summaryrefslogtreecommitdiffstats
path: root/docs/pt/docs/fault/index.html
diff options
context:
space:
mode:
Diffstat (limited to 'docs/pt/docs/fault/index.html')
-rw-r--r--docs/pt/docs/fault/index.html44
1 files changed, 22 insertions, 22 deletions
diff --git a/docs/pt/docs/fault/index.html b/docs/pt/docs/fault/index.html
index 94a08e3..9d43cd4 100644
--- a/docs/pt/docs/fault/index.html
+++ b/docs/pt/docs/fault/index.html
@@ -3,20 +3,20 @@
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width,initial-scale=1">
-<meta name="generator" content="Docusaurus v2.0.0-alpha.71">
+<meta name="generator" content="Docusaurus v2.0.0-alpha.72">
<link rel="alternate" type="application/rss+xml" href="/PSP/pt/blog/rss.xml" title="PSP-UFU Blog RSS Feed">
<link rel="alternate" type="application/atom+xml" href="/PSP/pt/blog/atom.xml" title="PSP-UFU Blog Atom Feed">
-<link rel="search" type="application/opensearchdescription+xml" title="PSP-UFU" href="/PSP/pt/opensearch.xml"><title data-react-helmet="true">Curto-Circuito | PSP-UFU</title><meta data-react-helmet="true" property="og:url" content="https://thales1330.github.io/PSP/pt/docs/fault"><meta data-react-helmet="true" name="docsearch:language" content="pt"><meta data-react-helmet="true" name="docsearch:version" content="current"><meta data-react-helmet="true" name="docsearch:docusaurus_tag" content="docs-default-current"><meta data-react-helmet="true" property="og:title" content="Curto-Circuito | PSP-UFU"><meta data-react-helmet="true" name="description" content="O principal objetivo da análise de curto-circuito é o cálculo das correntes e tensões de falta para especificação de disjuntores, transformadores de corrente e a parametrização de relés de proteção. De 70 a 80% das faltas em linhas de transmissão são entre uma fase e terra, as quais ocorrem devido ao centelhamento de apenas uma fase da linha para a torre e então para a terra.O menor número de faltas, cerca de 5%, envolve todas as três fases, chamadas de faltas trifásicas. Os outros tipos de faltas envolvem duas fases e duas fases e a terra."><meta data-react-helmet="true" property="og:description" content="O principal objetivo da análise de curto-circuito é o cálculo das correntes e tensões de falta para especificação de disjuntores, transformadores de corrente e a parametrização de relés de proteção. De 70 a 80% das faltas em linhas de transmissão são entre uma fase e terra, as quais ocorrem devido ao centelhamento de apenas uma fase da linha para a torre e então para a terra.O menor número de faltas, cerca de 5%, envolve todas as três fases, chamadas de faltas trifásicas. Os outros tipos de faltas envolvem duas fases e duas fases e a terra."><link data-react-helmet="true" rel="shortcut icon" href="/PSP/pt/img/favicon.ico"><link data-react-helmet="true" rel="canonical" href="https://thales1330.github.io/PSP/pt/docs/fault"><link data-react-helmet="true" rel="alternate" href="https://thales1330.github.io/PSP/docs/fault" hreflang="en"><link data-react-helmet="true" rel="alternate" href="https://thales1330.github.io/PSP/pt/docs/fault" hreflang="pt"><link data-react-helmet="true" rel="alternate" href="https://thales1330.github.io/PSP/docs/fault" hreflang="x-default"><link data-react-helmet="true" rel="preconnect" href="https://BH4D9OD16A-dsn.algolia.net" crossorigin="anonymous"><link rel="stylesheet" href="/PSP/pt/assets/css/styles.73f64b8b.css">
-<link rel="preload" href="/PSP/pt/assets/js/styles.cc4b2cfe.js" as="script">
-<link rel="preload" href="/PSP/pt/assets/js/runtime~main.b7ffaf86.js" as="script">
-<link rel="preload" href="/PSP/pt/assets/js/main.168dd2d0.js" as="script">
-<link rel="preload" href="/PSP/pt/assets/js/1.c1697df3.js" as="script">
-<link rel="preload" href="/PSP/pt/assets/js/2.6b1d437b.js" as="script">
-<link rel="preload" href="/PSP/pt/assets/js/64.e39adaf3.js" as="script">
-<link rel="preload" href="/PSP/pt/assets/js/67.74e35f3d.js" as="script">
-<link rel="preload" href="/PSP/pt/assets/js/935f2afb.884eecf8.js" as="script">
-<link rel="preload" href="/PSP/pt/assets/js/17896441.9003d92a.js" as="script">
-<link rel="preload" href="/PSP/pt/assets/js/b4e22210.1b5cfa1d.js" as="script">
+<link rel="search" type="application/opensearchdescription+xml" title="PSP-UFU" href="/PSP/pt/opensearch.xml"><title data-react-helmet="true">Curto-Circuito | PSP-UFU</title><meta data-react-helmet="true" property="og:url" content="https://thales1330.github.io/PSP/pt/docs/fault"><meta data-react-helmet="true" name="docsearch:language" content="pt"><meta data-react-helmet="true" name="docsearch:version" content="current"><meta data-react-helmet="true" name="docsearch:docusaurus_tag" content="docs-default-current"><meta data-react-helmet="true" property="og:title" content="Curto-Circuito | PSP-UFU"><meta data-react-helmet="true" name="description" content="O principal objetivo da análise de curto-circuito é o cálculo das correntes e tensões de falta para especificação de disjuntores, transformadores de corrente e a parametrização de relés de proteção. De 70 a 80% das faltas em linhas de transmissão são entre uma fase e terra, as quais ocorrem devido ao centelhamento de apenas uma fase da linha para a torre e então para a terra.O menor número de faltas, cerca de 5%, envolve todas as três fases, chamadas de faltas trifásicas. Os outros tipos de faltas envolvem duas fases e duas fases e a terra."><meta data-react-helmet="true" property="og:description" content="O principal objetivo da análise de curto-circuito é o cálculo das correntes e tensões de falta para especificação de disjuntores, transformadores de corrente e a parametrização de relés de proteção. De 70 a 80% das faltas em linhas de transmissão são entre uma fase e terra, as quais ocorrem devido ao centelhamento de apenas uma fase da linha para a torre e então para a terra.O menor número de faltas, cerca de 5%, envolve todas as três fases, chamadas de faltas trifásicas. Os outros tipos de faltas envolvem duas fases e duas fases e a terra."><link data-react-helmet="true" rel="shortcut icon" href="/PSP/pt/img/favicon.ico"><link data-react-helmet="true" rel="canonical" href="https://thales1330.github.io/PSP/pt/docs/fault"><link data-react-helmet="true" rel="alternate" href="https://thales1330.github.io/PSP/docs/fault" hreflang="en"><link data-react-helmet="true" rel="alternate" href="https://thales1330.github.io/PSP/pt/docs/fault" hreflang="pt"><link data-react-helmet="true" rel="alternate" href="https://thales1330.github.io/PSP/docs/fault" hreflang="x-default"><link data-react-helmet="true" rel="preconnect" href="https://BH4D9OD16A-dsn.algolia.net" crossorigin="anonymous"><link rel="stylesheet" href="/PSP/pt/assets/css/styles.a03f5936.css">
+<link rel="preload" href="/PSP/pt/assets/js/styles.981ec462.js" as="script">
+<link rel="preload" href="/PSP/pt/assets/js/runtime~main.da4f4a15.js" as="script">
+<link rel="preload" href="/PSP/pt/assets/js/main.7cb5b37f.js" as="script">
+<link rel="preload" href="/PSP/pt/assets/js/1.678f90a6.js" as="script">
+<link rel="preload" href="/PSP/pt/assets/js/2.10feb4fb.js" as="script">
+<link rel="preload" href="/PSP/pt/assets/js/64.67181b07.js" as="script">
+<link rel="preload" href="/PSP/pt/assets/js/67.6e1805cc.js" as="script">
+<link rel="preload" href="/PSP/pt/assets/js/935f2afb.29b6ce5b.js" as="script">
+<link rel="preload" href="/PSP/pt/assets/js/17896441.84a992dd.js" as="script">
+<link rel="preload" href="/PSP/pt/assets/js/b4e22210.030d0ce4.js" as="script">
</head>
<body>
<script>!function(){function e(e){document.documentElement.setAttribute("data-theme",e)}var t=function(){var e=null;try{e=localStorage.getItem("theme")}catch(e){}return e}();null!==t?e(t):window.matchMedia("(prefers-color-scheme: dark)").matches?e("dark"):window.matchMedia("(prefers-color-scheme: light)").matches?e("light"):e("dark")}()</script><div id="__docusaurus">
@@ -31,15 +31,15 @@ c-100.7-8.3-195.3-44-280-108-55.3-42-101.7-93-139-153l-9-14c-2.7 4-5.7 8.7-9 14
-6 6h-17c-12.7 0-19.3-.3-20-1-4-4-7.3-8.3-10-13-35.3-51.3-80.8-93.8-136.5-127.5
s-117.2-55.8-184.5-66.5c-.7 0-2-.3-4-1-18.7-2.7-76-4.3-172-5H0V214h399571l6 1
c124.7 8 235 61.7 331 161 31.3 33.3 59.7 72.7 85 118l7 13v35z"></path></svg></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.55002em"><span></span></span></span></span></span></span><span style="top:-7.773019999999999em"><span class="pstrut" style="height:4.6990099999999995em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="minner mtight"><span class="mopen mtight delimcenter" style="top:0em"><span class="mtight">[</span></span><span class="mord mtight"><span class="mord mathbf mtight">A</span></span><span class="mclose mtight delimcenter" style="top:0em"><span class="mtight">]</span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.55002em"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em"></span><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.0510099999999998em"><span style="top:-2.2500000000000004em"><span class="pstrut" style="height:3.1550000000000002em"></span><span class="delimsizinginner delim-size4"><span>⎣</span></span></span><span style="top:-2.8099900000000004em"><span class="pstrut" style="height:3.1550000000000002em"></span><span class="delimsizinginner delim-size4"><span>⎢</span></span></span><span style="top:-4.05101em"><span class="pstrut" style="height:3.1550000000000002em"></span><span class="delimsizinginner delim-size4"><span>⎡</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.55002em"><span></span></span></span></span></span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.170285em"><span style="top:-4.250095em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.22222em">V</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.13889em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">a</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span></span></span><span style="top:-2.9699049999999994em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.22222em">V</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.13889em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">a</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span></span></span><span style="top:-1.6897149999999994em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.22222em">V</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.13889em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">a</span><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.6702850000000007em"><span></span></span></span></span></span></span></span><span class="mclose"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.0510099999999998em"><span style="top:-2.2500000000000004em"><span class="pstrut" style="height:3.1550000000000002em"></span><span class="delimsizinginner delim-size4"><span>⎦</span></span></span><span style="top:-2.8099900000000004em"><span class="pstrut" style="height:3.1550000000000002em"></span><span class="delimsizinginner delim-size4"><span>⎥</span></span></span><span style="top:-4.05101em"><span class="pstrut" style="height:3.1550000000000002em"></span><span class="delimsizinginner delim-size4"><span>⎤</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.55002em"><span></span></span></span></span></span></span></span></span></span></span></span></div><p>Considerando a matriz quadrada da equação anterior sendo <span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo fence="true">[</mo><mi mathvariant="bold">A</mi><mo fence="true">]</mo></mrow><annotation encoding="application/x-tex">\left[ \bold{A} \right]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em"></span><span class="minner"><span class="mopen delimcenter" style="top:0em">[</span><span class="mord"><span class="mord mathbf">A</span></span><span class="mclose delimcenter" style="top:0em">]</span></span></span></span></span></span>, pode-se encontrar as componentes simétricas pré-multiplicando ambos os lados dessa mesma equação por <span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mrow><mo fence="true">[</mo><mi mathvariant="bold">A</mi><mo fence="true">]</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow><annotation encoding="application/x-tex">\left[ \bold{A} \right]^{-1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.204008em;vertical-align:-0.25em"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em">[</span><span class="mord"><span class="mord mathbf">A</span></span><span class="mclose delimcenter" style="top:0em">]</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.954008em"><span style="top:-3.2029em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span></span></span></span></span>.</p><p>Da mesma forma que no estudo de fluxo de carga, a representação dos elementos do sistema para o estudo de curto-circuito é realizada por meio de circuitos equivalentes inseridos na matriz admitância de barras. Nas faltas assimétricas (F-T, F-F e F-F-T) é necessário formar três matrizes admitância de sequência: positiva, negativa e zero.</p><div class="admonition admonition-info alert alert--info"><div class="admonition-heading"><h5><span class="admonition-icon"><svg xmlns="http://www.w3.org/2000/svg" width="14" height="16" viewBox="0 0 14 16"><path fill-rule="evenodd" d="M7 2.3c3.14 0 5.7 2.56 5.7 5.7s-2.56 5.7-5.7 5.7A5.71 5.71 0 0 1 1.3 8c0-3.14 2.56-5.7 5.7-5.7zM7 1C3.14 1 0 4.14 0 8s3.14 7 7 7 7-3.14 7-7-3.14-7-7-7zm1 3H6v5h2V4zm0 6H6v2h2v-2z"></path></svg></span>Informação</h5></div><div class="admonition-content"><p>As informações a respeito das particularidades dos modelos para o estudo de curto-circuito são apresentados individualmente nos <a href="/PSP/pt/docs/powerEditor#editando-dados-el%C3%A9tricos">elementos de potência</a>.</p></div></div><h3><a aria-hidden="true" tabindex="-1" class="anchor enhancedAnchor_2LWZ" id="equações-do-curto-circuito"></a>Equações do curto-circuito<a class="hash-link" href="#equações-do-curto-circuito" title="Direct link to heading">#</a></h3><p>Primeiramente será tratado o equacionamento para faltas balanceadas e então os estudos serão estendidos para as faltas desbalanceadas por meio da utilização do método das componentes simétricas.</p><h4><a aria-hidden="true" tabindex="-1" class="anchor enhancedAnchor_2LWZ" id="faltas-balanceadas"></a>Faltas balanceadas<a class="hash-link" href="#faltas-balanceadas" title="Direct link to heading">#</a></h4><p>Utiliza-se da matriz impedância de barras para o cálculo de curto-circuito, definida pela seguinte equação matricial:</p><div class="math math-display"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">[</mo><mover accent="true"><mi>V</mi><mo>˙</mo></mover><mo stretchy="false">]</mo><mo>=</mo><mo stretchy="false">[</mo><msub><mi>Z</mi><mrow><mi>b</mi><mi>u</mi><mi>s</mi></mrow></msub><mo stretchy="false">]</mo><mo stretchy="false">[</mo><mover accent="true"><mi>I</mi><mo>˙</mo></mover><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[\dot{V}] = [Z_{bus}][\dot{I}]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.17019em;vertical-align:-0.25em"></span><span class="mopen">[</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.22222em">V</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.13889em"><span class="mord">˙</span></span></span></span></span></span></span><span class="mclose">]</span><span class="mspace" style="margin-right:0.2777777777777778em"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em"></span></span><span class="base"><span class="strut" style="height:1.17019em;vertical-align:-0.25em"></span><span class="mopen">[</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07153em">Z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em"><span style="top:-2.5500000000000003em;margin-left:-0.07153em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">b</span><span class="mord mathdefault mtight">u</span><span class="mord mathdefault mtight">s</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span><span class="mclose">]</span><span class="mopen">[</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em">I</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.027780000000000013em"><span class="mord">˙</span></span></span></span></span></span></span><span class="mclose">]</span></span></span></span></span></div><p>Em que:</p><ul><li><span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">[</mo><msub><mi>Z</mi><mrow><mi>b</mi><mi>u</mi><mi>s</mi></mrow></msub><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[Z_{bus}]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em"></span><span class="mopen">[</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07153em">Z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em"><span style="top:-2.5500000000000003em;margin-left:-0.07153em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">b</span><span class="mord mathdefault mtight">u</span><span class="mord mathdefault mtight">s</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span><span class="mclose">]</span></span></span></span></span> é a inversa da matriz admitância de barras, chamada de matriz impedância de barras.</li></ul><p>Por meio da expansão da equação anterior é possível calcular a corrente de falta trifásica na barra genérica <span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.65952em;vertical-align:0em"></span><span class="mord mathdefault">i</span></span></span></span></span>:</p><div class="math math-display"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mover accent="true"><mi>I</mi><mo>˙</mo></mover><mi>f</mi></msub><mo>=</mo><mfrac><msub><mover accent="true"><mi>E</mi><mo>˙</mo></mover><mi>i</mi></msub><mrow><msub><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow></msub><mo>+</mo><msub><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mi>f</mi></msub></mrow></mfrac></mrow><annotation encoding="application/x-tex">\dot{I}_f = \frac{\dot{E}_i}{\overline{z}_{ii}+\overline{z}_{f}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.206298em;vertical-align:-0.286108em"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em">I</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.027780000000000013em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361079999999999em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.10764em">f</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em"></span></span><span class="base"><span class="strut" style="height:2.569298em;vertical-align:-0.972108em"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.5971899999999999em"><span style="top:-2.314em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361079999999999em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.10764em">f</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em"><span class="pstrut" style="height:3em"></span><span class="frac-line" style="border-bottom-width:0.04em"></span></span><span style="top:-3.677em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05764em">E</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.055550000000000016em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.972108em"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></div><p>Em que:</p><ul><li><span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mover accent="true"><mi>I</mi><mo>˙</mo></mover><mi>f</mi></msub></mrow><annotation encoding="application/x-tex">\dot{I}_f</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.206298em;vertical-align:-0.286108em"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em">I</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.027780000000000013em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361079999999999em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.10764em">f</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em"><span></span></span></span></span></span></span></span></span></span></span> é a corrente de falta trifásica na barra <span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.65952em;vertical-align:0em"></span><span class="mord mathdefault">i</span></span></span></span></span></li><li><span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mover accent="true"><mi>E</mi><mo>˙</mo></mover><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">\dot{E}_i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.07019em;vertical-align:-0.15em"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05764em">E</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.055550000000000016em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span></span></span></span></span> é a tensão pré-falta na barra <span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.65952em;vertical-align:0em"></span><span class="mord mathdefault">i</span></span></span></span></span></li><li><span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow></msub></mrow><annotation encoding="application/x-tex">\overline{z}_{ii}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.78056em;vertical-align:-0.15em"></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span></span></span></span></span> é a impedância equivalente de Thevenin vista pela barra <span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.65952em;vertical-align:0em"></span><span class="mord mathdefault">i</span></span></span></span></span>, retirada da matriz impedância</li><li><span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mi>f</mi></msub></mrow><annotation encoding="application/x-tex">\overline{z}_{f}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.916668em;vertical-align:-0.286108em"></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361079999999999em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.10764em">f</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em"><span></span></span></span></span></span></span></span></span></span></span> é a impedância de falta</li></ul><h4><a aria-hidden="true" tabindex="-1" class="anchor enhancedAnchor_2LWZ" id="faltas-desbalanceadas"></a>Faltas desbalanceadas<a class="hash-link" href="#faltas-desbalanceadas" title="Direct link to heading">#</a></h4><p>O desenvolvimento das equações do cálculo de curto-circuito para faltas desbalanceadas é realizado seguindo o seguinte procedimento:</p><ol><li>Definir os diagramas no ponto da falta, mostrando as conexões de todas fases para a falta. Assume-se que apenas impedâncias balanceadas estão presentes em ambos os lados do ponto da falta e o equivalente Thevenin até esse ponto é conhecido;</li><li>Escrever as condições de contorno relacionando as tensões e corrente conhecidas para o tipo de falta estudada;</li><li>Transformar as correntes e tensões do item 2 de a-b-c para o sistema de coordenadas 0-1-2;</li><li>Encontrar a corrente do curto-circuito em estudo baseado no seguinte sistema de equações (para a fase A):<div class="math math-display"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo fence="true">{</mo><mtable rowspacing="0.3599999999999999em" columnalign="left left" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><msub><mover accent="true"><mi>V</mi><mo>˙</mo></mover><mrow><mi>a</mi><mn>1</mn></mrow></msub><mo>=</mo><msub><mover accent="true"><mi>E</mi><mo>˙</mo></mover><mi>a</mi></msub><mo>−</mo><msub><mover accent="true"><mi>I</mi><mo>˙</mo></mover><mrow><mi>a</mi><mn>1</mn></mrow></msub><msub><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mn>1</mn></msub></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><msub><mover accent="true"><mi>V</mi><mo>˙</mo></mover><mrow><mi>a</mi><mn>2</mn></mrow></msub><mo>=</mo><mo>−</mo><msub><mover accent="true"><mi>I</mi><mo>˙</mo></mover><mrow><mi>a</mi><mn>2</mn></mrow></msub><msub><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mn>2</mn></msub></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><msub><mover accent="true"><mi>V</mi><mo>˙</mo></mover><mrow><mi>a</mi><mn>0</mn></mrow></msub><mo>=</mo><mo>−</mo><msub><mover accent="true"><mi>I</mi><mo>˙</mo></mover><mrow><mi>a</mi><mn>0</mn></mrow></msub><msub><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mn>0</mn></msub></mrow></mstyle></mtd></mtr></mtable></mrow><annotation encoding="application/x-tex">\begin{cases} \dot{V}_{a1} = \dot{E}_a - \dot{I}_{a1} \overline{z}_1\\ \dot{V}_{a2} = - \dot{I}_{a2} \overline{z}_2\\ \dot{V}_{a0} = - \dot{I}_{a0} \overline{z}_0 \end{cases}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:4.32em;vertical-align:-1.9099999999999997em"></span><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.35002em"><span style="top:-2.19999em"><span class="pstrut" style="height:3.15em"></span><span class="delimsizinginner delim-size4"><span>⎩</span></span></span><span style="top:-2.19499em"><span class="pstrut" style="height:3.15em"></span><span class="delimsizinginner delim-size4"><span>⎪</span></span></span><span style="top:-2.20499em"><span class="pstrut" style="height:3.15em"></span><span class="delimsizinginner delim-size4"><span>⎪</span></span></span><span style="top:-3.15001em"><span class="pstrut" style="height:3.15em"></span><span class="delimsizinginner delim-size4"><span>⎨</span></span></span><span style="top:-4.2950099999999996em"><span class="pstrut" style="height:3.15em"></span><span class="delimsizinginner delim-size4"><span>⎪</span></span></span><span style="top:-4.30501em"><span class="pstrut" style="height:3.15em"></span><span class="delimsizinginner delim-size4"><span>⎪</span></span></span><span style="top:-4.60002em"><span class="pstrut" style="height:3.15em"></span><span class="delimsizinginner delim-size4"><span>⎧</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.8500199999999998em"><span></span></span></span></span></span></span><span class="mord"><span class="mtable"><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.41em"><span style="top:-4.41em"><span class="pstrut" style="height:3.008em"></span><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.22222em">V</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.13889em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">a</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05764em">E</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.055550000000000016em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">a</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em">I</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.027780000000000013em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">a</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span></span></span><span style="top:-2.97em"><span class="pstrut" style="height:3.008em"></span><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.22222em">V</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.13889em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">a</span><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em"></span><span class="mord">−</span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em">I</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.027780000000000013em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">a</span><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span></span></span><span style="top:-1.5300000000000002em"><span class="pstrut" style="height:3.008em"></span><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.22222em">V</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.13889em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">a</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em"></span><span class="mord">−</span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em">I</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.027780000000000013em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">a</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.9099999999999997em"><span></span></span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></div></li></ol><p>A tabela abaixo apresenta as equações para as faltas desbalanceadas após a execução do procedimento apresenteado:</p><table><thead><tr><th><strong>Falta</strong></th><th align="center"><strong>Seq. Positiva (<span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msubsup><mover accent="true"><mi>I</mi><mo>˙</mo></mover><mi>f</mi><mn>1</mn></msubsup></mrow><annotation encoding="application/x-tex">\dot{I}_{f}^{1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.3394059999999999em;vertical-align:-0.4192159999999999em"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em">I</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.027780000000000013em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em"><span style="top:-2.4168920000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.10764em">f</span></span></span></span><span style="top:-3.063em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.4192159999999999em"><span></span></span></span></span></span></span></span></span></span></span>)</strong></th><th align="center"><strong>Seq. Negativa (<span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msubsup><mover accent="true"><mi>I</mi><mo>˙</mo></mover><mi>f</mi><mn>2</mn></msubsup></mrow><annotation encoding="application/x-tex">\dot{I}_{f}^{2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.3394059999999999em;vertical-align:-0.4192159999999999em"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em">I</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.027780000000000013em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em"><span style="top:-2.4168920000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.10764em">f</span></span></span></span><span style="top:-3.063em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.4192159999999999em"><span></span></span></span></span></span></span></span></span></span></span>)</strong></th><th align="center"><strong>Seq. Zero (<span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msubsup><mover accent="true"><mi>I</mi><mo>˙</mo></mover><mi>f</mi><mn>0</mn></msubsup></mrow><annotation encoding="application/x-tex">\dot{I}_{f}^{0}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.3394059999999999em;vertical-align:-0.4192159999999999em"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em">I</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.027780000000000013em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em"><span style="top:-2.4168920000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.10764em">f</span></span></span></span><span style="top:-3.063em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.4192159999999999em"><span></span></span></span></span></span></span></span></span></span></span>)</strong></th></tr></thead><tbody><tr><td><strong>F-T</strong></td><td align="center"><span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mstyle displaystyle="true" scriptlevel="0"><mfrac><msub><mover accent="true"><mi>E</mi><mo>˙</mo></mover><mi>i</mi></msub><mrow><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>1</mn></msubsup><mo>+</mo><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>2</mn></msubsup><mo>+</mo><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>0</mn></msubsup><mo>+</mo><mn>3</mn><msub><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mi>f</mi></msub></mrow></mfrac></mstyle></mrow><annotation encoding="application/x-tex">\dfrac{\dot{E}_i}{\overline{z}_{ii}^{1} + \overline{z}_{ii}^{2} + \overline{z}_{ii}^{0} + 3 \overline{z}_{f}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.6078659999999996em;vertical-align:-1.010676em"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.5971899999999999em"><span style="top:-2.275432em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord">3</span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361079999999999em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.10764em">f</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em"><span class="pstrut" style="height:3em"></span><span class="frac-line" style="border-bottom-width:0.04em"></span></span><span style="top:-3.677em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05764em">E</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.055550000000000016em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.010676em"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></td><td align="center"><span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msubsup><mover accent="true"><mi>I</mi><mo>˙</mo></mover><mi>f</mi><mn>1</mn></msubsup></mrow><annotation encoding="application/x-tex">\dot{I}_{f}^{1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.3394059999999999em;vertical-align:-0.4192159999999999em"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em">I</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.027780000000000013em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em"><span style="top:-2.4168920000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.10764em">f</span></span></span></span><span style="top:-3.063em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.4192159999999999em"><span></span></span></span></span></span></span></span></span></span></span></td><td align="center"><span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msubsup><mover accent="true"><mi>I</mi><mo>˙</mo></mover><mi>f</mi><mn>1</mn></msubsup></mrow><annotation encoding="application/x-tex">\dot{I}_{f}^{1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.3394059999999999em;vertical-align:-0.4192159999999999em"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em">I</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.027780000000000013em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em"><span style="top:-2.4168920000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.10764em">f</span></span></span></span><span style="top:-3.063em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.4192159999999999em"><span></span></span></span></span></span></span></span></span></span></span></td></tr><tr><td><strong>F-F</strong></td><td align="center"><span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mstyle displaystyle="true" scriptlevel="0"><mfrac><msub><mover accent="true"><mi>E</mi><mo>˙</mo></mover><mi>i</mi></msub><mrow><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>1</mn></msubsup><mo>+</mo><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>2</mn></msubsup><mo>+</mo><msub><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mi>f</mi></msub></mrow></mfrac></mstyle></mrow><annotation encoding="application/x-tex">\dfrac{\dot{E}_i}{\overline{z}_{ii}^{1} + \overline{z}_{ii}^{2} + \overline{z}_{f}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.6078659999999996em;vertical-align:-1.010676em"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.5971899999999999em"><span style="top:-2.275432em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361079999999999em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.10764em">f</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em"><span class="pstrut" style="height:3em"></span><span class="frac-line" style="border-bottom-width:0.04em"></span></span><span style="top:-3.677em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05764em">E</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.055550000000000016em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.010676em"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></td><td align="center"><span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>−</mo><msubsup><mover accent="true"><mi>I</mi><mo>˙</mo></mover><mi>f</mi><mn>1</mn></msubsup></mrow><annotation encoding="application/x-tex">- \dot{I}_{f}^{1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.3394059999999999em;vertical-align:-0.4192159999999999em"></span><span class="mord">−</span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em">I</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.027780000000000013em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em"><span style="top:-2.4168920000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.10764em">f</span></span></span></span><span style="top:-3.063em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.4192159999999999em"><span></span></span></span></span></span></span></span></span></span></span></td><td align="center"><span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mo separator="true" lspace="0em" rspace="0em">,</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">0{,}0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8388800000000001em;vertical-align:-0.19444em"></span><span class="mord">0</span><span class="mord"><span class="mpunct">,</span></span><span class="mord">0</span></span></span></span></span></td></tr><tr><td><strong>F-F-T</strong></td><td align="center"><span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mstyle displaystyle="true" scriptlevel="0"><mfrac><mrow><msub><mover accent="true"><mi>E</mi><mo>˙</mo></mover><mi>i</mi></msub><mrow><mo fence="true">(</mo><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>2</mn></msubsup><mo>+</mo><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>0</mn></msubsup><mo>+</mo><mn>3</mn><msub><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mi>f</mi></msub><mo fence="true">)</mo></mrow></mrow><mrow><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>1</mn></msubsup><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>2</mn></msubsup><mo>+</mo><mn>3</mn><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>2</mn></msubsup><msub><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mi>f</mi></msub><mo>+</mo><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>2</mn></msubsup><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>0</mn></msubsup><mo>+</mo><mn>3</mn><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>1</mn></msubsup><msub><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mi>f</mi></msub><mo>+</mo><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>1</mn></msubsup><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>0</mn></msubsup></mrow></mfrac></mstyle></mrow><annotation encoding="application/x-tex">\dfrac{\dot{E}_i \left( \overline{z}_{ii}^{2} + \overline{z}_{ii}^{0} + 3 \overline{z}_{f} \right)}{\overline{z}_{ii}^{1} \overline{z}_{ii}^{2} + 3 \overline{z}_{ii}^{2} \overline{z}_{f} + \overline{z}_{ii}^{2} \overline{z}_{ii}^{0} + 3 \overline{z}_{ii}^{1} \overline{z}_{f} + \overline{z}_{ii}^{1} \overline{z}_{ii}^{0} }</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.670876em;vertical-align:-1.010676em"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6602000000000001em"><span style="top:-2.275432em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord">3</span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361079999999999em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.10764em">f</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord">3</span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361079999999999em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.10764em">f</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em"><span class="pstrut" style="height:3em"></span><span class="frac-line" style="border-bottom-width:0.04em"></span></span><span style="top:-3.7400100000000003em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05764em">E</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.055550000000000016em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em"></span><span class="minner"><span class="mopen delimcenter" style="top:0em"><span class="delimsizing size1">(</span></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord">3</span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361079999999999em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.10764em">f</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em"><span class="delimsizing size1">)</span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.010676em"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></td><td align="center"><span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>−</mo><mstyle displaystyle="true" scriptlevel="0"><mfrac><mrow><msub><mover accent="true"><mi>E</mi><mo>˙</mo></mover><mi>i</mi></msub><mo>−</mo><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>1</mn></msubsup><msubsup><mover accent="true"><mi>I</mi><mo>˙</mo></mover><mi>f</mi><mn>1</mn></msubsup></mrow><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>2</mn></msubsup></mfrac></mstyle></mrow><annotation encoding="application/x-tex">- \dfrac{\dot{E}_i - \overline{z}_{ii}^{1} \dot{I}_{f}^{1}}{\overline{z}_{ii}^{2}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.700974em;vertical-align:-0.971568em"></span><span class="mord">−</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.729406em"><span style="top:-2.275432em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em"><span class="pstrut" style="height:3em"></span><span class="frac-line" style="border-bottom-width:0.04em"></span></span><span style="top:-3.809216em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05764em">E</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.055550000000000016em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em">I</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.027780000000000013em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em"><span style="top:-2.4168920000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.10764em">f</span></span></span></span><span style="top:-3.063em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.4192159999999999em"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.971568em"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></td><td align="center"><span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>−</mo><mstyle displaystyle="true" scriptlevel="0"><mfrac><mrow><msub><mover accent="true"><mi>E</mi><mo>˙</mo></mover><mi>i</mi></msub><mo>−</mo><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>1</mn></msubsup><msubsup><mover accent="true"><mi>I</mi><mo>˙</mo></mover><mi>f</mi><mn>1</mn></msubsup></mrow><mrow><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>0</mn></msubsup><mo>+</mo><mn>3</mn><msub><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mi>f</mi></msub></mrow></mfrac></mstyle></mrow><annotation encoding="application/x-tex">- \dfrac{\dot{E}_i - \overline{z}_{ii}^{1} \dot{I}_{f}^{1}}{\overline{z}_{ii}^{0} + 3 \overline{z}_{f}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.740082em;vertical-align:-1.010676em"></span><span class="mord">−</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.729406em"><span style="top:-2.275432em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord">3</span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361079999999999em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.10764em">f</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em"><span class="pstrut" style="height:3em"></span><span class="frac-line" style="border-bottom-width:0.04em"></span></span><span style="top:-3.809216em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05764em">E</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.055550000000000016em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em">I</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.027780000000000013em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em"><span style="top:-2.4168920000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.10764em">f</span></span></span></span><span style="top:-3.063em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.4192159999999999em"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:1.010676em"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></td></tr></tbody></table><p>Para obter os valores em a-b-c é usada a equação matricial apresentada anteriormente, encerrando o cálculo de curto-circuito.</p><h2><a aria-hidden="true" tabindex="-1" class="anchor enhancedAnchor_2LWZ" id="referências"></a>Referências<a class="hash-link" href="#referências" title="Direct link to heading">#</a></h2><ol><li>ARRILLAGA, J.; WATSON, N. R. Computer Modelling of Electrical Power Systems. Wiley &amp; Sons, New York, 2001. doi: <a href="https://doi.org/10.1002/9781118878286" target="_blank" rel="noopener noreferrer">https://doi.org/10.1002/9781118878286</a></li><li>STEVENSON JR.; WILLIAN, D. Elementos de Análise de Sistemas de Potência. 2ª ed. São Paulo: McGraw-Hill, 1986.</li><li>ANDERSON, P. M.; FOUAD, A. A. Power System Control and Stability. Wiley-IEEE Press, New York, 2002. doi: <a href="https://doi.org/10.1109/9780470545577" target="_blank" rel="noopener noreferrer">https://doi.org/10.1109/9780470545577</a></li><li>FORTESCUE, C. L. Method of Symmetrical Coordinates Applied to the Solution of Polyphase Networks. Trans. AIEE, v. 37, p.1027-1140, 1918. doi: <a href="https://doi.org/10.1109/T-AIEE.1918.4765570" target="_blank" rel="noopener noreferrer">https://doi.org/10.1109/T-AIEE.1918.4765570</a></li><li>ANDERSON, P. M. Analysis of faulted power systems. New York: IEEE Press, 1995.</li></ol></div></article><div class="margin-vert--xl"><div class="row"><div class="col"><a href="https://github.com/Thales1330/PSP/tree/master/docusaurus/docs/fault.md" target="_blank" rel="noreferrer noopener"><svg fill="currentColor" height="1.2em" width="1.2em" preserveAspectRatio="xMidYMid meet" role="img" viewBox="0 0 40 40" class="iconEdit_2_ui" aria-label="Edit page"><g><path d="m34.5 11.7l-3 3.1-6.3-6.3 3.1-3q0.5-0.5 1.2-0.5t1.1 0.5l3.9 3.9q0.5 0.4 0.5 1.1t-0.5 1.2z m-29.5 17.1l18.4-18.5 6.3 6.3-18.4 18.4h-6.3v-6.2z"></path></g></svg>Edit this page</a></div></div></div><div class="margin-vert--lg"><nav class="pagination-nav" aria-label="Docs pages navigation"><div class="pagination-nav__item"><a class="pagination-nav__link" href="/PSP/pt/docs/powerFlow"><div class="pagination-nav__sublabel">Previous</div><div class="pagination-nav__label">« Fluxo de Potência</div></a></div><div class="pagination-nav__item pagination-nav__item--next"><a class="pagination-nav__link" href="/PSP/pt/docs/harmonics"><div class="pagination-nav__sublabel">Next</div><div class="pagination-nav__label">Harmônicos »</div></a></div></nav></div></div></div><div class="col col--3"><div class="tableOfContents_35-E thin-scrollbar"><ul class="table-of-contents table-of-contents__left-border"><li><a href="#cálculo-de-curto-circuito-no-psp-ufu" class="table-of-contents__link">Cálculo de Curto-Circuito no PSP-UFU</a></li><li><a href="#execução-do-cálculo-de-curto-circuito-no-psp-ufu" class="table-of-contents__link">Execução do cálculo de curto-circuito no PSP-UFU</a><ul><li><a href="#erros-comuns-na-execução-do-cálculo-de-curto-circuito" class="table-of-contents__link">Erros comuns na execução do cálculo de curto-circuito</a></li></ul></li><li><a href="#o-cálculo-de-curto-circuito" class="table-of-contents__link">O cálculo de curto-circuito</a><ul><li><a href="#método-das-componentes-simétricas" class="table-of-contents__link">Método das componentes simétricas</a></li><li><a href="#equações-do-curto-circuito" class="table-of-contents__link">Equações do curto-circuito</a></li></ul></li><li><a href="#referências" class="table-of-contents__link">Referências</a></li></ul></div></div></div></div></main></div></div><footer class="footer footer--dark"><div class="container"><div class="row footer__links"><div class="col footer__col"><h4 class="footer__title">Manual</h4><ul class="footer__items"><li class="footer__item"><a class="footer__link-item" href="/PSP/pt/docs/">Manual do PSP-UFU</a></li><li class="footer__item"><a href="https://thales1330.github.io/PSP/doxygen/html/index.html" target="_blank" rel="noopener noreferrer" class="footer__link-item">Documentação do Código</a></li></ul></div><div class="col footer__col"><h4 class="footer__title">Comunidade</h4><ul class="footer__items"><li class="footer__item"><a href="https://github.com/Thales1330/PSP/issues" target="_blank" rel="noopener noreferrer" class="footer__link-item">Faça uma pergunta</a></li><li class="footer__item"><a href="https://twitter.com/PspUfu" target="_blank" rel="noopener noreferrer" class="footer__link-item">Twitter</a></li></ul></div><div class="col footer__col"><h4 class="footer__title">Crédito das Imagens do Site</h4><ul class="footer__items"><li class="footer__item"><a href="http://www.freepik.com/" target="_blank" rel="noopener noreferrer" class="footer__link-item">Imagens criadas por upklyak / slidesgo / macrovector / Freepik</a></li></ul></div></div><div class="footer__bottom text--center"><div class="footer__copyright">Copyright © 2021 Thales Lima Oliveira. Construído com Docusaurus.</div></div></div></footer></div>
-<script src="/PSP/pt/assets/js/styles.cc4b2cfe.js"></script>
-<script src="/PSP/pt/assets/js/runtime~main.b7ffaf86.js"></script>
-<script src="/PSP/pt/assets/js/main.168dd2d0.js"></script>
-<script src="/PSP/pt/assets/js/1.c1697df3.js"></script>
-<script src="/PSP/pt/assets/js/2.6b1d437b.js"></script>
-<script src="/PSP/pt/assets/js/64.e39adaf3.js"></script>
-<script src="/PSP/pt/assets/js/67.74e35f3d.js"></script>
-<script src="/PSP/pt/assets/js/935f2afb.884eecf8.js"></script>
-<script src="/PSP/pt/assets/js/17896441.9003d92a.js"></script>
-<script src="/PSP/pt/assets/js/b4e22210.1b5cfa1d.js"></script>
+<script src="/PSP/pt/assets/js/styles.981ec462.js"></script>
+<script src="/PSP/pt/assets/js/runtime~main.da4f4a15.js"></script>
+<script src="/PSP/pt/assets/js/main.7cb5b37f.js"></script>
+<script src="/PSP/pt/assets/js/1.678f90a6.js"></script>
+<script src="/PSP/pt/assets/js/2.10feb4fb.js"></script>
+<script src="/PSP/pt/assets/js/64.67181b07.js"></script>
+<script src="/PSP/pt/assets/js/67.6e1805cc.js"></script>
+<script src="/PSP/pt/assets/js/935f2afb.29b6ce5b.js"></script>
+<script src="/PSP/pt/assets/js/17896441.84a992dd.js"></script>
+<script src="/PSP/pt/assets/js/b4e22210.030d0ce4.js"></script>
</body>
</html> \ No newline at end of file