*)element);
else if(typeid(*element) == typeid(SyncGenerator))
m_syncGeneratorList.push_back((SyncGenerator*)element);
else if(typeid(*element) == typeid(SyncMotor))
m_syncMotorList.push_back((SyncMotor*)element);
else if(typeid(*element) == typeid(Transformer))
m_transformerList.push_back((Transformer*)element);
}
}
bool ElectricCalculation::GetYBus(std::vector<std::vector<std::complex<double> > >& yBus, double systemPowerBase)
{
if(m_busList.size() == 0) return false;
// Clear and fill with zeros the Ybus
yBus.clear();
for(int i = 0; i < (int)m_busList.size(); i++) {
std::vector<std::complex<double> > line;
for(int j = 0; j < (int)m_busList.size(); j++) {
line.push_back(std::complex<double>(0.0, 0.0));
}
yBus.push_back(line);
}
// Build connection map
std::vector<std::vector<int> > lineMap;
std::vector<std::vector<int> > transfomerMap;
lineMap.resize(m_lineList.size());
transfomerMap.resize(m_transformerList.size());
// Get the connection map for
int busNumber = 0;
for(auto itb = m_busList.begin(); itb != m_busList.end(); itb++) {
Bus* bus = *itb;
// Get power line connection map
for(int i = 0; i < (int)m_lineList.size(); i++) {
for(int j = 0; j < (int)m_lineList[i]->GetParentList().size(); j++) {
if(bus == m_lineList[i]->GetParentList()[j]) lineMap[i].push_back(busNumber);
}
}
// Get transformer connection map
for(int i = 0; i < (int)m_transformerList.size(); i++) {
for(int j = 0; j < (int)m_transformerList[i]->GetParentList().size(); j++) {
if(bus == m_transformerList[i]->GetParentList()[j]) transfomerMap[i].push_back(busNumber);
}
}
// Load
for(auto itlo = m_loadList.begin(); itlo != m_loadList.end(); itlo++) {
Load* load = *itlo;
if(bus == load->GetParentList()[0]) {
LoadElectricalData data = load->GetPUElectricalData(systemPowerBase);
if(data.loadType == CONST_IMPEDANCE)
yBus[busNumber][busNumber] += std::complex<double>(data.activePower, -data.reactivePower);
}
}
// Capacitor
for(auto itca = m_capacitorList.begin(); itca != m_capacitorList.end(); itca++) {
Capacitor* capacitor = *itca;
if(bus == capacitor->GetParentList()[0]) {
CapacitorElectricalData data = capacitor->GetPUElectricalData(systemPowerBase);
yBus[busNumber][busNumber] += std::complex<double>(0.0, data.reactivePower);
}
}
// Inductor
for(auto itin = m_inductorList.begin(); itin != m_inductorList.end(); itin++) {
Inductor* inductor = *itin;
if(bus == inductor->GetParentList()[0]) {
InductorElectricalData data = inductor->GetPUElectricalData(systemPowerBase);
yBus[busNumber][busNumber] += std::complex<double>(0.0, -data.reactivePower);
}
}
busNumber++;
}
// Power line
int lineNumber = 0;
for(auto itl = m_lineList.begin(); itl != m_lineList.end(); itl++) {
Line* line = *itl;
LineElectricalData data = line->GetElectricalData();
if(line->IsOnline()) {
yBus[lineMap[lineNumber][0]][lineMap[lineNumber][1]] -=
1.0 / std::complex<double>(data.resistance, data.indReactance);
yBus[lineMap[lineNumber][1]][lineMap[lineNumber][0]] -=
1.0 / std::complex<double>(data.resistance, data.indReactance);
yBus[lineMap[lineNumber][0]][lineMap[lineNumber][0]] +=
1.0 / std::complex<double>(data.resistance, data.indReactance);
yBus[lineMap[lineNumber][1]][lineMap[lineNumber][1]] +=
1.0 / std::complex<double>(data.resistance, data.indReactance);
yBus[lineMap[lineNumber][0]][lineMap[lineNumber][0]] +=
std::complex<double>(0.0, data.capSusceptance / 2.0);
yBus[lineMap[lineNumber][1]][lineMap[lineNumber][1]] +=
std::complex<double>(0.0, data.capSusceptance / 2.0);
}
lineNumber++;
}
int transformerNumber = 0;
for(auto itt = m_transformerList.begin(); itt != m_transformerList.end(); ++itt) {
Transformer* transformer = *itt;
TransformerElectricalData data = transformer->GetElectricalData();
if(transformer->IsOnline()) {
// If the transformer have nominal turns ratio (1.0) and no phase shifting, it will be modelled as series
// impedance.
if(data.turnsRatio == 1.0 && data.phaseShift == 0.0) {
yBus[transfomerMap[transformerNumber][0]][transfomerMap[transformerNumber][1]] +=
-1.0 / std::complex<double>(data.resistance, data.indReactance);
yBus[transfomerMap[transformerNumber][1]][transfomerMap[transformerNumber][0]] +=
-1.0 / std::complex<double>(data.resistance, data.indReactance);
yBus[transfomerMap[transformerNumber][0]][transfomerMap[transformerNumber][0]] +=
1.0 / std::complex<double>(data.resistance, data.indReactance);
yBus[transfomerMap[transformerNumber][1]][transfomerMap[transformerNumber][1]] +=
1.0 / std::complex<double>(data.resistance, data.indReactance);
}
// If the transformer have no-nominal turn ratio and/or phase shifting, it will be modelled in a different
// way (see references).
//[Ref. 1: Elementos de analise de sistemas de potencia - Stevenson - pg. 232]
//[Ref. 2: http://www.ee.washington.edu/research/real/Library/Reports/Tap_Adjustments_in_AC_Load_Flows.pdf]
//[Ref. 3: http://www.columbia.edu/~dano/courses/power/notes/power/andersson1.pdf]
else {
// Complex turns ratio
double radPhaseShift = wxDegToRad(data.phaseShift);
std::complex<double> a = std::complex<double>(data.turnsRatio * std::cos(radPhaseShift),
-data.turnsRatio * std::sin(radPhaseShift));
// Transformer admitance
std::complex<double> y = 1.0 / std::complex<double>(data.resistance, data.indReactance);
yBus[transfomerMap[transformerNumber][0]][transfomerMap[transformerNumber][0]] +=
y / std::pow(std::abs(a), 2.0);
yBus[transfomerMap[transformerNumber][0]][transfomerMap[transformerNumber][1]] += -(y / std::conj(a));
yBus[transfomerMap[transformerNumber][1]][transfomerMap[transformerNumber][0]] += -(y / a);
yBus[transfomerMap[transformerNumber][1]][transfomerMap[transformerNumber][1]] += y;
}
}
transformerNumber++;
}
return true;
}
|