diff options
Diffstat (limited to 'docs/pt/docs/fault/index.html')
-rw-r--r-- | docs/pt/docs/fault/index.html | 45 |
1 files changed, 45 insertions, 0 deletions
diff --git a/docs/pt/docs/fault/index.html b/docs/pt/docs/fault/index.html new file mode 100644 index 0000000..94a08e3 --- /dev/null +++ b/docs/pt/docs/fault/index.html @@ -0,0 +1,45 @@ +<!doctype html> +<html lang="pt" dir="ltr"> +<head> +<meta charset="UTF-8"> +<meta name="viewport" content="width=device-width,initial-scale=1"> +<meta name="generator" content="Docusaurus v2.0.0-alpha.71"> +<link rel="alternate" type="application/rss+xml" href="/PSP/pt/blog/rss.xml" title="PSP-UFU Blog RSS Feed"> +<link rel="alternate" type="application/atom+xml" href="/PSP/pt/blog/atom.xml" title="PSP-UFU Blog Atom Feed"> +<link rel="search" type="application/opensearchdescription+xml" title="PSP-UFU" href="/PSP/pt/opensearch.xml"><title data-react-helmet="true">Curto-Circuito | PSP-UFU</title><meta data-react-helmet="true" property="og:url" content="https://thales1330.github.io/PSP/pt/docs/fault"><meta data-react-helmet="true" name="docsearch:language" content="pt"><meta data-react-helmet="true" name="docsearch:version" content="current"><meta data-react-helmet="true" name="docsearch:docusaurus_tag" content="docs-default-current"><meta data-react-helmet="true" property="og:title" content="Curto-Circuito | PSP-UFU"><meta data-react-helmet="true" name="description" content="O principal objetivo da análise de curto-circuito é o cálculo das correntes e tensões de falta para especificação de disjuntores, transformadores de corrente e a parametrização de relés de proteção. De 70 a 80% das faltas em linhas de transmissão são entre uma fase e terra, as quais ocorrem devido ao centelhamento de apenas uma fase da linha para a torre e então para a terra.O menor número de faltas, cerca de 5%, envolve todas as três fases, chamadas de faltas trifásicas. Os outros tipos de faltas envolvem duas fases e duas fases e a terra."><meta data-react-helmet="true" property="og:description" content="O principal objetivo da análise de curto-circuito é o cálculo das correntes e tensões de falta para especificação de disjuntores, transformadores de corrente e a parametrização de relés de proteção. De 70 a 80% das faltas em linhas de transmissão são entre uma fase e terra, as quais ocorrem devido ao centelhamento de apenas uma fase da linha para a torre e então para a terra.O menor número de faltas, cerca de 5%, envolve todas as três fases, chamadas de faltas trifásicas. Os outros tipos de faltas envolvem duas fases e duas fases e a terra."><link data-react-helmet="true" rel="shortcut icon" href="/PSP/pt/img/favicon.ico"><link data-react-helmet="true" rel="canonical" href="https://thales1330.github.io/PSP/pt/docs/fault"><link data-react-helmet="true" rel="alternate" href="https://thales1330.github.io/PSP/docs/fault" hreflang="en"><link data-react-helmet="true" rel="alternate" href="https://thales1330.github.io/PSP/pt/docs/fault" hreflang="pt"><link data-react-helmet="true" rel="alternate" href="https://thales1330.github.io/PSP/docs/fault" hreflang="x-default"><link data-react-helmet="true" rel="preconnect" href="https://BH4D9OD16A-dsn.algolia.net" crossorigin="anonymous"><link rel="stylesheet" href="/PSP/pt/assets/css/styles.73f64b8b.css"> +<link rel="preload" href="/PSP/pt/assets/js/styles.cc4b2cfe.js" as="script"> +<link rel="preload" href="/PSP/pt/assets/js/runtime~main.b7ffaf86.js" as="script"> +<link rel="preload" href="/PSP/pt/assets/js/main.168dd2d0.js" as="script"> +<link rel="preload" href="/PSP/pt/assets/js/1.c1697df3.js" as="script"> +<link rel="preload" href="/PSP/pt/assets/js/2.6b1d437b.js" as="script"> +<link rel="preload" href="/PSP/pt/assets/js/64.e39adaf3.js" as="script"> +<link rel="preload" href="/PSP/pt/assets/js/67.74e35f3d.js" as="script"> +<link rel="preload" href="/PSP/pt/assets/js/935f2afb.884eecf8.js" as="script"> +<link rel="preload" href="/PSP/pt/assets/js/17896441.9003d92a.js" as="script"> +<link rel="preload" href="/PSP/pt/assets/js/b4e22210.1b5cfa1d.js" as="script"> +</head> +<body> +<script>!function(){function e(e){document.documentElement.setAttribute("data-theme",e)}var t=function(){var e=null;try{e=localStorage.getItem("theme")}catch(e){}return e}();null!==t?e(t):window.matchMedia("(prefers-color-scheme: dark)").matches?e("dark"):window.matchMedia("(prefers-color-scheme: light)").matches?e("light"):e("dark")}()</script><div id="__docusaurus"> +<div><a href="#main" class="skipToContent_1oUP">Skip to main content</a></div><nav class="navbar navbar--fixed-top"><div class="navbar__inner"><div class="navbar__items"><button aria-label="Navigation bar toggle" class="navbar__toggle" type="button" tabindex="0"><svg aria-label="Menu" width="30" height="30" viewBox="0 0 30 30" role="img" focusable="false"><title>Menu</title><path stroke="currentColor" stroke-linecap="round" stroke-miterlimit="10" stroke-width="2" d="M4 7h22M4 15h22M4 23h22"></path></svg></button><a class="navbar__brand" href="/PSP/pt/"><img src="/PSP/pt/img/logo.svg" alt="PSP-UFU logo" class="themedImage_1VuW themedImage--light_3UqQ navbar__logo"><img src="/PSP/pt/img/logo.svg" alt="PSP-UFU logo" class="themedImage_1VuW themedImage--dark_hz6m navbar__logo"><strong class="navbar__title">PSP-UFU</strong></a><a aria-current="page" class="navbar__item navbar__link navbar__link--active" href="/PSP/pt/docs/">Manual do Usuário</a><a class="navbar__item navbar__link" href="/PSP/pt/blog">Registro de Alterações</a></div><div class="navbar__items navbar__items--right"><div class="navbar__item dropdown dropdown--hoverable dropdown--right"><a href="#" class="navbar__item navbar__link"><span><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 20 20" width="20" height="20" style="vertical-align:text-bottom;margin-right:5px"><path fill="currentColor" d="M19.753 10.909c-.624-1.707-2.366-2.726-4.661-2.726-.09 0-.176.002-.262.006l-.016-2.063 3.525-.607c.115-.019.133-.119.109-.231-.023-.111-.167-.883-.188-.976-.027-.131-.102-.127-.207-.109-.104.018-3.25.461-3.25.461l-.013-2.078c-.001-.125-.069-.158-.194-.156l-1.025.016c-.105.002-.164.049-.162.148l.033 2.307s-3.061.527-3.144.543c-.084.014-.17.053-.151.143.019.09.19 1.094.208 1.172.018.08.072.129.188.107l2.924-.504.035 2.018c-1.077.281-1.801.824-2.256 1.303-.768.807-1.207 1.887-1.207 2.963 0 1.586.971 2.529 2.328 2.695 3.162.387 5.119-3.06 5.769-4.715 1.097 1.506.256 4.354-2.094 5.98-.043.029-.098.129-.033.207l.619.756c.08.096.206.059.256.023 2.51-1.73 3.661-4.515 2.869-6.683zm-7.386 3.188c-.966-.121-.944-.914-.944-1.453 0-.773.327-1.58.876-2.156a3.21 3.21 0 011.229-.799l.082 4.277a2.773 2.773 0 01-1.243.131zm2.427-.553l.046-4.109c.084-.004.166-.01.252-.01.773 0 1.494.145 1.885.361.391.217-1.023 2.713-2.183 3.758zm-8.95-7.668a.196.196 0 00-.196-.145h-1.95a.194.194 0 00-.194.144L.008 16.916c-.017.051-.011.076.062.076h1.733c.075 0 .099-.023.114-.072l1.008-3.318h3.496l1.008 3.318c.016.049.039.072.113.072h1.734c.072 0 .078-.025.062-.076-.014-.05-3.083-9.741-3.494-11.04zm-2.618 6.318l1.447-5.25 1.447 5.25H3.226z"></path></svg><span>Português</span></span></a><ul class="dropdown__menu"><li><a href="/PSP/docs/fault" target="_self" rel="noopener noreferrer" class="dropdown__link">English</a></li><li><a href="/PSP/pt/docs/fault" target="_self" rel="noopener noreferrer" class="dropdown__link dropdown__link--active">Português</a></li></ul></div><a href="https://github.com/Thales1330/PSP" target="_blank" rel="noopener noreferrer" class="navbar__item navbar__link">GitHub</a><div class="react-toggle react-toggle--disabled displayOnlyInLargeViewport_GrZ2"><div class="react-toggle-track"><div class="react-toggle-track-check"><span class="toggle_71bT" style="margin-left:2px">🌙</span></div><div class="react-toggle-track-x"><span class="toggle_71bT" style="margin-left:1px">☀</span></div></div><div class="react-toggle-thumb"></div><input type="checkbox" disabled="" aria-label="Dark mode toggle" class="react-toggle-screenreader-only"></div><button type="button" class="DocSearch DocSearch-Button" aria-label="Search"><span class="DocSearch-Button-Container"><svg width="20" height="20" class="DocSearch-Search-Icon" viewBox="0 0 20 20"><path d="M14.386 14.386l4.0877 4.0877-4.0877-4.0877c-2.9418 2.9419-7.7115 2.9419-10.6533 0-2.9419-2.9418-2.9419-7.7115 0-10.6533 2.9418-2.9419 7.7115-2.9419 10.6533 0 2.9419 2.9418 2.9419 7.7115 0 10.6533z" stroke="currentColor" fill="none" fill-rule="evenodd" stroke-linecap="round" stroke-linejoin="round"></path></svg><span class="DocSearch-Button-Placeholder">Search</span></span></button></div></div><div role="presentation" class="navbar-sidebar__backdrop"></div><div class="navbar-sidebar"><div class="navbar-sidebar__brand"><a class="navbar__brand" href="/PSP/pt/"><img src="/PSP/pt/img/logo.svg" alt="PSP-UFU logo" class="themedImage_1VuW themedImage--light_3UqQ navbar__logo"><img src="/PSP/pt/img/logo.svg" alt="PSP-UFU logo" class="themedImage_1VuW themedImage--dark_hz6m navbar__logo"><strong class="navbar__title">PSP-UFU</strong></a></div><div class="navbar-sidebar__items"><div class="menu"><ul class="menu__list"><li class="menu__list-item"><a aria-current="page" class="menu__link navbar__link--active" href="/PSP/pt/docs/">Manual do Usuário</a></li><li class="menu__list-item"><a class="menu__link" href="/PSP/pt/blog">Registro de Alterações</a></li><li class="menu__list-item menu__list-item--collapsed"><a href="#" role="button" class="menu__link menu__link--sublist"><span><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 20 20" width="20" height="20" style="vertical-align:text-bottom;margin-right:5px"><path fill="currentColor" d="M19.753 10.909c-.624-1.707-2.366-2.726-4.661-2.726-.09 0-.176.002-.262.006l-.016-2.063 3.525-.607c.115-.019.133-.119.109-.231-.023-.111-.167-.883-.188-.976-.027-.131-.102-.127-.207-.109-.104.018-3.25.461-3.25.461l-.013-2.078c-.001-.125-.069-.158-.194-.156l-1.025.016c-.105.002-.164.049-.162.148l.033 2.307s-3.061.527-3.144.543c-.084.014-.17.053-.151.143.019.09.19 1.094.208 1.172.018.08.072.129.188.107l2.924-.504.035 2.018c-1.077.281-1.801.824-2.256 1.303-.768.807-1.207 1.887-1.207 2.963 0 1.586.971 2.529 2.328 2.695 3.162.387 5.119-3.06 5.769-4.715 1.097 1.506.256 4.354-2.094 5.98-.043.029-.098.129-.033.207l.619.756c.08.096.206.059.256.023 2.51-1.73 3.661-4.515 2.869-6.683zm-7.386 3.188c-.966-.121-.944-.914-.944-1.453 0-.773.327-1.58.876-2.156a3.21 3.21 0 011.229-.799l.082 4.277a2.773 2.773 0 01-1.243.131zm2.427-.553l.046-4.109c.084-.004.166-.01.252-.01.773 0 1.494.145 1.885.361.391.217-1.023 2.713-2.183 3.758zm-8.95-7.668a.196.196 0 00-.196-.145h-1.95a.194.194 0 00-.194.144L.008 16.916c-.017.051-.011.076.062.076h1.733c.075 0 .099-.023.114-.072l1.008-3.318h3.496l1.008 3.318c.016.049.039.072.113.072h1.734c.072 0 .078-.025.062-.076-.014-.05-3.083-9.741-3.494-11.04zm-2.618 6.318l1.447-5.25 1.447 5.25H3.226z"></path></svg><span>Languages</span></span></a><ul class="menu__list"><li class="menu__list-item"><a href="/PSP/docs/fault" target="_self" rel="noopener noreferrer" class="menu__link">English</a></li><li class="menu__list-item"><a href="/PSP/pt/docs/fault" target="_self" rel="noopener noreferrer" class="menu__link dropdown__link--active">Português</a></li></ul></li><li class="menu__list-item"><a href="https://github.com/Thales1330/PSP" target="_blank" rel="noopener noreferrer" class="menu__link">GitHub</a></li></ul></div></div></div></nav><div class="main-wrapper main-docs-wrapper"><div class="docPage_31aa"><div class="docSidebarContainer_3Kbt" role="complementary"><div class="sidebar_15mo"><div class="menu menu--responsive thin-scrollbar menu_Bmed"><button aria-label="Open menu" aria-haspopup="true" class="button button--secondary button--sm menu__button" type="button"><svg aria-label="Menu" class="sidebarMenuIcon_fgN0" width="24" height="24" viewBox="0 0 30 30" role="img" focusable="false"><title>Menu</title><path stroke="currentColor" stroke-linecap="round" stroke-miterlimit="10" stroke-width="2" d="M4 7h22M4 15h22M4 23h22"></path></svg></button><ul class="menu__list"><li class="menu__list-item menu__list-item--collapsed"><a class="menu__link menu__link--sublist" href="#!">Introdução</a><ul class="menu__list"><li class="menu__list-item"><a class="menu__link" tabindex="-1" href="/PSP/pt/docs/">PSP-UFU</a></li><li class="menu__list-item"><a class="menu__link" tabindex="-1" href="/PSP/pt/docs/installation">Instalação</a></li><li class="menu__list-item"><a class="menu__link" tabindex="-1" href="/PSP/pt/docs/mainScreen">Tela Principal</a></li><li class="menu__list-item"><a class="menu__link" tabindex="-1" href="/PSP/pt/docs/cadTools">Ferramentas CAD</a></li></ul></li><li class="menu__list-item menu__list-item--collapsed"><a class="menu__link menu__link--sublist" href="#!">Editor de Elementos de Potência</a><ul class="menu__list"><li class="menu__list-item"><a class="menu__link" tabindex="-1" href="/PSP/pt/docs/powerEditor">Editor de Potência</a></li><li class="menu__list-item menu__list-item--collapsed"><a class="menu__link menu__link--sublist" href="#!" tabindex="-1">Eelementos de Potência</a><ul class="menu__list"><li class="menu__list-item"><a class="menu__link" tabindex="-1" href="/PSP/pt/docs/bus">Barramento</a></li><li class="menu__list-item"><a class="menu__link" tabindex="-1" href="/PSP/pt/docs/line">Linha</a></li><li class="menu__list-item"><a class="menu__link" tabindex="-1" href="/PSP/pt/docs/transformer">Transformador</a></li><li class="menu__list-item"><a class="menu__link" tabindex="-1" href="/PSP/pt/docs/load">Carga</a></li><li class="menu__list-item"><a class="menu__link" tabindex="-1" href="/PSP/pt/docs/capacitor">Capacitor</a></li><li class="menu__list-item"><a class="menu__link" tabindex="-1" href="/PSP/pt/docs/inductor">Indutor</a></li><li class="menu__list-item"><a class="menu__link" tabindex="-1" href="/PSP/pt/docs/harmSource">Fonte de Corrente Harmônica</a></li><li class="menu__list-item"><a class="menu__link" tabindex="-1" href="/PSP/pt/docs/syncGenerator">Gerador Síncrono</a></li><li class="menu__list-item"><a class="menu__link" tabindex="-1" href="/PSP/pt/docs/syncMotor">Compensador Síncrono</a></li><li class="menu__list-item"><a class="menu__link" tabindex="-1" href="/PSP/pt/docs/indMotor">Motor de Indução</a></li></ul></li></ul></li><li class="menu__list-item menu__list-item--collapsed"><a class="menu__link menu__link--sublist" href="#!">Editor de Elementos de Controle</a><ul class="menu__list"><li class="menu__list-item"><a class="menu__link" tabindex="-1" href="/PSP/pt/docs/controlEditor">Editor de Controle</a></li><li class="menu__list-item menu__list-item--collapsed"><a class="menu__link menu__link--sublist" href="#!" tabindex="-1">Elementos de Controle</a><ul class="menu__list"><li class="menu__list-item"><a class="menu__link" tabindex="-1" href="/PSP/pt/docs/io">Entrada / Saída</a></li><li class="menu__list-item"><a class="menu__link" tabindex="-1" href="/PSP/pt/docs/transferFunction">Função Transferência</a></li><li class="menu__list-item"><a class="menu__link" tabindex="-1" href="/PSP/pt/docs/sum">Somador</a></li><li class="menu__list-item"><a class="menu__link" tabindex="-1" href="/PSP/pt/docs/multiplier">Multiplicador</a></li><li class="menu__list-item"><a class="menu__link" tabindex="-1" href="/PSP/pt/docs/divider">Divisor</a></li><li class="menu__list-item"><a class="menu__link" tabindex="-1" href="/PSP/pt/docs/exponential">Exponencial</a></li><li class="menu__list-item"><a class="menu__link" tabindex="-1" href="/PSP/pt/docs/limiter">Limitador absoluto</a></li><li class="menu__list-item"><a class="menu__link" tabindex="-1" href="/PSP/pt/docs/rateLimiter">Limitador de taxa</a></li><li class="menu__list-item"><a class="menu__link" tabindex="-1" href="/PSP/pt/docs/const">Constante</a></li><li class="menu__list-item"><a class="menu__link" tabindex="-1" href="/PSP/pt/docs/gain">Ganho</a></li><li class="menu__list-item"><a class="menu__link" tabindex="-1" href="/PSP/pt/docs/mathExpression">Expressão Matemática</a></li></ul></li></ul></li><li class="menu__list-item"><a class="menu__link menu__link--sublist menu__link--active" href="#!">Simulações</a><ul class="menu__list"><li class="menu__list-item"><a class="menu__link" tabindex="0" href="/PSP/pt/docs/powerFlow">Fluxo de Potência</a></li><li class="menu__list-item"><a aria-current="page" class="menu__link menu__link--active active" tabindex="0" href="/PSP/pt/docs/fault">Curto-Circuito</a></li><li class="menu__list-item"><a class="menu__link" tabindex="0" href="/PSP/pt/docs/harmonics">Harmônicos</a></li><li class="menu__list-item"><a class="menu__link" tabindex="0" href="/PSP/pt/docs/stability">Estabilidade</a></li><li class="menu__list-item"><a class="menu__link" tabindex="0" href="/PSP/pt/docs/simulationConfig">Configurações da Simulação</a></li></ul></li><li class="menu__list-item menu__list-item--collapsed"><a class="menu__link menu__link--sublist" href="#!">Visualização dos Dados</a><ul class="menu__list"><li class="menu__list-item"><a class="menu__link" tabindex="-1" href="/PSP/pt/docs/text">Texto Vinculado</a></li><li class="menu__list-item"><a class="menu__link" tabindex="-1" href="/PSP/pt/docs/tabularReport">Relatórios Tabulares</a></li><li class="menu__list-item"><a class="menu__link" tabindex="-1" href="/PSP/pt/docs/graphViewer">Visualizador de Gráficos</a></li><li class="menu__list-item"><a class="menu__link" tabindex="-1" href="/PSP/pt/docs/heatmap">Mapa de Tensão</a></li></ul></li></ul></div></div></div><main class="docMainContainer_3ufF"><div class="container padding-vert--lg docItemWrapper_3FMP"><div class="row"><div class="col docItemCol_3FnS"><div class="docItemContainer_33ec"><article><header><h1 class="docTitle_3a4h">Curto-Circuito</h1></header><div class="markdown"><link rel="stylesheet" href="/PSP/pt/katex/katex.min.css"><p>O principal objetivo da análise de curto-circuito é o cálculo das correntes e tensões de falta para especificação de disjuntores, transformadores de corrente e a parametrização de relés de proteção. De 70 a 80% das faltas em linhas de transmissão são entre uma fase e terra, as quais ocorrem devido ao centelhamento de apenas uma fase da linha para a torre e então para a terra.O menor número de faltas, cerca de 5%, envolve todas as três fases, chamadas de faltas trifásicas. Os outros tipos de faltas envolvem duas fases e duas fases e a terra.</p><p>Todas essas falhas, exceto a trifásica, são assimétricas e causam desequilíbrio entre as fases.</p><h2><a aria-hidden="true" tabindex="-1" class="anchor enhancedAnchor_2LWZ" id="cálculo-de-curto-circuito-no-psp-ufu"></a>Cálculo de Curto-Circuito no PSP-UFU<a class="hash-link" href="#cálculo-de-curto-circuito-no-psp-ufu" title="Direct link to heading">#</a></h2><p>O primeiro estágio do cálculo de curto-circuito é a determinação das tensões pré-falta, das potências de geração e cargas do sistema. Esses dados são obtidos por meio do estudo de <a href="/PSP/pt/docs/powerFlow">fluxo de carga</a>.</p><div class="admonition admonition-info alert alert--info"><div class="admonition-heading"><h5><span class="admonition-icon"><svg xmlns="http://www.w3.org/2000/svg" width="14" height="16" viewBox="0 0 14 16"><path fill-rule="evenodd" d="M7 2.3c3.14 0 5.7 2.56 5.7 5.7s-2.56 5.7-5.7 5.7A5.71 5.71 0 0 1 1.3 8c0-3.14 2.56-5.7 5.7-5.7zM7 1C3.14 1 0 4.14 0 8s3.14 7 7 7 7-3.14 7-7-3.14-7-7-7zm1 3H6v5h2V4zm0 6H6v2h2v-2z"></path></svg></span>Informação</h5></div><div class="admonition-content"><p>Atualmente, o PSP-UFU fornece resultado para os seguintes tipos de falta:</p><ul><li>Falta Trifásica (3F-T);</li><li>Falta Fase-Terra (F-T);</li><li>Falta Fase-Fase (F-F);</li><li>Falta Fase-Fase-Terra (F-F-T).</li></ul></div></div><p>Os modelos dos elementos elétricos que constituem um sistema de potência para o estudo de curto-circuito são semelhantes aos do fluxo de carga, apresentando algumas divergências para as faltas desbalanceadas (F-T, F-F e F-F-T).</p><p>As faltas que ocorrem com maior frequência em sistemas de potência são assimétricas. Como qualquer falta assimétrica provoca fluxo de corrente desequilibrada é necessário empregar o método das componentes simétricas. Esse método permite o estudo de sistemas balanceados em conjunto cargas desbalanceadas.</p><h2><a aria-hidden="true" tabindex="-1" class="anchor enhancedAnchor_2LWZ" id="execução-do-cálculo-de-curto-circuito-no-psp-ufu"></a>Execução do cálculo de curto-circuito no PSP-UFU<a class="hash-link" href="#execução-do-cálculo-de-curto-circuito-no-psp-ufu" title="Direct link to heading">#</a></h2><p>Existem duas formas de se calcular o curto-circuito no PSP-UFU:</p><ul><li><strong>Falta</strong>: Calcula a falta inserida nas <a href="/PSP/pt/docs/bus">barras</a>. Nesse tipo de cálculo é possível calcular faltas <em>shunt</em> nos <a href="/PSP/pt/docs/bus">barramentos</a> balanceadas e desbalanceadas.</li><li><strong>Nível de curto-circuito</strong>: Calcula o nível de curto-circuito (falta trifásica) em todos <a href="/PSP/pt/docs/bus">barramentos</a> do sistema.</li></ul><p>Após a construção do diagrama unifilar no <a href="/PSP/pt/docs/powerEditor">editor de potência</a>, a execução do cálculo de curto-circuito é realizada no <a href="/PSP/pt/docs/mainScreen#menu-ribbon">menu Simulação</a> clicando no botão <strong>Falta</strong>. Para calcular o nível de curto-circuito (falta trifásica) em todos <a href="/PSP/pt/docs/bus">barramentos</a> do sistema, basta clicar no botão <strong>Nível de curto-circuito</strong>.</p><div><center><img src="/PSP/pt/images/menuSimulationFaulta.svg" alt="Execução dos cálculos de curto-circuito" title="Execução dos cálculos de curto-circuito"></center></div><div class="admonition admonition-caution alert alert--warning"><div class="admonition-heading"><h5><span class="admonition-icon"><svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M8.893 1.5c-.183-.31-.52-.5-.887-.5s-.703.19-.886.5L.138 13.499a.98.98 0 0 0 0 1.001c.193.31.53.501.886.501h13.964c.367 0 .704-.19.877-.5a1.03 1.03 0 0 0 .01-1.002L8.893 1.5zm.133 11.497H6.987v-2.003h2.039v2.003zm0-3.004H6.987V5.987h2.039v4.006z"></path></svg></span>Atenção</h5></div><div class="admonition-content"><p>É possível calcular as faltas sem a execução do <a href="/PSP/pt/docs/powerFlow">fluxo de carga</a>, porém <strong>não é recomendável</strong>, visto que os valores das correntes de falta são significativamente alteradas.</p></div></div><p><strong>Outra possibilidade</strong> é a execução por meio do cálculo contínuo, também presente no <a href="/PSP/pt/docs/mainScreen#menu-ribbon">menu Simulação</a> e seu acionamento é realizado co clicar no botão <strong>Habilitar solução</strong>. Com essa opção, os cálculos estáticos selecionados nas <a href="/PSP/pt/docs/simulationConfig">configurações de simulação</a> são automaticamente realizados ao modificar quaisquer parâmetros da rede, como dados elétricos e acionamento dos disjuntores dos elementos (remoção ou inserção).</p><div class="admonition admonition-warning alert alert--danger"><div class="admonition-heading"><h5><span class="admonition-icon"><svg xmlns="http://www.w3.org/2000/svg" width="12" height="16" viewBox="0 0 12 16"><path fill-rule="evenodd" d="M5.05.31c.81 2.17.41 3.38-.52 4.31C3.55 5.67 1.98 6.45.9 7.98c-1.45 2.05-1.7 6.53 3.53 7.7-2.2-1.16-2.67-4.52-.3-6.61-.61 2.03.53 3.33 1.94 2.86 1.39-.47 2.3.53 2.27 1.67-.02.78-.31 1.44-1.13 1.81 3.42-.59 4.78-3.42 4.78-5.56 0-2.84-2.53-3.22-1.25-5.61-1.52.13-2.03 1.13-1.89 2.75.09 1.08-1.02 1.8-1.86 1.33-.67-.41-.66-1.19-.06-1.78C8.18 5.31 8.68 2.45 5.05.32L5.03.3l.02.01z"></path></svg></span>Cuidado!</h5></div><div class="admonition-content"><p>Os cálculos de curtos-circuitos não são habilitados por padrão no cálculo contínuo e devem ser inseridos nas <a href="/PSP/pt/docs/simulationConfig">configurações de simulação</a>.</p></div></div><p>Os resultados do cálculo de curto-circuito são exibidos nos <a href="/PSP/pt/docs/text">elementos de texto vinculado</a>, ao posicionar o mouse sobre os barramentos e em <a href="/PSP/pt/docs/tabularReport">relatórios tabulares</a>.</p><h3><a aria-hidden="true" tabindex="-1" class="anchor enhancedAnchor_2LWZ" id="erros-comuns-na-execução-do-cálculo-de-curto-circuito"></a>Erros comuns na execução do cálculo de curto-circuito<a class="hash-link" href="#erros-comuns-na-execução-do-cálculo-de-curto-circuito" title="Direct link to heading">#</a></h3><p>A seguir são apresentados os erros mais comuns relacionados ao calculo de curto-circuito.</p><h4><a aria-hidden="true" tabindex="-1" class="anchor enhancedAnchor_2LWZ" id="a-seguinte-mensagem-de-erro-é-exibida-falha-ao-inverter-a-matriz-admitância-de-sequência-zero"></a>A seguinte mensagem de erro é exibida: "Falha ao inverter a matriz admitância de sequência zero"<a class="hash-link" href="#a-seguinte-mensagem-de-erro-é-exibida-falha-ao-inverter-a-matriz-admitância-de-sequência-zero" title="Direct link to heading">#</a></h4><ul><li><strong>Impossibilidade de circulação da corrente de sequência zero</strong>. Caso o gerador não seja aterrado, não circulará corrente de sequência zero por ele. Nesse caso, dependendo da conexão do transformador próximo ao gerador sem aterramento, a matriz admitância de sequência zero é singular. Para contornar esse problema escolha uma das duas soluções abaixo:<ul><li>Marque a opção "Neutro aterrado" e insira um alto valor de reatância de aterramento (<span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>j</mi><mn>9999</mn><mtext> </mtext><mi>p</mi><mi mathvariant="normal">.</mi><mi>u</mi><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">j9999~p.u.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.85396em;vertical-align:-0.19444em"></span><span class="mord mathdefault" style="margin-right:0.05724em">j</span><span class="mord">9</span><span class="mord">9</span><span class="mord">9</span><span class="mord">9</span><span class="mspace nobreak"> </span><span class="mord mathdefault">p</span><span class="mord">.</span><span class="mord mathdefault">u</span><span class="mord">.</span></span></span></span></span>, por exemplo);</li><li>Ou, na barra do gerador, insira um reator de baixo valor de potência reativa (<span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn><mo separator="true" lspace="0em" rspace="0em">,</mo><mn>0</mn><mtext> </mtext><mi>v</mi><mi>a</mi><mi>r</mi></mrow><annotation encoding="application/x-tex">1{,}0~var</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8388800000000001em;vertical-align:-0.19444em"></span><span class="mord">1</span><span class="mord"><span class="mpunct">,</span></span><span class="mord">0</span><span class="mspace nobreak"> </span><span class="mord mathdefault" style="margin-right:0.03588em">v</span><span class="mord mathdefault">a</span><span class="mord mathdefault" style="margin-right:0.02778em">r</span></span></span></span></span>, por exemplo).</li></ul></li></ul><h2><a aria-hidden="true" tabindex="-1" class="anchor enhancedAnchor_2LWZ" id="o-cálculo-de-curto-circuito"></a>O cálculo de curto-circuito<a class="hash-link" href="#o-cálculo-de-curto-circuito" title="Direct link to heading">#</a></h2><p>Como já foi apresentado anteriormente, as faltas que ocorrem com maior frequência em sistemas de potência são assimétricas. Como qualquer falta assimétrica provoca fluxo de corrente desequilibrada é necessário empregar o método das componentes simétricas. Esse método permite o estudo de sistemas balanceados com cargas desbalanceadas.</p><h3><a aria-hidden="true" tabindex="-1" class="anchor enhancedAnchor_2LWZ" id="método-das-componentes-simétricas"></a>Método das componentes simétricas<a class="hash-link" href="#método-das-componentes-simétricas" title="Direct link to heading">#</a></h3><p>Esse método proposto por C. L. Fortescue, permite definir um sistema de n fasores desbalanceados em n – 1 sistemas de n fases balanceados e um sistema de fase zero. O sistema de fase zero é definido por todas as fases de mesmo módulo e ângulo. +Para um sistema trifásico pode-se definir três componentes de sequência:</p><ol><li>Componentes de sequência positiva, constituindo em três fasores iguais em módulo, 120º defasados entre si, e tendo a mesma sequência de fase que os fasores originais;</li><li>Componentes de sequência negativa, constituindo em três fasores iguais em módulo, 120º defasados entre si, e tendo a sequência de fase oposta à dos fasores originais.</li><li>Componentes de sequência zero, constituindo em três fasores iguais em módulo e com defasagem nula entre si.</li></ol><p>Com isso pode-se decompor as tensões de fase em componentes simétricas pelas seguintes equações:</p><div class="math math-display"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo fence="true">{</mo><mtable rowspacing="0.3599999999999999em" columnalign="left left" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><msub><mover accent="true"><mi>V</mi><mo>˙</mo></mover><mi>a</mi></msub><mo>=</mo><msub><mover accent="true"><mi>V</mi><mo>˙</mo></mover><mrow><mi>a</mi><mn>1</mn></mrow></msub><mo>+</mo><msub><mover accent="true"><mi>V</mi><mo>˙</mo></mover><mrow><mi>a</mi><mn>2</mn></mrow></msub><mo>+</mo><msub><mover accent="true"><mi>V</mi><mo>˙</mo></mover><mrow><mi>a</mi><mn>0</mn></mrow></msub></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><msub><mover accent="true"><mi>V</mi><mo>˙</mo></mover><mi>b</mi></msub><mo>=</mo><msub><mover accent="true"><mi>V</mi><mo>˙</mo></mover><mrow><mi>b</mi><mn>1</mn></mrow></msub><mo>+</mo><msub><mover accent="true"><mi>V</mi><mo>˙</mo></mover><mrow><mi>b</mi><mn>2</mn></mrow></msub><mo>+</mo><msub><mover accent="true"><mi>V</mi><mo>˙</mo></mover><mrow><mi>b</mi><mn>0</mn></mrow></msub></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><msub><mover accent="true"><mi>V</mi><mo>˙</mo></mover><mi>c</mi></msub><mo>=</mo><msub><mover accent="true"><mi>V</mi><mo>˙</mo></mover><mrow><mi>c</mi><mn>1</mn></mrow></msub><mo>+</mo><msub><mover accent="true"><mi>V</mi><mo>˙</mo></mover><mrow><mi>c</mi><mn>2</mn></mrow></msub><mo>+</mo><msub><mover accent="true"><mi>V</mi><mo>˙</mo></mover><mrow><mi>c</mi><mn>0</mn></mrow></msub></mrow></mstyle></mtd></mtr></mtable></mrow><annotation encoding="application/x-tex">\begin{cases} \dot{V}_a = \dot{V}_{a1} + \dot{V}_{a2} + \dot{V}_{a0}\\ \dot{V}_b = \dot{V}_{b1} + \dot{V}_{b2} + \dot{V}_{b0}\\ \dot{V}_c = \dot{V}_{c1} + \dot{V}_{c2} + \dot{V}_{c0} \end{cases}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:4.32em;vertical-align:-1.9099999999999997em"></span><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.35002em"><span style="top:-2.19999em"><span class="pstrut" style="height:3.15em"></span><span class="delimsizinginner delim-size4"><span>⎩</span></span></span><span style="top:-2.19499em"><span class="pstrut" style="height:3.15em"></span><span class="delimsizinginner delim-size4"><span>⎪</span></span></span><span style="top:-2.20499em"><span class="pstrut" style="height:3.15em"></span><span class="delimsizinginner delim-size4"><span>⎪</span></span></span><span style="top:-3.15001em"><span class="pstrut" style="height:3.15em"></span><span class="delimsizinginner delim-size4"><span>⎨</span></span></span><span style="top:-4.2950099999999996em"><span class="pstrut" style="height:3.15em"></span><span class="delimsizinginner delim-size4"><span>⎪</span></span></span><span style="top:-4.30501em"><span class="pstrut" style="height:3.15em"></span><span class="delimsizinginner delim-size4"><span>⎪</span></span></span><span style="top:-4.60002em"><span class="pstrut" style="height:3.15em"></span><span class="delimsizinginner delim-size4"><span>⎧</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.8500199999999998em"><span></span></span></span></span></span></span><span class="mord"><span class="mtable"><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.41em"><span style="top:-4.41em"><span class="pstrut" style="height:3.008em"></span><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.22222em">V</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.13889em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">a</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.22222em">V</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.13889em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">a</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.22222em">V</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.13889em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">a</span><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.22222em">V</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.13889em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">a</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span></span></span><span style="top:-2.97em"><span class="pstrut" style="height:3.008em"></span><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.22222em">V</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.13889em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.22222em">V</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.13889em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">b</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.22222em">V</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.13889em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">b</span><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.22222em">V</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.13889em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">b</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span></span></span><span style="top:-1.5300000000000002em"><span class="pstrut" style="height:3.008em"></span><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.22222em">V</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.13889em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.22222em">V</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.13889em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">c</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.22222em">V</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.13889em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">c</span><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.22222em">V</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.13889em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">c</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.9099999999999997em"><span></span></span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></div><p>A figura abaixo apresenta um exemplo de componentes simétricas e sua soma para obter os fasores desequilibrados.</p><div><center><img src="/PSP/pt/images/fortescue.svg" alt="Exemplo de componentes simétricas e sua soma para obter os fasores desequilibrados" title="Exemplo de componentes simétricas e sua soma para obter os fasores desequilibrados"></center></div><p>Para simplificar os cálculos adota-se um operador “<span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>a</mi><mo stretchy="true">‾</mo></mover></mrow><annotation encoding="application/x-tex">\overline{a}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.63056em;vertical-align:0em"></span><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault">a</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span></span></span></span></span>”, com o intuito de indicar a rotação de um fasor. Tal operador é um número complexo de módulo unitário e ângulo de 120º:</p><div class="math math-display"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>a</mi><mo stretchy="true">‾</mo></mover><mo>=</mo><mn>1</mn><mi mathvariant="normal">∠</mi><mn>12</mn><msup><mn>0</mn><mo lspace="0em" rspace="0em">∘</mo></msup><mo>=</mo><mn>1</mn><msup><mi>e</mi><mrow><mi>j</mi><mn>2</mn><mi>π</mi><mi mathvariant="normal">/</mi><mn>3</mn></mrow></msup><mo>=</mo><mo>−</mo><mn>0</mn><mo separator="true" lspace="0em" rspace="0em">,</mo><mn>5</mn><mo>+</mo><mi>j</mi><mn>0</mn><mo separator="true" lspace="0em" rspace="0em">,</mo><mn>866</mn></mrow><annotation encoding="application/x-tex">\overline{a} = 1 \angle 120^{\circ} = 1 e^{j2\pi/3} = -0{,}5 + j0{,}866</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.63056em;vertical-align:0em"></span><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault">a</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em"></span></span><span class="base"><span class="strut" style="height:0.724115em;vertical-align:0em"></span><span class="mord">1</span><span class="mord">∠</span><span class="mord">1</span><span class="mord">2</span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.724115em"><span style="top:-3.113em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">∘</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em"></span></span><span class="base"><span class="strut" style="height:0.938em;vertical-align:0em"></span><span class="mord">1</span><span class="mord"><span class="mord mathdefault">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.938em"><span style="top:-3.113em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.05724em">j</span><span class="mord mtight">2</span><span class="mord mathdefault mtight" style="margin-right:0.03588em">π</span><span class="mord mtight">/</span><span class="mord mtight">3</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em"></span></span><span class="base"><span class="strut" style="height:0.8388800000000001em;vertical-align:-0.19444em"></span><span class="mord">−</span><span class="mord">0</span><span class="mord"><span class="mpunct">,</span></span><span class="mord">5</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em"></span></span><span class="base"><span class="strut" style="height:0.85396em;vertical-align:-0.19444em"></span><span class="mord mathdefault" style="margin-right:0.05724em">j</span><span class="mord">0</span><span class="mord"><span class="mpunct">,</span></span><span class="mord">8</span><span class="mord">6</span><span class="mord">6</span></span></span></span></span></div><p>Com isso pode-se utilizar as equações (de tensão apresentadas em conjunto com o operador “<span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>a</mi><mo stretchy="true">‾</mo></mover></mrow><annotation encoding="application/x-tex">\overline{a}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.63056em;vertical-align:0em"></span><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault">a</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span></span></span></span></span>” para construir a seguinte equação matricial:</p><div class="math math-display"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mrow><mo fence="true">[</mo><mtable rowspacing="0.15999999999999992em" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mover accent="true"><mi>V</mi><mo>˙</mo></mover><mi>a</mi></msub></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mover accent="true"><mi>V</mi><mo>˙</mo></mover><mi>b</mi></msub></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mover accent="true"><mi>V</mi><mo>˙</mo></mover><mi>c</mi></msub></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow><mo>=</mo><mover><mover><mrow><mo fence="true">[</mo><mtable rowspacing="0.15999999999999992em" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msup><mover accent="true"><mi>a</mi><mo stretchy="true">‾</mo></mover><mn>2</mn></msup></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mover accent="true"><mi>a</mi><mo stretchy="true">‾</mo></mover></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mover accent="true"><mi>a</mi><mo stretchy="true">‾</mo></mover></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msup><mover accent="true"><mi>a</mi><mo stretchy="true">‾</mo></mover><mn>2</mn></msup></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow><mo stretchy="true">⏞</mo></mover><mrow><mo fence="true">[</mo><mi mathvariant="bold">A</mi><mo fence="true">]</mo></mrow></mover><mrow><mo fence="true">[</mo><mtable rowspacing="0.15999999999999992em" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mover accent="true"><mi>V</mi><mo>˙</mo></mover><mrow><mi>a</mi><mn>0</mn></mrow></msub></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mover accent="true"><mi>V</mi><mo>˙</mo></mover><mrow><mi>a</mi><mn>1</mn></mrow></msub></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mover accent="true"><mi>V</mi><mo>˙</mo></mover><mrow><mi>a</mi><mn>2</mn></mrow></msub></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow><annotation encoding="application/x-tex">\begin{bmatrix} \dot{V}_a\\ \dot{V}_b\\ \dot{V}_c \end{bmatrix} = \overbrace{ \begin{bmatrix} 1 & 1 & 1\\ 1 & \overline{a}^2 & \overline{a}\\ 1 & \overline{a} & \overline{a}^2 \end{bmatrix} }^{\left[ \bold{A} \right]} \begin{bmatrix} \dot{V}_{a0}\\ \dot{V}_{a1}\\ \dot{V}_{a2} \end{bmatrix}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3.8405700000000005em;vertical-align:-1.6702850000000007em"></span><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.0510099999999998em"><span style="top:-2.2500000000000004em"><span class="pstrut" style="height:3.1550000000000002em"></span><span class="delimsizinginner delim-size4"><span>⎣</span></span></span><span style="top:-2.8099900000000004em"><span class="pstrut" style="height:3.1550000000000002em"></span><span class="delimsizinginner delim-size4"><span>⎢</span></span></span><span style="top:-4.05101em"><span class="pstrut" style="height:3.1550000000000002em"></span><span class="delimsizinginner delim-size4"><span>⎡</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.55002em"><span></span></span></span></span></span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.170285em"><span style="top:-4.250095em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.22222em">V</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.13889em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">a</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span></span></span><span style="top:-2.9699049999999994em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.22222em">V</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.13889em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">b</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span></span></span><span style="top:-1.6897149999999994em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.22222em">V</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.13889em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.6702850000000007em"><span></span></span></span></span></span></span></span><span class="mclose"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.0510099999999998em"><span style="top:-2.2500000000000004em"><span class="pstrut" style="height:3.1550000000000002em"></span><span class="delimsizinginner delim-size4"><span>⎦</span></span></span><span style="top:-2.8099900000000004em"><span class="pstrut" style="height:3.1550000000000002em"></span><span class="delimsizinginner delim-size4"><span>⎥</span></span></span><span style="top:-4.05101em"><span class="pstrut" style="height:3.1550000000000002em"></span><span class="delimsizinginner delim-size4"><span>⎤</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.55002em"><span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em"></span></span><span class="base"><span class="strut" style="height:5.2692950000000005em;vertical-align:-1.6702850000000007em"></span><span class="mord mover"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.59901em"><span style="top:-4.6990099999999995em"><span class="pstrut" style="height:4.6990099999999995em"></span><span class="mord mover"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.69901em"><span style="top:-4.05101em"><span class="pstrut" style="height:4.05101em"></span><span class="mord"><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.0510099999999998em"><span style="top:-2.2500000000000004em"><span class="pstrut" style="height:3.1550000000000002em"></span><span class="delimsizinginner delim-size4"><span>⎣</span></span></span><span style="top:-2.8099900000000004em"><span class="pstrut" style="height:3.1550000000000002em"></span><span class="delimsizinginner delim-size4"><span>⎢</span></span></span><span style="top:-4.05101em"><span class="pstrut" style="height:3.1550000000000002em"></span><span class="delimsizinginner delim-size4"><span>⎡</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.55002em"><span></span></span></span></span></span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.05em"><span style="top:-4.21em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord">1</span></span></span><span style="top:-3.0099999999999993em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord">1</span></span></span><span style="top:-1.8099999999999994em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.5500000000000007em"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em"></span><span class="arraycolsep" style="width:0.5em"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.05em"><span style="top:-4.21em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord">1</span></span></span><span style="top:-3.0099999999999993em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault">a</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span><span style="top:-1.8099999999999994em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault">a</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.5500000000000007em"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em"></span><span class="arraycolsep" style="width:0.5em"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.05em"><span style="top:-4.21em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord">1</span></span></span><span style="top:-3.0099999999999993em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault">a</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span></span></span><span style="top:-1.8099999999999994em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault">a</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.5500000000000007em"><span></span></span></span></span></span></span></span><span class="mclose"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.0510099999999998em"><span style="top:-2.2500000000000004em"><span class="pstrut" style="height:3.1550000000000002em"></span><span class="delimsizinginner delim-size4"><span>⎦</span></span></span><span style="top:-2.8099900000000004em"><span class="pstrut" style="height:3.1550000000000002em"></span><span class="delimsizinginner delim-size4"><span>⎥</span></span></span><span style="top:-4.05101em"><span class="pstrut" style="height:3.1550000000000002em"></span><span class="delimsizinginner delim-size4"><span>⎤</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.55002em"><span></span></span></span></span></span></span></span></span></span><span class="svg-align" style="top:-6.202019999999999em"><span class="pstrut" style="height:4.05101em"></span><span class="stretchy" style="height:0.548em;min-width:1.6em"><span class="brace-left" style="height:0.548em"><svg width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMinYMin slice"><path d="M6 548l-6-6v-35l6-11c56-104 135.3-181.3 238-232 57.3-28.7 117 +-45 179-50h399577v120H403c-43.3 7-81 15-113 26-100.7 33-179.7 91-237 174-2.7 + 5-6 9-10 13-.7 1-7.3 1-20 1H6z"></path></svg></span><span class="brace-center" style="height:0.548em"><svg width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMidYMin slice"><path d="M200428 334 +c-100.7-8.3-195.3-44-280-108-55.3-42-101.7-93-139-153l-9-14c-2.7 4-5.7 8.7-9 14 +-53.3 86.7-123.7 153-211 199-66.7 36-137.3 56.3-212 62H0V214h199568c178.3-11.7 + 311.7-78.3 403-201 6-8 9.7-12 11-12 .7-.7 6.7-1 18-1s17.3.3 18 1c1.3 0 5 4 11 + 12 44.7 59.3 101.3 106.3 170 141s145.3 54.3 229 60h199572v120z"></path></svg></span><span class="brace-right" style="height:0.548em"><svg width="400em" height="0.548em" viewBox="0 0 400000 548" preserveAspectRatio="xMaxYMin slice"><path d="M400000 542l +-6 6h-17c-12.7 0-19.3-.3-20-1-4-4-7.3-8.3-10-13-35.3-51.3-80.8-93.8-136.5-127.5 +s-117.2-55.8-184.5-66.5c-.7 0-2-.3-4-1-18.7-2.7-76-4.3-172-5H0V214h399571l6 1 +c124.7 8 235 61.7 331 161 31.3 33.3 59.7 72.7 85 118l7 13v35z"></path></svg></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.55002em"><span></span></span></span></span></span></span><span style="top:-7.773019999999999em"><span class="pstrut" style="height:4.6990099999999995em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="minner mtight"><span class="mopen mtight delimcenter" style="top:0em"><span class="mtight">[</span></span><span class="mord mtight"><span class="mord mathbf mtight">A</span></span><span class="mclose mtight delimcenter" style="top:0em"><span class="mtight">]</span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.55002em"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em"></span><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.0510099999999998em"><span style="top:-2.2500000000000004em"><span class="pstrut" style="height:3.1550000000000002em"></span><span class="delimsizinginner delim-size4"><span>⎣</span></span></span><span style="top:-2.8099900000000004em"><span class="pstrut" style="height:3.1550000000000002em"></span><span class="delimsizinginner delim-size4"><span>⎢</span></span></span><span style="top:-4.05101em"><span class="pstrut" style="height:3.1550000000000002em"></span><span class="delimsizinginner delim-size4"><span>⎡</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.55002em"><span></span></span></span></span></span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.170285em"><span style="top:-4.250095em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.22222em">V</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.13889em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">a</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span></span></span><span style="top:-2.9699049999999994em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.22222em">V</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.13889em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">a</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span></span></span><span style="top:-1.6897149999999994em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.22222em">V</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.13889em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">a</span><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.6702850000000007em"><span></span></span></span></span></span></span></span><span class="mclose"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.0510099999999998em"><span style="top:-2.2500000000000004em"><span class="pstrut" style="height:3.1550000000000002em"></span><span class="delimsizinginner delim-size4"><span>⎦</span></span></span><span style="top:-2.8099900000000004em"><span class="pstrut" style="height:3.1550000000000002em"></span><span class="delimsizinginner delim-size4"><span>⎥</span></span></span><span style="top:-4.05101em"><span class="pstrut" style="height:3.1550000000000002em"></span><span class="delimsizinginner delim-size4"><span>⎤</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.55002em"><span></span></span></span></span></span></span></span></span></span></span></span></div><p>Considerando a matriz quadrada da equação anterior sendo <span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo fence="true">[</mo><mi mathvariant="bold">A</mi><mo fence="true">]</mo></mrow><annotation encoding="application/x-tex">\left[ \bold{A} \right]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em"></span><span class="minner"><span class="mopen delimcenter" style="top:0em">[</span><span class="mord"><span class="mord mathbf">A</span></span><span class="mclose delimcenter" style="top:0em">]</span></span></span></span></span></span>, pode-se encontrar as componentes simétricas pré-multiplicando ambos os lados dessa mesma equação por <span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mrow><mo fence="true">[</mo><mi mathvariant="bold">A</mi><mo fence="true">]</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow><annotation encoding="application/x-tex">\left[ \bold{A} \right]^{-1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.204008em;vertical-align:-0.25em"></span><span class="minner"><span class="minner"><span class="mopen delimcenter" style="top:0em">[</span><span class="mord"><span class="mord mathbf">A</span></span><span class="mclose delimcenter" style="top:0em">]</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.954008em"><span style="top:-3.2029em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span></span></span></span></span>.</p><p>Da mesma forma que no estudo de fluxo de carga, a representação dos elementos do sistema para o estudo de curto-circuito é realizada por meio de circuitos equivalentes inseridos na matriz admitância de barras. Nas faltas assimétricas (F-T, F-F e F-F-T) é necessário formar três matrizes admitância de sequência: positiva, negativa e zero.</p><div class="admonition admonition-info alert alert--info"><div class="admonition-heading"><h5><span class="admonition-icon"><svg xmlns="http://www.w3.org/2000/svg" width="14" height="16" viewBox="0 0 14 16"><path fill-rule="evenodd" d="M7 2.3c3.14 0 5.7 2.56 5.7 5.7s-2.56 5.7-5.7 5.7A5.71 5.71 0 0 1 1.3 8c0-3.14 2.56-5.7 5.7-5.7zM7 1C3.14 1 0 4.14 0 8s3.14 7 7 7 7-3.14 7-7-3.14-7-7-7zm1 3H6v5h2V4zm0 6H6v2h2v-2z"></path></svg></span>Informação</h5></div><div class="admonition-content"><p>As informações a respeito das particularidades dos modelos para o estudo de curto-circuito são apresentados individualmente nos <a href="/PSP/pt/docs/powerEditor#editando-dados-el%C3%A9tricos">elementos de potência</a>.</p></div></div><h3><a aria-hidden="true" tabindex="-1" class="anchor enhancedAnchor_2LWZ" id="equações-do-curto-circuito"></a>Equações do curto-circuito<a class="hash-link" href="#equações-do-curto-circuito" title="Direct link to heading">#</a></h3><p>Primeiramente será tratado o equacionamento para faltas balanceadas e então os estudos serão estendidos para as faltas desbalanceadas por meio da utilização do método das componentes simétricas.</p><h4><a aria-hidden="true" tabindex="-1" class="anchor enhancedAnchor_2LWZ" id="faltas-balanceadas"></a>Faltas balanceadas<a class="hash-link" href="#faltas-balanceadas" title="Direct link to heading">#</a></h4><p>Utiliza-se da matriz impedância de barras para o cálculo de curto-circuito, definida pela seguinte equação matricial:</p><div class="math math-display"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">[</mo><mover accent="true"><mi>V</mi><mo>˙</mo></mover><mo stretchy="false">]</mo><mo>=</mo><mo stretchy="false">[</mo><msub><mi>Z</mi><mrow><mi>b</mi><mi>u</mi><mi>s</mi></mrow></msub><mo stretchy="false">]</mo><mo stretchy="false">[</mo><mover accent="true"><mi>I</mi><mo>˙</mo></mover><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[\dot{V}] = [Z_{bus}][\dot{I}]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.17019em;vertical-align:-0.25em"></span><span class="mopen">[</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.22222em">V</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.13889em"><span class="mord">˙</span></span></span></span></span></span></span><span class="mclose">]</span><span class="mspace" style="margin-right:0.2777777777777778em"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em"></span></span><span class="base"><span class="strut" style="height:1.17019em;vertical-align:-0.25em"></span><span class="mopen">[</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07153em">Z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em"><span style="top:-2.5500000000000003em;margin-left:-0.07153em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">b</span><span class="mord mathdefault mtight">u</span><span class="mord mathdefault mtight">s</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span><span class="mclose">]</span><span class="mopen">[</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em">I</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.027780000000000013em"><span class="mord">˙</span></span></span></span></span></span></span><span class="mclose">]</span></span></span></span></span></div><p>Em que:</p><ul><li><span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">[</mo><msub><mi>Z</mi><mrow><mi>b</mi><mi>u</mi><mi>s</mi></mrow></msub><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[Z_{bus}]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em"></span><span class="mopen">[</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07153em">Z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em"><span style="top:-2.5500000000000003em;margin-left:-0.07153em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">b</span><span class="mord mathdefault mtight">u</span><span class="mord mathdefault mtight">s</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span><span class="mclose">]</span></span></span></span></span> é a inversa da matriz admitância de barras, chamada de matriz impedância de barras.</li></ul><p>Por meio da expansão da equação anterior é possível calcular a corrente de falta trifásica na barra genérica <span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.65952em;vertical-align:0em"></span><span class="mord mathdefault">i</span></span></span></span></span>:</p><div class="math math-display"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mover accent="true"><mi>I</mi><mo>˙</mo></mover><mi>f</mi></msub><mo>=</mo><mfrac><msub><mover accent="true"><mi>E</mi><mo>˙</mo></mover><mi>i</mi></msub><mrow><msub><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow></msub><mo>+</mo><msub><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mi>f</mi></msub></mrow></mfrac></mrow><annotation encoding="application/x-tex">\dot{I}_f = \frac{\dot{E}_i}{\overline{z}_{ii}+\overline{z}_{f}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.206298em;vertical-align:-0.286108em"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em">I</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.027780000000000013em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361079999999999em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.10764em">f</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em"></span></span><span class="base"><span class="strut" style="height:2.569298em;vertical-align:-0.972108em"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.5971899999999999em"><span style="top:-2.314em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361079999999999em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.10764em">f</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em"><span class="pstrut" style="height:3em"></span><span class="frac-line" style="border-bottom-width:0.04em"></span></span><span style="top:-3.677em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05764em">E</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.055550000000000016em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.972108em"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></div><p>Em que:</p><ul><li><span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mover accent="true"><mi>I</mi><mo>˙</mo></mover><mi>f</mi></msub></mrow><annotation encoding="application/x-tex">\dot{I}_f</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.206298em;vertical-align:-0.286108em"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em">I</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.027780000000000013em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361079999999999em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.10764em">f</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em"><span></span></span></span></span></span></span></span></span></span></span> é a corrente de falta trifásica na barra <span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.65952em;vertical-align:0em"></span><span class="mord mathdefault">i</span></span></span></span></span></li><li><span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mover accent="true"><mi>E</mi><mo>˙</mo></mover><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">\dot{E}_i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.07019em;vertical-align:-0.15em"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05764em">E</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.055550000000000016em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span></span></span></span></span> é a tensão pré-falta na barra <span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.65952em;vertical-align:0em"></span><span class="mord mathdefault">i</span></span></span></span></span></li><li><span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow></msub></mrow><annotation encoding="application/x-tex">\overline{z}_{ii}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.78056em;vertical-align:-0.15em"></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span></span></span></span></span> é a impedância equivalente de Thevenin vista pela barra <span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.65952em;vertical-align:0em"></span><span class="mord mathdefault">i</span></span></span></span></span>, retirada da matriz impedância</li><li><span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mi>f</mi></msub></mrow><annotation encoding="application/x-tex">\overline{z}_{f}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.916668em;vertical-align:-0.286108em"></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361079999999999em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.10764em">f</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em"><span></span></span></span></span></span></span></span></span></span></span> é a impedância de falta</li></ul><h4><a aria-hidden="true" tabindex="-1" class="anchor enhancedAnchor_2LWZ" id="faltas-desbalanceadas"></a>Faltas desbalanceadas<a class="hash-link" href="#faltas-desbalanceadas" title="Direct link to heading">#</a></h4><p>O desenvolvimento das equações do cálculo de curto-circuito para faltas desbalanceadas é realizado seguindo o seguinte procedimento:</p><ol><li>Definir os diagramas no ponto da falta, mostrando as conexões de todas fases para a falta. Assume-se que apenas impedâncias balanceadas estão presentes em ambos os lados do ponto da falta e o equivalente Thevenin até esse ponto é conhecido;</li><li>Escrever as condições de contorno relacionando as tensões e corrente conhecidas para o tipo de falta estudada;</li><li>Transformar as correntes e tensões do item 2 de a-b-c para o sistema de coordenadas 0-1-2;</li><li>Encontrar a corrente do curto-circuito em estudo baseado no seguinte sistema de equações (para a fase A):<div class="math math-display"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo fence="true">{</mo><mtable rowspacing="0.3599999999999999em" columnalign="left left" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><msub><mover accent="true"><mi>V</mi><mo>˙</mo></mover><mrow><mi>a</mi><mn>1</mn></mrow></msub><mo>=</mo><msub><mover accent="true"><mi>E</mi><mo>˙</mo></mover><mi>a</mi></msub><mo>−</mo><msub><mover accent="true"><mi>I</mi><mo>˙</mo></mover><mrow><mi>a</mi><mn>1</mn></mrow></msub><msub><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mn>1</mn></msub></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><msub><mover accent="true"><mi>V</mi><mo>˙</mo></mover><mrow><mi>a</mi><mn>2</mn></mrow></msub><mo>=</mo><mo>−</mo><msub><mover accent="true"><mi>I</mi><mo>˙</mo></mover><mrow><mi>a</mi><mn>2</mn></mrow></msub><msub><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mn>2</mn></msub></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><msub><mover accent="true"><mi>V</mi><mo>˙</mo></mover><mrow><mi>a</mi><mn>0</mn></mrow></msub><mo>=</mo><mo>−</mo><msub><mover accent="true"><mi>I</mi><mo>˙</mo></mover><mrow><mi>a</mi><mn>0</mn></mrow></msub><msub><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mn>0</mn></msub></mrow></mstyle></mtd></mtr></mtable></mrow><annotation encoding="application/x-tex">\begin{cases} \dot{V}_{a1} = \dot{E}_a - \dot{I}_{a1} \overline{z}_1\\ \dot{V}_{a2} = - \dot{I}_{a2} \overline{z}_2\\ \dot{V}_{a0} = - \dot{I}_{a0} \overline{z}_0 \end{cases}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:4.32em;vertical-align:-1.9099999999999997em"></span><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.35002em"><span style="top:-2.19999em"><span class="pstrut" style="height:3.15em"></span><span class="delimsizinginner delim-size4"><span>⎩</span></span></span><span style="top:-2.19499em"><span class="pstrut" style="height:3.15em"></span><span class="delimsizinginner delim-size4"><span>⎪</span></span></span><span style="top:-2.20499em"><span class="pstrut" style="height:3.15em"></span><span class="delimsizinginner delim-size4"><span>⎪</span></span></span><span style="top:-3.15001em"><span class="pstrut" style="height:3.15em"></span><span class="delimsizinginner delim-size4"><span>⎨</span></span></span><span style="top:-4.2950099999999996em"><span class="pstrut" style="height:3.15em"></span><span class="delimsizinginner delim-size4"><span>⎪</span></span></span><span style="top:-4.30501em"><span class="pstrut" style="height:3.15em"></span><span class="delimsizinginner delim-size4"><span>⎪</span></span></span><span style="top:-4.60002em"><span class="pstrut" style="height:3.15em"></span><span class="delimsizinginner delim-size4"><span>⎧</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.8500199999999998em"><span></span></span></span></span></span></span><span class="mord"><span class="mtable"><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.41em"><span style="top:-4.41em"><span class="pstrut" style="height:3.008em"></span><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.22222em">V</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.13889em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">a</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05764em">E</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.055550000000000016em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">a</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em">I</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.027780000000000013em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">a</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span></span></span><span style="top:-2.97em"><span class="pstrut" style="height:3.008em"></span><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.22222em">V</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.13889em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">a</span><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em"></span><span class="mord">−</span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em">I</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.027780000000000013em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">a</span><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span></span></span><span style="top:-1.5300000000000002em"><span class="pstrut" style="height:3.008em"></span><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.22222em">V</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.13889em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">a</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em"></span><span class="mord">−</span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em">I</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.027780000000000013em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">a</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.9099999999999997em"><span></span></span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></div></li></ol><p>A tabela abaixo apresenta as equações para as faltas desbalanceadas após a execução do procedimento apresenteado:</p><table><thead><tr><th><strong>Falta</strong></th><th align="center"><strong>Seq. Positiva (<span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msubsup><mover accent="true"><mi>I</mi><mo>˙</mo></mover><mi>f</mi><mn>1</mn></msubsup></mrow><annotation encoding="application/x-tex">\dot{I}_{f}^{1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.3394059999999999em;vertical-align:-0.4192159999999999em"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em">I</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.027780000000000013em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em"><span style="top:-2.4168920000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.10764em">f</span></span></span></span><span style="top:-3.063em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.4192159999999999em"><span></span></span></span></span></span></span></span></span></span></span>)</strong></th><th align="center"><strong>Seq. Negativa (<span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msubsup><mover accent="true"><mi>I</mi><mo>˙</mo></mover><mi>f</mi><mn>2</mn></msubsup></mrow><annotation encoding="application/x-tex">\dot{I}_{f}^{2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.3394059999999999em;vertical-align:-0.4192159999999999em"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em">I</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.027780000000000013em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em"><span style="top:-2.4168920000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.10764em">f</span></span></span></span><span style="top:-3.063em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.4192159999999999em"><span></span></span></span></span></span></span></span></span></span></span>)</strong></th><th align="center"><strong>Seq. Zero (<span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msubsup><mover accent="true"><mi>I</mi><mo>˙</mo></mover><mi>f</mi><mn>0</mn></msubsup></mrow><annotation encoding="application/x-tex">\dot{I}_{f}^{0}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.3394059999999999em;vertical-align:-0.4192159999999999em"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em">I</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.027780000000000013em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em"><span style="top:-2.4168920000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.10764em">f</span></span></span></span><span style="top:-3.063em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.4192159999999999em"><span></span></span></span></span></span></span></span></span></span></span>)</strong></th></tr></thead><tbody><tr><td><strong>F-T</strong></td><td align="center"><span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mstyle displaystyle="true" scriptlevel="0"><mfrac><msub><mover accent="true"><mi>E</mi><mo>˙</mo></mover><mi>i</mi></msub><mrow><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>1</mn></msubsup><mo>+</mo><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>2</mn></msubsup><mo>+</mo><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>0</mn></msubsup><mo>+</mo><mn>3</mn><msub><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mi>f</mi></msub></mrow></mfrac></mstyle></mrow><annotation encoding="application/x-tex">\dfrac{\dot{E}_i}{\overline{z}_{ii}^{1} + \overline{z}_{ii}^{2} + \overline{z}_{ii}^{0} + 3 \overline{z}_{f}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.6078659999999996em;vertical-align:-1.010676em"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.5971899999999999em"><span style="top:-2.275432em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord">3</span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361079999999999em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.10764em">f</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em"><span class="pstrut" style="height:3em"></span><span class="frac-line" style="border-bottom-width:0.04em"></span></span><span style="top:-3.677em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05764em">E</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.055550000000000016em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.010676em"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></td><td align="center"><span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msubsup><mover accent="true"><mi>I</mi><mo>˙</mo></mover><mi>f</mi><mn>1</mn></msubsup></mrow><annotation encoding="application/x-tex">\dot{I}_{f}^{1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.3394059999999999em;vertical-align:-0.4192159999999999em"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em">I</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.027780000000000013em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em"><span style="top:-2.4168920000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.10764em">f</span></span></span></span><span style="top:-3.063em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.4192159999999999em"><span></span></span></span></span></span></span></span></span></span></span></td><td align="center"><span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msubsup><mover accent="true"><mi>I</mi><mo>˙</mo></mover><mi>f</mi><mn>1</mn></msubsup></mrow><annotation encoding="application/x-tex">\dot{I}_{f}^{1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.3394059999999999em;vertical-align:-0.4192159999999999em"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em">I</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.027780000000000013em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em"><span style="top:-2.4168920000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.10764em">f</span></span></span></span><span style="top:-3.063em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.4192159999999999em"><span></span></span></span></span></span></span></span></span></span></span></td></tr><tr><td><strong>F-F</strong></td><td align="center"><span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mstyle displaystyle="true" scriptlevel="0"><mfrac><msub><mover accent="true"><mi>E</mi><mo>˙</mo></mover><mi>i</mi></msub><mrow><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>1</mn></msubsup><mo>+</mo><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>2</mn></msubsup><mo>+</mo><msub><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mi>f</mi></msub></mrow></mfrac></mstyle></mrow><annotation encoding="application/x-tex">\dfrac{\dot{E}_i}{\overline{z}_{ii}^{1} + \overline{z}_{ii}^{2} + \overline{z}_{f}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.6078659999999996em;vertical-align:-1.010676em"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.5971899999999999em"><span style="top:-2.275432em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361079999999999em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.10764em">f</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em"><span class="pstrut" style="height:3em"></span><span class="frac-line" style="border-bottom-width:0.04em"></span></span><span style="top:-3.677em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05764em">E</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.055550000000000016em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.010676em"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></td><td align="center"><span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>−</mo><msubsup><mover accent="true"><mi>I</mi><mo>˙</mo></mover><mi>f</mi><mn>1</mn></msubsup></mrow><annotation encoding="application/x-tex">- \dot{I}_{f}^{1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.3394059999999999em;vertical-align:-0.4192159999999999em"></span><span class="mord">−</span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em">I</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.027780000000000013em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em"><span style="top:-2.4168920000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.10764em">f</span></span></span></span><span style="top:-3.063em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.4192159999999999em"><span></span></span></span></span></span></span></span></span></span></span></td><td align="center"><span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mo separator="true" lspace="0em" rspace="0em">,</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">0{,}0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8388800000000001em;vertical-align:-0.19444em"></span><span class="mord">0</span><span class="mord"><span class="mpunct">,</span></span><span class="mord">0</span></span></span></span></span></td></tr><tr><td><strong>F-F-T</strong></td><td align="center"><span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mstyle displaystyle="true" scriptlevel="0"><mfrac><mrow><msub><mover accent="true"><mi>E</mi><mo>˙</mo></mover><mi>i</mi></msub><mrow><mo fence="true">(</mo><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>2</mn></msubsup><mo>+</mo><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>0</mn></msubsup><mo>+</mo><mn>3</mn><msub><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mi>f</mi></msub><mo fence="true">)</mo></mrow></mrow><mrow><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>1</mn></msubsup><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>2</mn></msubsup><mo>+</mo><mn>3</mn><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>2</mn></msubsup><msub><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mi>f</mi></msub><mo>+</mo><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>2</mn></msubsup><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>0</mn></msubsup><mo>+</mo><mn>3</mn><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>1</mn></msubsup><msub><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mi>f</mi></msub><mo>+</mo><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>1</mn></msubsup><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>0</mn></msubsup></mrow></mfrac></mstyle></mrow><annotation encoding="application/x-tex">\dfrac{\dot{E}_i \left( \overline{z}_{ii}^{2} + \overline{z}_{ii}^{0} + 3 \overline{z}_{f} \right)}{\overline{z}_{ii}^{1} \overline{z}_{ii}^{2} + 3 \overline{z}_{ii}^{2} \overline{z}_{f} + \overline{z}_{ii}^{2} \overline{z}_{ii}^{0} + 3 \overline{z}_{ii}^{1} \overline{z}_{f} + \overline{z}_{ii}^{1} \overline{z}_{ii}^{0} }</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.670876em;vertical-align:-1.010676em"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6602000000000001em"><span style="top:-2.275432em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord">3</span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361079999999999em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.10764em">f</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord">3</span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361079999999999em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.10764em">f</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em"><span class="pstrut" style="height:3em"></span><span class="frac-line" style="border-bottom-width:0.04em"></span></span><span style="top:-3.7400100000000003em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05764em">E</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.055550000000000016em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em"></span><span class="minner"><span class="mopen delimcenter" style="top:0em"><span class="delimsizing size1">(</span></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord">3</span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361079999999999em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.10764em">f</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em"><span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em"><span class="delimsizing size1">)</span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.010676em"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></td><td align="center"><span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>−</mo><mstyle displaystyle="true" scriptlevel="0"><mfrac><mrow><msub><mover accent="true"><mi>E</mi><mo>˙</mo></mover><mi>i</mi></msub><mo>−</mo><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>1</mn></msubsup><msubsup><mover accent="true"><mi>I</mi><mo>˙</mo></mover><mi>f</mi><mn>1</mn></msubsup></mrow><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>2</mn></msubsup></mfrac></mstyle></mrow><annotation encoding="application/x-tex">- \dfrac{\dot{E}_i - \overline{z}_{ii}^{1} \dot{I}_{f}^{1}}{\overline{z}_{ii}^{2}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.700974em;vertical-align:-0.971568em"></span><span class="mord">−</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.729406em"><span style="top:-2.275432em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em"><span class="pstrut" style="height:3em"></span><span class="frac-line" style="border-bottom-width:0.04em"></span></span><span style="top:-3.809216em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05764em">E</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.055550000000000016em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em">I</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.027780000000000013em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em"><span style="top:-2.4168920000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.10764em">f</span></span></span></span><span style="top:-3.063em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.4192159999999999em"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.971568em"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></td><td align="center"><span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>−</mo><mstyle displaystyle="true" scriptlevel="0"><mfrac><mrow><msub><mover accent="true"><mi>E</mi><mo>˙</mo></mover><mi>i</mi></msub><mo>−</mo><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>1</mn></msubsup><msubsup><mover accent="true"><mi>I</mi><mo>˙</mo></mover><mi>f</mi><mn>1</mn></msubsup></mrow><mrow><msubsup><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mrow><mi>i</mi><mi>i</mi></mrow><mn>0</mn></msubsup><mo>+</mo><mn>3</mn><msub><mover accent="true"><mi>z</mi><mo stretchy="true">‾</mo></mover><mi>f</mi></msub></mrow></mfrac></mstyle></mrow><annotation encoding="application/x-tex">- \dfrac{\dot{E}_i - \overline{z}_{ii}^{1} \dot{I}_{f}^{1}}{\overline{z}_{ii}^{0} + 3 \overline{z}_{f}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.740082em;vertical-align:-1.010676em"></span><span class="mord">−</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.729406em"><span style="top:-2.275432em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord">3</span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361079999999999em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.10764em">f</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em"><span class="pstrut" style="height:3em"></span><span class="frac-line" style="border-bottom-width:0.04em"></span></span><span style="top:-3.809216em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05764em">E</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.055550000000000016em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em"><span style="top:-2.5500000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em"></span><span class="mord"><span class="mord overline"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.63056em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em">z</span></span></span><span style="top:-3.55056em"><span class="pstrut" style="height:3em"></span><span class="overline-line" style="border-bottom-width:0.04em"></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.834568em"><span style="top:-2.4530000000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.08346em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em"><span></span></span></span></span></span></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9201900000000001em"><span style="top:-3em"><span class="pstrut" style="height:3em"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em">I</span></span></span><span style="top:-3.25233em"><span class="pstrut" style="height:3em"></span><span class="accent-body" style="left:-0.027780000000000013em"><span class="mord">˙</span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em"><span style="top:-2.4168920000000003em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.10764em">f</span></span></span></span><span style="top:-3.063em;margin-right:0.05em"><span class="pstrut" style="height:2.7em"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.4192159999999999em"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.010676em"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></td></tr></tbody></table><p>Para obter os valores em a-b-c é usada a equação matricial apresentada anteriormente, encerrando o cálculo de curto-circuito.</p><h2><a aria-hidden="true" tabindex="-1" class="anchor enhancedAnchor_2LWZ" id="referências"></a>Referências<a class="hash-link" href="#referências" title="Direct link to heading">#</a></h2><ol><li>ARRILLAGA, J.; WATSON, N. R. Computer Modelling of Electrical Power Systems. Wiley & Sons, New York, 2001. doi: <a href="https://doi.org/10.1002/9781118878286" target="_blank" rel="noopener noreferrer">https://doi.org/10.1002/9781118878286</a></li><li>STEVENSON JR.; WILLIAN, D. Elementos de Análise de Sistemas de Potência. 2ª ed. São Paulo: McGraw-Hill, 1986.</li><li>ANDERSON, P. M.; FOUAD, A. A. Power System Control and Stability. Wiley-IEEE Press, New York, 2002. doi: <a href="https://doi.org/10.1109/9780470545577" target="_blank" rel="noopener noreferrer">https://doi.org/10.1109/9780470545577</a></li><li>FORTESCUE, C. L. Method of Symmetrical Coordinates Applied to the Solution of Polyphase Networks. Trans. AIEE, v. 37, p.1027-1140, 1918. doi: <a href="https://doi.org/10.1109/T-AIEE.1918.4765570" target="_blank" rel="noopener noreferrer">https://doi.org/10.1109/T-AIEE.1918.4765570</a></li><li>ANDERSON, P. M. Analysis of faulted power systems. New York: IEEE Press, 1995.</li></ol></div></article><div class="margin-vert--xl"><div class="row"><div class="col"><a href="https://github.com/Thales1330/PSP/tree/master/docusaurus/docs/fault.md" target="_blank" rel="noreferrer noopener"><svg fill="currentColor" height="1.2em" width="1.2em" preserveAspectRatio="xMidYMid meet" role="img" viewBox="0 0 40 40" class="iconEdit_2_ui" aria-label="Edit page"><g><path d="m34.5 11.7l-3 3.1-6.3-6.3 3.1-3q0.5-0.5 1.2-0.5t1.1 0.5l3.9 3.9q0.5 0.4 0.5 1.1t-0.5 1.2z m-29.5 17.1l18.4-18.5 6.3 6.3-18.4 18.4h-6.3v-6.2z"></path></g></svg>Edit this page</a></div></div></div><div class="margin-vert--lg"><nav class="pagination-nav" aria-label="Docs pages navigation"><div class="pagination-nav__item"><a class="pagination-nav__link" href="/PSP/pt/docs/powerFlow"><div class="pagination-nav__sublabel">Previous</div><div class="pagination-nav__label">« Fluxo de Potência</div></a></div><div class="pagination-nav__item pagination-nav__item--next"><a class="pagination-nav__link" href="/PSP/pt/docs/harmonics"><div class="pagination-nav__sublabel">Next</div><div class="pagination-nav__label">Harmônicos »</div></a></div></nav></div></div></div><div class="col col--3"><div class="tableOfContents_35-E thin-scrollbar"><ul class="table-of-contents table-of-contents__left-border"><li><a href="#cálculo-de-curto-circuito-no-psp-ufu" class="table-of-contents__link">Cálculo de Curto-Circuito no PSP-UFU</a></li><li><a href="#execução-do-cálculo-de-curto-circuito-no-psp-ufu" class="table-of-contents__link">Execução do cálculo de curto-circuito no PSP-UFU</a><ul><li><a href="#erros-comuns-na-execução-do-cálculo-de-curto-circuito" class="table-of-contents__link">Erros comuns na execução do cálculo de curto-circuito</a></li></ul></li><li><a href="#o-cálculo-de-curto-circuito" class="table-of-contents__link">O cálculo de curto-circuito</a><ul><li><a href="#método-das-componentes-simétricas" class="table-of-contents__link">Método das componentes simétricas</a></li><li><a href="#equações-do-curto-circuito" class="table-of-contents__link">Equações do curto-circuito</a></li></ul></li><li><a href="#referências" class="table-of-contents__link">Referências</a></li></ul></div></div></div></div></main></div></div><footer class="footer footer--dark"><div class="container"><div class="row footer__links"><div class="col footer__col"><h4 class="footer__title">Manual</h4><ul class="footer__items"><li class="footer__item"><a class="footer__link-item" href="/PSP/pt/docs/">Manual do PSP-UFU</a></li><li class="footer__item"><a href="https://thales1330.github.io/PSP/doxygen/html/index.html" target="_blank" rel="noopener noreferrer" class="footer__link-item">Documentação do Código</a></li></ul></div><div class="col footer__col"><h4 class="footer__title">Comunidade</h4><ul class="footer__items"><li class="footer__item"><a href="https://github.com/Thales1330/PSP/issues" target="_blank" rel="noopener noreferrer" class="footer__link-item">Faça uma pergunta</a></li><li class="footer__item"><a href="https://twitter.com/PspUfu" target="_blank" rel="noopener noreferrer" class="footer__link-item">Twitter</a></li></ul></div><div class="col footer__col"><h4 class="footer__title">Crédito das Imagens do Site</h4><ul class="footer__items"><li class="footer__item"><a href="http://www.freepik.com/" target="_blank" rel="noopener noreferrer" class="footer__link-item">Imagens criadas por upklyak / slidesgo / macrovector / Freepik</a></li></ul></div></div><div class="footer__bottom text--center"><div class="footer__copyright">Copyright © 2021 Thales Lima Oliveira. Construído com Docusaurus.</div></div></div></footer></div> +<script src="/PSP/pt/assets/js/styles.cc4b2cfe.js"></script> +<script src="/PSP/pt/assets/js/runtime~main.b7ffaf86.js"></script> +<script src="/PSP/pt/assets/js/main.168dd2d0.js"></script> +<script src="/PSP/pt/assets/js/1.c1697df3.js"></script> +<script src="/PSP/pt/assets/js/2.6b1d437b.js"></script> +<script src="/PSP/pt/assets/js/64.e39adaf3.js"></script> +<script src="/PSP/pt/assets/js/67.74e35f3d.js"></script> +<script src="/PSP/pt/assets/js/935f2afb.884eecf8.js"></script> +<script src="/PSP/pt/assets/js/17896441.9003d92a.js"></script> +<script src="/PSP/pt/assets/js/b4e22210.1b5cfa1d.js"></script> +</body> +</html>
\ No newline at end of file |