summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--.gitignore1
-rw-r--r--Project/ElectricCalculation.cpp213
-rw-r--r--Project/ElectricCalculation.h125
-rw-r--r--Project/Fault.cpp238
-rw-r--r--Project/Fault.h37
-rw-r--r--Project/PowerFlow.cpp55
-rw-r--r--Project/PowerFlow.h19
7 files changed, 620 insertions, 68 deletions
diff --git a/.gitignore b/.gitignore
index a46d72b..29383c9 100644
--- a/.gitignore
+++ b/.gitignore
@@ -4,6 +4,7 @@
.codelite/
Project/Release/
Project/Debug/
+doxygen/
# Compiled source #
###################
diff --git a/Project/ElectricCalculation.cpp b/Project/ElectricCalculation.cpp
index c78864c..8f8fa35 100644
--- a/Project/ElectricCalculation.cpp
+++ b/Project/ElectricCalculation.cpp
@@ -37,7 +37,10 @@ void ElectricCalculation::GetElementsFromList(std::vector<Element*> elementList)
}
}
-bool ElectricCalculation::GetYBus(std::vector<std::vector<std::complex<double> > >& yBus, double systemPowerBase)
+bool ElectricCalculation::GetYBus(std::vector<std::vector<std::complex<double> > >& yBus,
+ double systemPowerBase,
+ YBusSequence sequence,
+ bool includeSyncMachines)
{
if(m_busList.size() == 0) return false;
@@ -62,8 +65,8 @@ bool ElectricCalculation::GetYBus(std::vector<std::vector<std::complex<double> >
}
// Load
- for(auto itlo = m_loadList.begin(); itlo != m_loadList.end(); itlo++) {
- Load* load = *itlo;
+ for(auto it = m_loadList.begin(), itEnd = m_loadList.end(); it != itEnd; ++it) {
+ Load* load = *it;
if(load->IsOnline()) {
int n = static_cast<Bus*>(load->GetParentList()[0])->GetEletricalData().number;
LoadElectricalData data = load->GetPUElectricalData(systemPowerBase);
@@ -73,8 +76,8 @@ bool ElectricCalculation::GetYBus(std::vector<std::vector<std::complex<double> >
}
// Capacitor
- for(auto itca = m_capacitorList.begin(); itca != m_capacitorList.end(); itca++) {
- Capacitor* capacitor = *itca;
+ for(auto it = m_capacitorList.begin(), itEnd = m_capacitorList.end(); it != itEnd; ++it) {
+ Capacitor* capacitor = *it;
if(capacitor->IsOnline()) {
int n = static_cast<Bus*>(capacitor->GetParentList()[0])->GetEletricalData().number;
CapacitorElectricalData data = capacitor->GetPUElectricalData(systemPowerBase);
@@ -83,8 +86,8 @@ bool ElectricCalculation::GetYBus(std::vector<std::vector<std::complex<double> >
}
// Inductor
- for(auto itin = m_inductorList.begin(); itin != m_inductorList.end(); itin++) {
- Inductor* inductor = *itin;
+ for(auto it = m_inductorList.begin(), itEnd = m_inductorList.end(); it != itEnd; ++it) {
+ Inductor* inductor = *it;
if(inductor->IsOnline()) {
int n = static_cast<Bus*>(inductor->GetParentList()[0])->GetEletricalData().number;
InductorElectricalData data = inductor->GetPUElectricalData(systemPowerBase);
@@ -93,28 +96,43 @@ bool ElectricCalculation::GetYBus(std::vector<std::vector<std::complex<double> >
}
// Power line
- for(auto itl = m_lineList.begin(); itl != m_lineList.end(); itl++) {
- Line* line = *itl;
+ for(auto it = m_lineList.begin(), itEnd = m_lineList.end(); it != itEnd; ++it) {
+ Line* line = *it;
if(line->IsOnline()) {
LineElectricalData data = line->GetElectricalData();
int n1 = static_cast<Bus*>(line->GetParentList()[0])->GetEletricalData().number;
int n2 = static_cast<Bus*>(line->GetParentList()[1])->GetEletricalData().number;
- yBus[n1][n2] -= 1.0 / std::complex<double>(data.resistance, data.indReactance);
- yBus[n2][n1] -= 1.0 / std::complex<double>(data.resistance, data.indReactance);
+ switch(sequence) {
+ case POSITIVE_SEQ:
+ case NEGATIVE_SEQ: {
+ yBus[n1][n2] -= 1.0 / std::complex<double>(data.resistance, data.indReactance);
+ yBus[n2][n1] -= 1.0 / std::complex<double>(data.resistance, data.indReactance);
- yBus[n1][n1] += 1.0 / std::complex<double>(data.resistance, data.indReactance);
- yBus[n2][n2] += 1.0 / std::complex<double>(data.resistance, data.indReactance);
+ yBus[n1][n1] += 1.0 / std::complex<double>(data.resistance, data.indReactance);
+ yBus[n2][n2] += 1.0 / std::complex<double>(data.resistance, data.indReactance);
- yBus[n1][n1] += std::complex<double>(0.0, data.capSusceptance / 2.0);
- yBus[n2][n2] += std::complex<double>(0.0, data.capSusceptance / 2.0);
+ yBus[n1][n1] += std::complex<double>(0.0, data.capSusceptance / 2.0);
+ yBus[n2][n2] += std::complex<double>(0.0, data.capSusceptance / 2.0);
+ } break;
+ case ZERO_SEQ: {
+ yBus[n1][n2] -= 1.0 / std::complex<double>(data.zeroResistance, data.zeroIndReactance);
+ yBus[n2][n1] -= 1.0 / std::complex<double>(data.zeroResistance, data.zeroIndReactance);
+
+ yBus[n1][n1] += 1.0 / std::complex<double>(data.zeroResistance, data.zeroIndReactance);
+ yBus[n2][n2] += 1.0 / std::complex<double>(data.zeroResistance, data.zeroIndReactance);
+
+ yBus[n1][n1] += std::complex<double>(0.0, data.zeroCapSusceptance / 2.0);
+ yBus[n2][n2] += std::complex<double>(0.0, data.zeroCapSusceptance / 2.0);
+ }
+ }
}
}
// Transformer
- for(auto itt = m_transformerList.begin(); itt != m_transformerList.end(); ++itt) {
- Transformer* transformer = *itt;
+ for(auto it = m_transformerList.begin(), itEnd = m_transformerList.end(); it != itEnd; ++it) {
+ Transformer* transformer = *it;
if(transformer->IsOnline()) {
TransformerElectricalData data = transformer->GetElectricalData();
@@ -124,7 +142,7 @@ bool ElectricCalculation::GetYBus(std::vector<std::vector<std::complex<double> >
// If the transformer have nominal turns ratio (1.0) and no phase shifting, it will be modelled as series
// impedance.
- if(data.turnsRatio == 1.0 && data.phaseShift == 0.0) {
+ if(data.turnsRatio == 1.0 && data.phaseShift == 0.0 && sequence != ZERO_SEQ) {
yBus[n1][n2] += -1.0 / std::complex<double>(data.resistance, data.indReactance);
yBus[n2][n1] += -1.0 / std::complex<double>(data.resistance, data.indReactance);
@@ -136,7 +154,7 @@ bool ElectricCalculation::GetYBus(std::vector<std::vector<std::complex<double> >
//[Ref. 1: Elementos de analise de sistemas de potencia - Stevenson - pg. 232]
//[Ref. 2: http://www.ee.washington.edu/research/real/Library/Reports/Tap_Adjustments_in_AC_Load_Flows.pdf]
//[Ref. 3: http://www.columbia.edu/~dano/courses/power/notes/power/andersson1.pdf]
- else {
+ else if(sequence != ZERO_SEQ) {
// Complex turns ratio
double radPhaseShift = wxDegToRad(data.phaseShift);
std::complex<double> a = std::complex<double>(
@@ -145,10 +163,90 @@ bool ElectricCalculation::GetYBus(std::vector<std::vector<std::complex<double> >
// Transformer admitance
std::complex<double> y = 1.0 / std::complex<double>(data.resistance, data.indReactance);
- yBus[n1][n1] += y / std::pow(std::abs(a), 2.0);
- yBus[n1][n2] += -(y / std::conj(a));
- yBus[n2][n1] += -(y / a);
- yBus[n2][n2] += y;
+ if(sequence == POSITIVE_SEQ) {
+ yBus[n1][n1] += y / std::pow(std::abs(a), 2.0);
+ yBus[n1][n2] += -(y / std::conj(a));
+ yBus[n2][n1] += -(y / a);
+ yBus[n2][n2] += y;
+ } else if(sequence == NEGATIVE_SEQ) {
+ yBus[n1][n1] += y / std::pow(std::abs(a), 2.0);
+ yBus[n1][n2] += -(y / a);
+ yBus[n2][n1] += -(y / std::conj(a));
+ yBus[n2][n2] += y;
+ }
+ } else if(sequence == ZERO_SEQ) {
+ switch(data.connection) {
+ case GWYE_GWYE: {
+ std::complex<double> y =
+ 1.0 / std::complex<double>(data.zeroResistance +
+ 3.0 * (data.primaryGrndResistance + data.secondaryGrndResistance),
+ data.zeroIndReactance +
+ 3.0 * (data.primaryGrndReactance + data.secondaryGrndReactance));
+ std::complex<double> a = std::complex<double>(data.turnsRatio, 0.0);
+
+ yBus[n1][n1] += y / (a * a);
+ yBus[n1][n2] += -(y / a);
+ yBus[n2][n1] += -(y / a);
+ yBus[n2][n2] += y;
+ } break;
+ case DELTA_GWYE: {
+ std::complex<double> y =
+ 1.0 / std::complex<double>(data.zeroResistance + 3.0 * (data.secondaryGrndResistance),
+ data.zeroIndReactance + 3.0 * (data.secondaryGrndReactance));
+ yBus[n2][n2] += y;
+ break;
+ }
+ case GWYE_DELTA: {
+ std::complex<double> y =
+ 1.0 / std::complex<double>(data.zeroResistance + 3.0 * (data.primaryGrndResistance),
+ data.zeroIndReactance + 3.0 * (data.primaryGrndReactance));
+ yBus[n1][n1] += y;
+ break;
+ }
+ default:
+ break;
+ }
+ }
+ }
+ }
+
+ if(includeSyncMachines) {
+ // Synchronous generator
+ for(auto it = m_syncGeneratorList.begin(), itEnd = m_syncGeneratorList.end(); it != itEnd; ++it) {
+ SyncGenerator* syncGenerator = *it;
+ if(syncGenerator->IsOnline()) {
+ int n = static_cast<Bus*>(syncGenerator->GetParentList()[0])->GetEletricalData().number;
+ SyncGeneratorElectricalData data = syncGenerator->GetPUElectricalData(systemPowerBase);
+ switch(sequence) {
+ case POSITIVE_SEQ: {
+ yBus[n][n] += 1.0 / std::complex<double>(data.positiveResistance, data.positiveReactance);
+ } break;
+ case NEGATIVE_SEQ: {
+ yBus[n][n] += 1.0 / std::complex<double>(data.negativeResistance, data.negativeReactance);
+ } break;
+ case ZERO_SEQ: {
+ yBus[n][n] += 1.0 / std::complex<double>(data.zeroResistance, data.zeroReactance);
+ } break;
+ }
+ }
+ }
+ // Synchronous motor
+ for(auto it = m_syncMotorList.begin(), itEnd = m_syncMotorList.end(); it != itEnd; ++it) {
+ SyncMotor* syncMotor = *it;
+ if(syncMotor->IsOnline()) {
+ int n = static_cast<Bus*>(syncMotor->GetParentList()[0])->GetEletricalData().number;
+ SyncMotorElectricalData data = syncMotor->GetPUElectricalData(systemPowerBase);
+ switch(sequence) {
+ case POSITIVE_SEQ: {
+ yBus[n][n] += 1.0 / std::complex<double>(data.positiveResistance, data.positiveReactance);
+ } break;
+ case NEGATIVE_SEQ: {
+ yBus[n][n] += 1.0 / std::complex<double>(data.negativeResistance, data.negativeReactance);
+ } break;
+ case ZERO_SEQ: {
+ yBus[n][n] += 1.0 / std::complex<double>(data.zeroResistance, data.zeroReactance);
+ } break;
+ }
}
}
}
@@ -429,3 +527,72 @@ void ElectricCalculation::UpdateElementsPowerFlow(std::vector<std::complex<doubl
}
}
}
+
+bool ElectricCalculation::InvertMatrix(std::vector<std::vector<std::complex<double> > > matrix,
+ std::vector<std::vector<std::complex<double> > >& inverse)
+{
+ int order = static_cast<int>(matrix.size());
+
+ inverse.clear();
+ // Fill the inverse matrix with identity.
+ for(int i = 0; i < order; ++i) {
+ std::vector<std::complex<double> > line;
+ for(int j = 0; j < order; ++j) {
+ line.push_back(i == j ? std::complex<double>(1.0, 0.0) : std::complex<double>(0.0, 0.0));
+ }
+ inverse.push_back(line);
+ }
+
+ // Check if a main diagonal value of the matrix is zero, if one is zero, try a linear combination to remove it.
+ for(int i = 0; i < order; ++i) {
+ for(int j = 0; j < order; ++j) {
+ if(i == j && matrix[i][j] == std::complex<double>(0.0, 0.0)) {
+ int row = 0;
+ while(row < order) {
+ if(matrix[row][j] != std::complex<double>(0.0, 0.0)) {
+ for(int k = 0; k < order; ++k) {
+ matrix[i][k] += matrix[row][k];
+ inverse[i][k] += inverse[row][k];
+ }
+ break;
+ }
+ row++;
+ }
+ // If all line values are zero, the matrix is singular and the solution is impossible.
+ if(row == order) return false;
+ }
+ }
+ }
+
+ // Linear combinations are made in both matrices, the goal is the input matrix become the identity. The final result
+ // have two matrices: the identity and the inverse of the input.
+ for(int i = 0; i < order; ++i) {
+ for(int j = 0; j < order; ++j) {
+ if(i != j) {
+ if(matrix[i][i] == std::complex<double>(0.0, 0.0)) return false;
+
+ std::complex<double> factor = matrix[j][i] / matrix[i][i];
+ for(int k = 0; k < order; ++k) {
+ matrix[j][k] -= factor * matrix[i][k];
+ inverse[j][k] -= factor * inverse[i][k];
+ }
+ }
+ }
+ }
+ // Main diagonal calculation.
+ for(int i = 0; i < order; ++i) {
+ for(int j = 0; j < order; ++j) {
+ if(i == j) {
+ if(matrix[i][j] == std::complex<double>(0.0, 0.0)) return false;
+
+ std::complex<double> factor = (matrix[i][j] - std::complex<double>(1.0, 0.0)) / matrix[i][j];
+ for(int k = 0; k < order; ++k) {
+ matrix[j][k] -= factor * matrix[i][k];
+ inverse[j][k] -= factor * inverse[i][k];
+ }
+ }
+ }
+ }
+
+ return true;
+}
diff --git a/Project/ElectricCalculation.h b/Project/ElectricCalculation.h
index e4e4ef7..3eea5dd 100644
--- a/Project/ElectricCalculation.h
+++ b/Project/ElectricCalculation.h
@@ -18,14 +18,16 @@
enum BusType { BUS_SLACK = 0, BUS_PV, BUS_PQ };
enum ReactiveLimitsType {
- RL_UNLIMITED = 0, // The bus can generate any ammount of reactive power.
- RL_LIMITED, // The bus reactive power generation is limited.
- RL_UNLIMITED_SOURCE, // The bus have at least one source of infinite reative power.
- RL_MAX_REACHED, // Max limit reached
- RL_MIN_REACHED, // Min limit reached
- RL_NONE_REACHED // No limits reached
+ RL_UNLIMITED = 0, // The bus can generate any ammount of reactive power.
+ RL_LIMITED, // The bus reactive power generation is limited.
+ RL_UNLIMITED_SOURCE, // The bus have at least one source of infinite reative power.
+ RL_MAX_REACHED, // Max limit reached
+ RL_MIN_REACHED, // Min limit reached
+ RL_NONE_REACHED // No limits reached
};
+enum YBusSequence { POSITIVE_SEQ = 0, NEGATIVE_SEQ, ZERO_SEQ };
+
struct ReactiveLimits {
double maxLimit = 0.0;
double minLimit = 0.0;
@@ -34,30 +36,123 @@ struct ReactiveLimits {
ReactiveLimitsType limitReached = RL_NONE_REACHED;
};
+/**
+ * @class ElectricCalculation
+ * @author Thales Lima Oliveira
+ * @date 09/01/2017
+ * @file ElectricCalculation.h
+ * @brief Base class of electric calculations, with general methods.
+ */
class ElectricCalculation
{
- public:
+public:
+ /**
+ * @brief Constructor.
+ */
ElectricCalculation();
+
+ /**
+ * @brief Destructor.
+ */
~ElectricCalculation();
+
+ /**
+ * @brief Separate the elements from a generic list.
+ * @param elementList List of generic elements.
+ */
virtual void GetElementsFromList(std::vector<Element*> elementList);
- virtual bool GetYBus(std::vector<std::vector<std::complex<double> > >& yBus, double systemPowerBase);
+
+ /**
+ * @brief Get the admittance matrix from the list of elements (use GetElementsFromList first).
+ * @param yBus Admittance matrix. The previous content will be erased.
+ * @param systemPowerBase Base power of the system.
+ * @param sequence Sequence of admittance matrix (positive, negative and zero).
+ * @param includeSyncMachines Include the synchronous machines on calculation.
+ * @return Return true if was possible to build the admittance matrix.
+ */
+ virtual bool GetYBus(std::vector<std::vector<std::complex<double> > >& yBus,
+ double systemPowerBase,
+ YBusSequence sequence = POSITIVE_SEQ,
+ bool includeSyncMachines = false);
+
+ /**
+ * @brief Invert a matrix.
+ * @param matrix Matrix to invert.
+ * @param inverse Inverted matrix. The previous content will be erased.
+ * @return Return true if was possible to invert the matrix.
+ */
+ virtual bool InvertMatrix(std::vector<std::vector<std::complex<double> > > matrix,
+ std::vector<std::vector<std::complex<double> > >& inverse);
+
+ /**
+ * @brief Update the elements after the power flow calculation.
+ * @param voltage Array with the buses voltages.
+ * @param power Array with the buses injected power.
+ * @param busType Array with the buses type.
+ * @param reactiveLimit Array with the reactive limit data.
+ * @param systemPowerBase Base power of the system.
+ */
virtual void UpdateElementsPowerFlow(std::vector<std::complex<double> > voltage,
- std::vector<std::complex<double> > power,
- std::vector<BusType> busType,
- std::vector<ReactiveLimits> reactiveLimit,
- double systemPowerBase);
+ std::vector<std::complex<double> > power,
+ std::vector<BusType> busType,
+ std::vector<ReactiveLimits> reactiveLimit,
+ double systemPowerBase);
+ /**
+ * @brief Get the buses of the system (use GetElementsFromList first).
+ * @return A list of bus elements.
+ */
const std::vector<Bus*> GetBusList() const { return m_busList; }
+
+ /**
+ * @brief Get the capacitors of the system (use GetElementsFromList first).
+ * @return A list of capacitor elements.
+ */
const std::vector<Capacitor*> GetCapacitorList() const { return m_capacitorList; }
+
+ /**
+ * @brief Get the induction motors of the system (use GetElementsFromList first).
+ * @return A list of induction motor elements.
+ */
const std::vector<IndMotor*> GetIndMotorList() const { return m_indMotorList; }
+
+ /**
+ * @brief Get the inductors of the system (use GetElementsFromList first).
+ * @return A list of inductor elements.
+ */
const std::vector<Inductor*> GetInductorList() const { return m_inductorList; }
+
+ /**
+ * @brief Get the lines of the system (use GetElementsFromList first).
+ * @return A list of line elements.
+ */
const std::vector<Line*> GetLineList() const { return m_lineList; }
+
+ /**
+ * @brief Get the loads of the system (use GetElementsFromList first).
+ * @return A list of load elements.
+ */
const std::vector<Load*> GetLoadList() const { return m_loadList; }
+
+ /**
+ * @brief Get the synchronous generators of the system (use GetElementsFromList first).
+ * @return A list of synchronous generator elements.
+ */
const std::vector<SyncGenerator*> GetSyncGeneratorList() const { return m_syncGeneratorList; }
+
+ /**
+ * @brief Get the synchronous motors of the system (use GetElementsFromList first).
+ * @return A list of synchronous motor elements.
+ */
const std::vector<SyncMotor*> GetSyncMotorList() const { return m_syncMotorList; }
- const std::vector<Transformer*> GetTransformerList() const { return m_transformerList; }
- protected:
+ /**
+ * @brief Get the transformers of the system (use GetElementsFromList first).
+ * @return A list of transformer elements.
+ */
+ const std::vector<Transformer*> GetTransformerList() const { return m_transformerList; }
+
+protected:
std::vector<Bus*> m_busList;
std::vector<Capacitor*> m_capacitorList;
std::vector<IndMotor*> m_indMotorList;
@@ -69,4 +164,4 @@ class ElectricCalculation
std::vector<Transformer*> m_transformerList;
};
-#endif // ELECTRICCALCULATION_H
+#endif // ELECTRICCALCULATION_H
diff --git a/Project/Fault.cpp b/Project/Fault.cpp
new file mode 100644
index 0000000..058b4ea
--- /dev/null
+++ b/Project/Fault.cpp
@@ -0,0 +1,238 @@
+#include "Fault.h"
+
+Fault::Fault()
+ : ElectricCalculation()
+{
+}
+
+Fault::Fault(std::vector<Element*> elementList) { GetElementsFromList(elementList); }
+
+Fault::~Fault() {}
+
+bool Fault::RunFaultCalculation(double systemPowerBase)
+{
+ int numberOfBuses = static_cast<int>(m_busList.size());
+ if(numberOfBuses == 0) {
+ m_errorMsg = _("There is no buses in the system.");
+ return false;
+ }
+
+ // Get adimittance matrices.
+ std::vector<std::vector<std::complex<double> > > yBusPos;
+ GetYBus(yBusPos, systemPowerBase, POSITIVE_SEQ, true);
+ std::vector<std::vector<std::complex<double> > > yBusNeg;
+ GetYBus(yBusNeg, systemPowerBase, NEGATIVE_SEQ, true);
+ std::vector<std::vector<std::complex<double> > > yBusZero;
+ GetYBus(yBusZero, systemPowerBase, ZERO_SEQ, true);
+
+ // Calculate the impedance matrices.
+ if(!InvertMatrix(yBusPos, m_zBusPos)) {
+ m_errorMsg = _("Fail to invert the positive sequence admittance matrix.");
+ return false;
+ }
+ if(!InvertMatrix(yBusNeg, m_zBusNeg)) {
+ m_errorMsg = _("Fail to invert the negative sequence admittance matrix.");
+ return false;
+ }
+ if(!InvertMatrix(yBusZero, m_zBusZero)) {
+ m_errorMsg = _("Fail to invert the zero sequence admittance matrix.");
+ return false;
+ }
+
+ // Pre-fault voltages (power flow solution).
+ std::vector<std::complex<double> > preFaultVoltages;
+
+ // Get fault parameters.
+ int fNumber = -1;
+ FaultData fType = FAULT_THREEPHASE;
+ FaultData fLocation = FAULT_LINE_A;
+ std::complex<double> fImpedance = std::complex<double>(0.0, 0.0);
+ for(auto it = m_busList.begin(), itEnd = m_busList.end(); it != itEnd; ++it) {
+ Bus* bus = *it;
+ BusElectricalData data = bus->GetEletricalData();
+ preFaultVoltages.push_back(data.voltage);
+ if(data.hasFault) {
+ fNumber = data.number;
+ fType = data.faultType;
+ fLocation = data.faultLocation;
+ fImpedance = std::complex<double>(data.faultResistance, data.faultReactance);
+ }
+ }
+
+ if(fNumber == -1) {
+ m_errorMsg = _("There is no fault in the system.");
+ return false;
+ }
+
+ // Fault calculation.
+ std::complex<double> fCurrentPos = std::complex<double>(0.0, 0.0);
+ std::complex<double> fCurrentNeg = std::complex<double>(0.0, 0.0);
+ std::complex<double> fCurrentZero = std::complex<double>(0.0, 0.0);
+
+ std::complex<double> preFaultVoltage = preFaultVoltages[fNumber];
+ std::complex<double> a = std::complex<double>(-0.5, 0.866025403784);
+ std::complex<double> a2 = std::complex<double>(-0.5, -0.866025403784);
+
+ switch(fType) {
+ case FAULT_THREEPHASE: {
+ fCurrentPos = preFaultVoltage / (m_zBusPos[fNumber][fNumber] + fImpedance);
+ } break;
+ case FAULT_2LINE: {
+ fCurrentPos = preFaultVoltage / (m_zBusPos[fNumber][fNumber] + m_zBusNeg[fNumber][fNumber] + fImpedance);
+
+ switch(fLocation) {
+ case FAULT_LINE_A: {
+ fCurrentNeg = -a2 * fCurrentPos;
+ } break;
+ case FAULT_LINE_B: {
+ fCurrentNeg = -fCurrentPos;
+ } break;
+ case FAULT_LINE_C: {
+ fCurrentNeg = -a * fCurrentPos;
+ } break;
+ default:
+ break;
+ }
+ } break;
+ case FAULT_2LINE_GROUND: {
+ std::complex<double> z1 = m_zBusPos[fNumber][fNumber];
+ std::complex<double> z2 = m_zBusNeg[fNumber][fNumber];
+ std::complex<double> z0 = m_zBusZero[fNumber][fNumber];
+ std::complex<double> zf_3 = std::complex<double>(3.0, 0.0) * fImpedance;
+
+ fCurrentPos = (preFaultVoltage * (z2 + z0 + zf_3)) / (z1 * z2 + z2 * z0 + z2 * zf_3 + z1 * z0 + z1 * zf_3);
+
+ switch(fLocation) {
+ case FAULT_LINE_A: {
+ fCurrentNeg = -a2 * ((preFaultVoltage - z1 * fCurrentPos) / z2);
+ fCurrentZero = -a * ((preFaultVoltage - z1 * fCurrentPos) / (z0 + zf_3));
+ } break;
+ case FAULT_LINE_B: {
+ fCurrentNeg = -((preFaultVoltage - z1 * fCurrentPos) / z2);
+ fCurrentZero = -((preFaultVoltage - z1 * fCurrentPos) / (z0 + zf_3));
+ } break;
+ case FAULT_LINE_C: {
+ fCurrentNeg = -a * ((preFaultVoltage - z1 * fCurrentPos) / z2);
+ fCurrentZero = -a2 * ((preFaultVoltage - z1 * fCurrentPos) / (z0 + zf_3));
+ } break;
+ default:
+ break;
+ }
+ } break;
+ case FAULT_LINE_GROUND: {
+ fCurrentPos =
+ preFaultVoltage / (m_zBusPos[fNumber][fNumber] + m_zBusNeg[fNumber][fNumber] +
+ m_zBusZero[fNumber][fNumber] + std::complex<double>(3.0, 0.0) * fImpedance);
+ switch(fLocation) {
+ case FAULT_LINE_A: {
+ fCurrentNeg = fCurrentPos;
+ fCurrentZero = fCurrentPos;
+ } break;
+ case FAULT_LINE_B: {
+ fCurrentNeg = a * fCurrentPos;
+ fCurrentZero = a2 * fCurrentPos;
+ } break;
+ case FAULT_LINE_C: {
+ fCurrentNeg = a2 * fCurrentPos;
+ fCurrentZero = a * fCurrentPos;
+ } break;
+ default:
+ break;
+ }
+ } break;
+ default:
+ break;
+ }
+
+ // Convert sequence currents to ABC. [Iabc] = [A]*[I012]
+ m_fCurrentA = fCurrentPos + fCurrentNeg + fCurrentZero;
+ m_fCurrentB = fCurrentPos + a2 * fCurrentNeg + a * fCurrentZero;
+ m_fCurrentC = fCurrentPos + a * fCurrentNeg + a2 * fCurrentZero;
+
+ // Pos-fault voltages calculation
+ m_posFaultVoltagePos.clear();
+ m_posFaultVoltageNeg.clear();
+ m_posFaultVoltageZero.clear();
+ m_posFaultVoltageA.clear();
+ m_posFaultVoltageB.clear();
+ m_posFaultVoltageC.clear();
+
+ for(int i = 0; i < numberOfBuses; ++i) {
+ m_posFaultVoltagePos.push_back(preFaultVoltages[i] - m_zBusPos[i][fNumber] * fCurrentPos);
+ m_posFaultVoltageNeg.push_back(-m_zBusNeg[i][fNumber] * fCurrentNeg);
+ m_posFaultVoltageZero.push_back(-m_zBusZero[i][fNumber] * fCurrentZero);
+
+ // V012 -> Vabc
+ m_posFaultVoltageA.push_back(m_posFaultVoltagePos[i] + m_posFaultVoltageNeg[i] + m_posFaultVoltageZero[i]);
+ m_posFaultVoltageB.push_back(
+ m_posFaultVoltagePos[i] + a2 * m_posFaultVoltageNeg[i] + a * m_posFaultVoltageZero[i]);
+ m_posFaultVoltageC.push_back(
+ m_posFaultVoltagePos[i] + a * m_posFaultVoltageNeg[i] + a2 * m_posFaultVoltageZero[i]);
+ }
+
+ UpdateElementsFault(systemPowerBase);
+ return true;
+}
+
+void Fault::UpdateElementsFault(double systemPowerBase)
+{
+ std::complex<double> a = std::complex<double>(-0.5, 0.866025403784);
+ std::complex<double> a2 = std::complex<double>(-0.5, -0.866025403784);
+
+ for(auto it = m_busList.begin(), itEnd = m_busList.end(); it != itEnd; ++it) {
+ Bus* bus = *it;
+ auto data = bus->GetEletricalData();
+ if(data.hasFault) {
+ data.faultCurrent[0] = m_fCurrentA;
+ data.faultCurrent[1] = m_fCurrentB;
+ data.faultCurrent[2] = m_fCurrentC;
+ } else {
+ data.faultCurrent[0] = data.faultCurrent[1] = data.faultCurrent[2] = std::complex<double>(0.0, 0.0);
+ }
+ data.faultVoltage[0] = m_posFaultVoltageA[data.number];
+ data.faultVoltage[1] = m_posFaultVoltageB[data.number];
+ data.faultVoltage[2] = m_posFaultVoltageC[data.number];
+ bus->SetElectricalData(data);
+ }
+
+ for(auto it = m_lineList.begin(), itEnd = m_lineList.end(); it != itEnd; ++it) {
+ Line* line = *it;
+ if(line->IsOnline()) {
+ int n1 = static_cast<Bus*>(line->GetParentList()[0])->GetEletricalData().number;
+ int n2 = static_cast<Bus*>(line->GetParentList()[1])->GetEletricalData().number;
+ auto data = line->GetElectricalData();
+ std::complex<double> vPos[2] = { m_posFaultVoltagePos[n1], m_posFaultVoltagePos[n2] };
+ std::complex<double> vNeg[2] = { m_posFaultVoltageNeg[n1], m_posFaultVoltageNeg[n2] };
+ std::complex<double> vZero[2] = { m_posFaultVoltageZero[n1], m_posFaultVoltageZero[n2] };
+ std::complex<double> zPos(data.resistance, data.indReactance);
+ std::complex<double> bPos(0.0, data.capSusceptance / 2.0);
+ std::complex<double> zZero(data.zeroResistance, data.zeroIndReactance);
+ std::complex<double> bZero(0.0, data.zeroCapSusceptance / 2.0);
+
+ std::complex<double> lineCurrentPos[2];
+ std::complex<double> lineCurrentNeg[2];
+ std::complex<double> lineCurrentZero[2];
+
+ lineCurrentPos[0] = ((vPos[0] - vPos[1]) / zPos) + (vPos[0] * bPos);
+ lineCurrentNeg[0] = ((vNeg[0] - vNeg[1]) / zPos) + (vNeg[0] * bPos);
+ lineCurrentZero[0] = ((vZero[0] - vZero[1]) / zZero) + (vZero[0] * bZero);
+ lineCurrentPos[1] = ((vPos[1] - vPos[0]) / zPos) + (vPos[1] * bPos);
+ lineCurrentNeg[1] = ((vNeg[1] - vNeg[0]) / zPos) + (vNeg[1] * bPos);
+ lineCurrentZero[1] = ((vZero[1] - vZero[0]) / zZero) + (vZero[1] * bZero);
+
+ data.faultCurrent[0][0] = lineCurrentPos[0] + lineCurrentNeg[0] + lineCurrentZero[0];
+ data.faultCurrent[1][0] = lineCurrentPos[0] + a2 * lineCurrentNeg[0] + a * lineCurrentZero[0];
+ data.faultCurrent[2][0] = lineCurrentPos[0] + a * lineCurrentNeg[0] + a2 * lineCurrentZero[0];
+ data.faultCurrent[0][1] = lineCurrentPos[1] + lineCurrentNeg[1] + lineCurrentZero[1];
+ data.faultCurrent[1][1] = lineCurrentPos[1] + a2 * lineCurrentNeg[1] + a * lineCurrentZero[1];
+ data.faultCurrent[2][1] = lineCurrentPos[1] + a * lineCurrentNeg[1] + a2 * lineCurrentZero[1];
+
+ line->SetElectricalData(data);
+ }
+ }
+
+ for(auto it = m_transformerList.begin(), itEnd = m_transformerList.end(); it != itEnd; ++it) {
+ Transformer* transformer = *it;
+
+ }
+}
diff --git a/Project/Fault.h b/Project/Fault.h
new file mode 100644
index 0000000..dfe0e75
--- /dev/null
+++ b/Project/Fault.h
@@ -0,0 +1,37 @@
+#ifndef FAULT_H
+#define FAULT_H
+
+#include "ElectricCalculation.h"
+
+class Fault : public ElectricCalculation
+{
+public:
+ Fault(std::vector<Element*> elementList);
+ Fault();
+ ~Fault();
+
+ virtual bool RunFaultCalculation(double systemPowerBase);
+ virtual void UpdateElementsFault(double systemPowerBase);
+ virtual wxString GetErrorMessage() { return m_errorMsg; }
+
+protected:
+ wxString m_errorMsg = "";
+
+ std::vector<std::vector<std::complex<double> > > m_zBusPos;
+ std::vector<std::vector<std::complex<double> > > m_zBusNeg;
+ std::vector<std::vector<std::complex<double> > > m_zBusZero;
+
+ std::vector<std::complex<double> > m_posFaultVoltagePos;
+ std::vector<std::complex<double> > m_posFaultVoltageNeg;
+ std::vector<std::complex<double> > m_posFaultVoltageZero;
+
+ std::complex<double> m_fCurrentA;
+ std::complex<double> m_fCurrentB;
+ std::complex<double> m_fCurrentC;
+
+ std::vector<std::complex<double> > m_posFaultVoltageA;
+ std::vector<std::complex<double> > m_posFaultVoltageB;
+ std::vector<std::complex<double> > m_posFaultVoltageC;
+};
+
+#endif // FAULT_H
diff --git a/Project/PowerFlow.cpp b/Project/PowerFlow.cpp
index c94d8d8..bfee2af 100644
--- a/Project/PowerFlow.cpp
+++ b/Project/PowerFlow.cpp
@@ -1,12 +1,23 @@
#include "PowerFlow.h"
-PowerFlow::PowerFlow(std::vector<Element*> elementList) : ElectricCalculation() { GetElementsFromList(elementList); }
+PowerFlow::PowerFlow()
+ : ElectricCalculation()
+{
+}
+
+PowerFlow::PowerFlow(std::vector<Element*> elementList)
+ : ElectricCalculation()
+{
+ GetElementsFromList(elementList);
+}
+
PowerFlow::~PowerFlow() {}
+
bool PowerFlow::RunGaussSeidel(double systemPowerBase,
- int maxIteration,
- double error,
- double initAngle,
- double accFactor)
+ int maxIteration,
+ double error,
+ double initAngle,
+ double accFactor)
{
// Calculate the Ybus.
if(!GetYBus(m_yBus, systemPowerBase)) {
@@ -15,13 +26,13 @@ bool PowerFlow::RunGaussSeidel(double systemPowerBase,
}
// Number of buses on the system.
- int numberOfBuses = (int)m_busList.size();
+ int numberOfBuses = static_cast<int>(m_busList.size());
- std::vector<BusType> busType; // Bus type
- std::vector<std::complex<double> > voltage; // Voltage of buses
- std::vector<std::complex<double> > power; // Injected power
- std::vector<std::complex<double> > loadPower; // Only the load power
- std::vector<ReactiveLimits> reactiveLimit; // Limit of reactive power on PV buses
+ std::vector<BusType> busType; // Bus type
+ std::vector<std::complex<double> > voltage; // Voltage of buses
+ std::vector<std::complex<double> > power; // Injected power
+ std::vector<std::complex<double> > loadPower; // Only the load power
+ std::vector<ReactiveLimits> reactiveLimit; // Limit of reactive power on PV buses
reactiveLimit.resize(numberOfBuses);
@@ -61,7 +72,7 @@ bool PowerFlow::RunGaussSeidel(double systemPowerBase,
}
// Fill the power array
- power.push_back(std::complex<double>(0.0, 0.0)); // Initial value
+ power.push_back(std::complex<double>(0.0, 0.0)); // Initial value
loadPower.push_back(std::complex<double>(0.0, 0.0));
// Synchronous generator
@@ -168,12 +179,12 @@ bool PowerFlow::RunGaussSeidel(double systemPowerBase,
}
// Gauss-Seidel method
- std::vector<std::complex<double> > oldVoltage; // Old voltage array.
+ std::vector<std::complex<double> > oldVoltage; // Old voltage array.
oldVoltage.resize(voltage.size());
auto oldBusType = busType;
- int iteration = 0; // Current itaration number.
+ int iteration = 0; // Current itaration number.
while(true) {
// Reach the max number of iterations.
@@ -203,7 +214,7 @@ bool PowerFlow::RunGaussSeidel(double systemPowerBase,
// Apply the acceleration factor.
newVolt = std::complex<double>(accFactor * (newVolt.real() - voltage[i].real()) + voltage[i].real(),
- accFactor * (newVolt.imag() - voltage[i].imag()) + voltage[i].imag());
+ accFactor * (newVolt.imag() - voltage[i].imag()) + voltage[i].imag());
voltage[i] = newVolt;
}
@@ -227,15 +238,15 @@ bool PowerFlow::RunGaussSeidel(double systemPowerBase,
// Apply the acceleration factor.
newVolt = std::complex<double>(accFactor * (newVolt.real() - voltage[i].real()) + voltage[i].real(),
- accFactor * (newVolt.imag() - voltage[i].imag()) + voltage[i].imag());
+ accFactor * (newVolt.imag() - voltage[i].imag()) + voltage[i].imag());
// Keep the same voltage magnitude.
voltage[i] = std::complex<double>(std::abs(voltage[i]) * std::cos(std::arg(newVolt)),
- std::abs(voltage[i]) * std::sin(std::arg(newVolt)));
+ std::abs(voltage[i]) * std::sin(std::arg(newVolt)));
}
- double busError = std::max(std::abs(voltage[i].real() - oldVoltage[i].real()),
- std::abs(voltage[i].imag() - oldVoltage[i].imag()));
+ double busError = std::max(
+ std::abs(voltage[i].real() - oldVoltage[i].real()), std::abs(voltage[i].imag() - oldVoltage[i].imag()));
if(busError > iterationError) iterationError = busError;
}
@@ -246,7 +257,8 @@ bool PowerFlow::RunGaussSeidel(double systemPowerBase,
if(busType[i] == BUS_PV) {
if(reactiveLimit[i].maxLimitType == RL_LIMITED) {
if(power[i].imag() - loadPower[i].imag() > reactiveLimit[i].maxLimit) {
- power[i] = std::complex<double>(power[i].real(), reactiveLimit[i].maxLimit + loadPower[i].imag());
+ power[i] =
+ std::complex<double>(power[i].real(), reactiveLimit[i].maxLimit + loadPower[i].imag());
busType[i] = BUS_PQ;
reactiveLimit[i].limitReached = RL_MAX_REACHED;
limitReach = true;
@@ -254,7 +266,8 @@ bool PowerFlow::RunGaussSeidel(double systemPowerBase,
}
if(reactiveLimit[i].minLimitType == RL_LIMITED) {
if(power[i].imag() - loadPower[i].imag() < reactiveLimit[i].minLimit) {
- power[i] = std::complex<double>(power[i].real(), reactiveLimit[i].minLimit + loadPower[i].imag());
+ power[i] =
+ std::complex<double>(power[i].real(), reactiveLimit[i].minLimit + loadPower[i].imag());
busType[i] = BUS_PQ;
reactiveLimit[i].limitReached = RL_MIN_REACHED;
limitReach = true;
diff --git a/Project/PowerFlow.h b/Project/PowerFlow.h
index 1e5c621..29e205a 100644
--- a/Project/PowerFlow.h
+++ b/Project/PowerFlow.h
@@ -4,24 +4,25 @@
#include "ElectricCalculation.h"
#include <wx/string.h>
-#include <wx/intl.h> //_()
-#include <wx/log.h> //temp
+#include <wx/intl.h> //_()
class PowerFlow : public ElectricCalculation
{
- public:
+public:
+ PowerFlow();
PowerFlow(std::vector<Element*> elementList);
~PowerFlow();
virtual bool RunGaussSeidel(double systemPowerBase = 100e6,
- int maxIteration = 5000,
- double error = 1e-6,
- double initAngle = 0.0,
- double accFactor = 1.0);
+ int maxIteration = 5000,
+ double error = 1e-6,
+ double initAngle = 0.0,
+ double accFactor = 1.0);
virtual wxString GetErrorMessage() { return m_errorMsg; }
- protected:
+
+protected:
std::vector<std::vector<std::complex<double> > > m_yBus;
wxString m_errorMsg = "";
};
-#endif // POWERFLOW_H
+#endif // POWERFLOW_H