1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
|
require 'puppet/external/dot'
require 'puppet/relationship'
require 'set'
# A hopefully-faster graph class to replace the use of GRATR.
class Puppet::SimpleGraph
#
# All public methods of this class must maintain (assume ^ ensure) the following invariants, where "=~=" means
# equiv. up to order:
#
# @in_to.keys =~= @out_to.keys =~= all vertices
# @in_to.values.collect { |x| x.values }.flatten =~= @out_from.values.collect { |x| x.values }.flatten =~= all edges
# @in_to[v1][v2] =~= @out_from[v2][v1] =~= all edges from v1 to v2
# @in_to [v].keys =~= vertices with edges leading to v
# @out_from[v].keys =~= vertices with edges leading from v
# no operation may shed reference loops (for gc)
# recursive operation must scale with the depth of the spanning trees, or better (e.g. no recursion over the set
# of all vertices, etc.)
#
# This class is intended to be used with DAGs. However, if the
# graph has a cycle, it will not cause non-termination of any of the
# algorithms. The topsort method detects and reports cycles.
#
def initialize
@in_to = {}
@out_from = {}
@upstream_from = {}
@downstream_from = {}
end
# Clear our graph.
def clear
@in_to.clear
@out_from.clear
@upstream_from.clear
@downstream_from.clear
end
# Which resources depend upon the given resource.
def dependencies(resource)
vertex?(resource) ? upstream_from_vertex(resource).keys : []
end
def dependents(resource)
vertex?(resource) ? downstream_from_vertex(resource).keys : []
end
# Whether our graph is directed. Always true. Used to produce dot files.
def directed?
true
end
# Determine all of the leaf nodes below a given vertex.
def leaves(vertex, direction = :out)
tree_from_vertex(vertex, direction).keys.find_all { |c| adjacent(c, :direction => direction).empty? }
end
# Collect all of the edges that the passed events match. Returns
# an array of edges.
def matching_edges(event, base = nil)
source = base || event.resource
unless vertex?(source)
Puppet.warning "Got an event from invalid vertex #{source.ref}"
return []
end
# Get all of the edges that this vertex should forward events
# to, which is the same thing as saying all edges directly below
# This vertex in the graph.
@out_from[source].values.flatten.find_all { |edge| edge.match?(event.name) }
end
# Return a reversed version of this graph.
def reversal
result = self.class.new
vertices.each { |vertex| result.add_vertex(vertex) }
edges.each do |edge|
result.add_edge edge.class.new(edge.target, edge.source, edge.label)
end
result
end
# Return the size of the graph.
def size
vertices.size
end
def to_a
vertices
end
# This is a simple implementation of Tarjan's algorithm to find strongly
# connected components in the graph; this is a fairly ugly implementation,
# because I can't just decorate the vertices themselves.
#
# This method has an unhealthy relationship with the find_cycles_in_graph
# method below, which contains the knowledge of how the state object is
# maintained.
def tarjan(root, s)
# initialize the recursion stack we use to work around the nasty lack of a
# decent Ruby stack.
recur = [{ :node => root }]
while not recur.empty? do
frame = recur.last
vertex = frame[:node]
case frame[:step]
when nil then
s[:index][vertex] = s[:number]
s[:lowlink][vertex] = s[:number]
s[:number] = s[:number] + 1
s[:stack].push(vertex)
s[:seen][vertex] = true
frame[:children] = adjacent(vertex)
frame[:step] = :children
when :children then
if frame[:children].length > 0 then
child = frame[:children].shift
if ! s[:index][child] then
# Never seen, need to recurse.
frame[:step] = :after_recursion
frame[:child] = child
recur.push({ :node => child })
elsif s[:seen][child] then
s[:lowlink][vertex] = [s[:lowlink][vertex], s[:index][child]].min
end
else
if s[:lowlink][vertex] == s[:index][vertex] then
this_scc = []
begin
top = s[:stack].pop
s[:seen][top] = false
this_scc << top
end until top == vertex
# NOTE: if we don't reverse we get the components in the opposite
# order to what a human being would expect; reverse should be an
# O(1) operation, without even copying, because we know the length
# of the source, but I worry that an implementation will get this
# wrong. Still, the worst case is O(n) for n vertices as we can't
# possibly put a vertex into two SCCs.
#
# Also, my feeling is that most implementations are going to do
# better with a reverse operation than a string of 'unshift'
# insertions at the head of the array; if they were going to mess
# up the performance of one, it would be unshift.
s[:scc] << this_scc.reverse
end
recur.pop # done with this node, finally.
end
when :after_recursion then
s[:lowlink][vertex] = [s[:lowlink][vertex], s[:lowlink][frame[:child]]].min
frame[:step] = :children
else
fail "#{frame[:step]} is an unknown step"
end
end
end
# Find all cycles in the graph by detecting all the strongly connected
# components, then eliminating everything with a size of one as
# uninteresting - which it is, because it can't be a cycle. :)
#
# This has an unhealthy relationship with the 'tarjan' method above, which
# it uses to implement the detection of strongly connected components.
def find_cycles_in_graph
state = {
:number => 0, :index => {}, :lowlink => {}, :scc => [],
:stack => [], :seen => {}
}
# we usually have a disconnected graph, must walk all possible roots
vertices.each do |vertex|
if ! state[:index][vertex] then
tarjan vertex, state
end
end
state[:scc].select { |c| c.length > 1 }
end
# Perform a BFS on the sub graph representing the cycle, with a view to
# generating a sufficient set of paths to report the cycle meaningfully, and
# ideally usefully, for the end user.
#
# BFS is preferred because it will generally report the shortest paths
# through the graph first, which are more likely to be interesting to the
# user. I think; it would be interesting to verify that. --daniel 2011-01-23
def paths_in_cycle(cycle, max_paths = 1)
raise ArgumentError, "negative or zero max_paths" if max_paths < 1
# Calculate our filtered outbound vertex lists...
adj = {}
cycle.each do |vertex|
adj[vertex] = adjacent(vertex).select{|s| cycle.member? s}
end
found = []
# frame struct is vertex, [path]
stack = [[cycle.first, []]]
while frame = stack.shift do
if frame[1].member?(frame[0]) then
found << frame[1] + [frame[0]]
break if found.length >= max_paths
else
adj[frame[0]].each do |to|
stack.push [to, frame[1] + [frame[0]]]
end
end
end
return found
end
def report_cycles_in_graph
cycles = find_cycles_in_graph
n = cycles.length # where is "pluralize"? --daniel 2011-01-22
s = n == 1 ? '' : 's'
message = "Found #{n} dependency cycle#{s}:\n"
cycles.each do |cycle|
paths = paths_in_cycle(cycle)
message += paths.map{ |path| '(' + path.join(" => ") + ')'}.join("\n") + "\n"
end
if Puppet[:graph] then
filename = write_cycles_to_graph(cycles)
message += "Cycle graph written to #{filename}."
else
message += "Try the '--graph' option and opening the "
message += "resulting '.dot' file in OmniGraffle or GraphViz"
end
raise Puppet::Error, message
end
def write_cycles_to_graph(cycles)
# This does not use the DOT graph library, just writes the content
# directly. Given the complexity of this, there didn't seem much point
# using a heavy library to generate exactly the same content. --daniel 2011-01-27
Puppet.settings.use(:graphing)
graph = ["digraph Resource_Cycles {"]
graph << ' label = "Resource Cycles"'
cycles.each do |cycle|
paths_in_cycle(cycle, 10).each do |path|
graph << path.map { |v| '"' + v.to_s.gsub(/"/, '\\"') + '"' }.join(" -> ")
end
end
graph << '}'
filename = File.join(Puppet[:graphdir], "cycles.dot")
File.open(filename, "w") { |f| f.puts graph }
return filename
end
# Provide a topological sort.
def topsort
degree = {}
zeros = []
result = []
# Collect each of our vertices, with the number of in-edges each has.
vertices.each do |v|
edges = @in_to[v]
zeros << v if edges.empty?
degree[v] = edges.length
end
# Iterate over each 0-degree vertex, decrementing the degree of
# each of its out-edges.
while v = zeros.pop
result << v
@out_from[v].each { |v2,es|
zeros << v2 if (degree[v2] -= 1) == 0
}
end
# If we have any vertices left with non-zero in-degrees, then we've found a cycle.
if cycles = degree.values.reject { |ns| ns == 0 } and cycles.length > 0
report_cycles_in_graph
end
result
end
# Add a new vertex to the graph.
def add_vertex(vertex)
@in_to[vertex] ||= {}
@out_from[vertex] ||= {}
end
# Remove a vertex from the graph.
def remove_vertex!(v)
return unless vertex?(v)
@upstream_from.clear
@downstream_from.clear
(@in_to[v].values+@out_from[v].values).flatten.each { |e| remove_edge!(e) }
@in_to.delete(v)
@out_from.delete(v)
end
# Test whether a given vertex is in the graph.
def vertex?(v)
@in_to.include?(v)
end
# Return a list of all vertices.
def vertices
@in_to.keys
end
# Add a new edge. The graph user has to create the edge instance,
# since they have to specify what kind of edge it is.
def add_edge(e,*a)
return add_relationship(e,*a) unless a.empty?
@upstream_from.clear
@downstream_from.clear
add_vertex(e.source)
add_vertex(e.target)
@in_to[ e.target][e.source] ||= []; @in_to[ e.target][e.source] |= [e]
@out_from[e.source][e.target] ||= []; @out_from[e.source][e.target] |= [e]
end
def add_relationship(source, target, label = nil)
add_edge Puppet::Relationship.new(source, target, label)
end
# Find all matching edges.
def edges_between(source, target)
(@out_from[source] || {})[target] || []
end
# Is there an edge between the two vertices?
def edge?(source, target)
vertex?(source) and vertex?(target) and @out_from[source][target]
end
def edges
@in_to.values.collect { |x| x.values }.flatten
end
def each_edge
@in_to.each { |t,ns| ns.each { |s,es| es.each { |e| yield e }}}
end
# Remove an edge from our graph.
def remove_edge!(e)
if edge?(e.source,e.target)
@upstream_from.clear
@downstream_from.clear
@in_to [e.target].delete e.source if (@in_to [e.target][e.source] -= [e]).empty?
@out_from[e.source].delete e.target if (@out_from[e.source][e.target] -= [e]).empty?
end
end
# Find adjacent edges.
def adjacent(v, options = {})
return [] unless ns = (options[:direction] == :in) ? @in_to[v] : @out_from[v]
(options[:type] == :edges) ? ns.values.flatten : ns.keys
end
# Take container information from another graph and use it
# to replace any container vertices with their respective leaves.
# This creates direct relationships where there were previously
# indirect relationships through the containers.
def splice!(other, type)
# We have to get the container list via a topological sort on the
# configuration graph, because otherwise containers that contain
# other containers will add those containers back into the
# graph. We could get a similar affect by only setting relationships
# to container leaves, but that would result in many more
# relationships.
stage_class = Puppet::Type.type(:stage)
whit_class = Puppet::Type.type(:whit)
containers = other.topsort.find_all { |v| (v.is_a?(type) or v.is_a?(stage_class)) and vertex?(v) }
containers.each do |container|
# Get the list of children from the other graph.
children = other.adjacent(container, :direction => :out)
# MQR TODO: Luke suggests that it should be possible to refactor the system so that
# container nodes are retained, thus obviating the need for the whit.
children = [whit_class.new(:name => container.name, :catalog => other)] if children.empty?
# First create new edges for each of the :in edges
[:in, :out].each do |dir|
edges = adjacent(container, :direction => dir, :type => :edges)
edges.each do |edge|
children.each do |child|
if dir == :in
s = edge.source
t = child
else
s = child
t = edge.target
end
add_edge(s, t, edge.label)
end
# Now get rid of the edge, so remove_vertex! works correctly.
remove_edge!(edge)
end
end
remove_vertex!(container)
end
end
# Just walk the tree and pass each edge.
def walk(source, direction)
# Use an iterative, breadth-first traversal of the graph. One could do
# this recursively, but Ruby's slow function calls and even slower
# recursion make the shorter, recursive algorithm cost-prohibitive.
stack = [source]
seen = Set.new
until stack.empty?
node = stack.shift
next if seen.member? node
connected = adjacent(node, :direction => direction)
connected.each do |target|
yield node, target
end
stack.concat(connected)
seen << node
end
end
# A different way of walking a tree, and a much faster way than the
# one that comes with GRATR.
def tree_from_vertex(start, direction = :out)
predecessor={}
walk(start, direction) do |parent, child|
predecessor[child] = parent
end
predecessor
end
def downstream_from_vertex(v)
return @downstream_from[v] if @downstream_from[v]
result = @downstream_from[v] = {}
@out_from[v].keys.each do |node|
result[node] = 1
result.update(downstream_from_vertex(node))
end
result
end
def upstream_from_vertex(v)
return @upstream_from[v] if @upstream_from[v]
result = @upstream_from[v] = {}
@in_to[v].keys.each do |node|
result[node] = 1
result.update(upstream_from_vertex(node))
end
result
end
# LAK:FIXME This is just a paste of the GRATR code with slight modifications.
# Return a DOT::DOTDigraph for directed graphs or a DOT::DOTSubgraph for an
# undirected Graph. _params_ can contain any graph property specified in
# rdot.rb. If an edge or vertex label is a kind of Hash then the keys
# which match +dot+ properties will be used as well.
def to_dot_graph (params = {})
params['name'] ||= self.class.name.gsub(/:/,'_')
fontsize = params['fontsize'] ? params['fontsize'] : '8'
graph = (directed? ? DOT::DOTDigraph : DOT::DOTSubgraph).new(params)
edge_klass = directed? ? DOT::DOTDirectedEdge : DOT::DOTEdge
vertices.each do |v|
name = v.to_s
params = {'name' => '"'+name+'"',
'fontsize' => fontsize,
'label' => name}
v_label = v.to_s
params.merge!(v_label) if v_label and v_label.kind_of? Hash
graph << DOT::DOTNode.new(params)
end
edges.each do |e|
params = {'from' => '"'+ e.source.to_s + '"',
'to' => '"'+ e.target.to_s + '"',
'fontsize' => fontsize }
e_label = e.to_s
params.merge!(e_label) if e_label and e_label.kind_of? Hash
graph << edge_klass.new(params)
end
graph
end
# Output the dot format as a string
def to_dot (params={}) to_dot_graph(params).to_s; end
# Call +dotty+ for the graph which is written to the file 'graph.dot'
# in the # current directory.
def dotty (params = {}, dotfile = 'graph.dot')
File.open(dotfile, 'w') {|f| f << to_dot(params) }
system('dotty', dotfile)
end
# Produce the graph files if requested.
def write_graph(name)
return unless Puppet[:graph]
Puppet.settings.use(:graphing)
file = File.join(Puppet[:graphdir], "#{name}.dot")
File.open(file, "w") { |f|
f.puts to_dot("name" => name.to_s.capitalize)
}
end
# This flag may be set to true to use the new YAML serialzation
# format (where @vertices is a simple list of vertices rather than a
# list of VertexWrapper objects). Deserialization supports both
# formats regardless of the setting of this flag.
class << self
attr_accessor :use_new_yaml_format
end
self.use_new_yaml_format = false
# Stub class to allow graphs to be represented in YAML using the old
# (version 2.6) format.
class VertexWrapper
attr_reader :vertex, :adjacencies
def initialize(vertex, adjacencies)
@vertex = vertex
@adjacencies = adjacencies
end
def inspect
{ :@adjacencies => @adjacencies, :@vertex => @vertex.to_s }.inspect
end
end
# instance_variable_get is used by Object.to_zaml to get instance
# variables. Override it so that we can simulate the presence of
# instance variables @edges and @vertices for serialization.
def instance_variable_get(v)
case v.to_s
when '@edges' then
edges
when '@vertices' then
if self.class.use_new_yaml_format
vertices
else
result = {}
vertices.each do |vertex|
adjacencies = {}
[:in, :out].each do |direction|
adjacencies[direction] = {}
adjacent(vertex, :direction => direction, :type => :edges).each do |edge|
other_vertex = direction == :in ? edge.source : edge.target
(adjacencies[direction][other_vertex] ||= Set.new).add(edge)
end
end
result[vertex] = Puppet::SimpleGraph::VertexWrapper.new(vertex, adjacencies)
end
result
end
else
super(v)
end
end
def to_yaml_properties
other_vars = instance_variables.
map {|v| v.to_s}.
reject { |v| %w{@in_to @out_from @upstream_from @downstream_from}.include?(v) }
(other_vars + %w{@vertices @edges}).sort.uniq
end
def yaml_initialize(tag, var)
initialize()
vertices = var.delete('vertices')
edges = var.delete('edges')
if vertices.is_a?(Hash)
# Support old (2.6) format
vertices = vertices.keys
end
vertices.each { |v| add_vertex(v) }
edges.each { |e| add_edge(e) }
var.each do |varname, value|
instance_variable_set("@#{varname}", value)
end
end
end
|