blob: bcc1184225de9cb4a316a2096aaa04d0c833b0f3 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
|
# Options to ctdbd. This is read by /etc/init.d/ctdb
# you must specify the location of a shared lock file across all the
# nodes. This must be on shared storage
# there is no default
# CTDB_RECOVERY_LOCK="/some/place/on/shared/storage"
# when doing IP takeover you also may specify what network interface
# to use by default for the public addresses. Otherwise you must
# specify an interface on each line of the public addresses file
# there is no default
# CTDB_PUBLIC_INTERFACE=eth0
# Should ctdb do IP takeover? If it should, then specify a file
# containing the list of public IP addresses that ctdb will manage
# Note that these IPs must be different from those in $NODES above
# there is no default.
# The syntax is one line per public address of the form :
# <ipaddress>/<netmask> <interface>
# Example: 10.1.1.1/24 eth0
#
# CTDB_PUBLIC_ADDRESSES=/etc/ctdb/public_addresses
# Should CTDB present the cluster using a single public ip address to clients
# and multiplex clients across all CONNECTED nodes ?
# This is based on LVS
# When this is enabled, the entire cluster will present one single ip address
# which clients will connect to.
# CTDB_LVS_PUBLIC_IP=10.1.1.1
# IPMUX : OBSOLETE use LVS instead
# Should ctdb implement a single public ip address across the entire cluster
# and multiplex incoming connections across the connected nodes
# When using a single public ip you must also specify the public interface!
# This makes all incoming traffic go through a single ctdb node which
# will then forward the packets out acros the other nodes. This will
# impact performance.
# CTDB_SINGLE_PUBLIC_IP=10.1.1.1
# should ctdb manage starting/stopping the Samba service for you?
# default is to not manage Samba
# CTDB_MANAGES_SAMBA=yes
# If there are very many shares it may not be feasible to check that all
# of them are available during each monitoring interval.
# In that case this check can be disabled
# CTDB_SAMBA_SKIP_SHARE_CHECK=yes
# CTDB_NFS_SKIP_SHARE_CHECK=yes
# specify which ports we should check that there is a daemon listening to
# by default we use testparm and look in smb.conf to figure out.
# CTDB_SAMBA_CHECK_PORTS="445"
# should ctdb manage starting/stopping Winbind service?
# if left comented out then it will be autodetected based on smb.conf
# CTDB_MANAGES_WINBIND=yes
# should ctdb manage starting/stopping the VSFTPD service
# CTDB_MANAGES_VSFTPD=yes
# should ctdb manage starting/stopping the ISCSI service
# CTDB_MANAGES_ISCSI=yes
# should ctdb manage starting/stopping the NFS service
# CTDB_MANAGES_NFS=yes
# you may wish to raise the file descriptor limit for ctdb
# use a ulimit command here. ctdb needs one file descriptor per
# connected client (ie. one per connected client in Samba)
# ulimit -n 10000
# the NODES file must be specified or ctdb won't start
# it should contain a list of IPs that ctdb will use
# it must be exactly the same on all cluster nodes
# defaults to /etc/ctdb/nodes
# CTDB_NODES=/etc/ctdb/nodes
# the directory to put the local ctdb database files in
# defaults to /var/ctdb
# CTDB_DBDIR=/var/ctdb
# the directory to put the local persistent ctdb database files in
# defaults to /var/ctdb/persistent
# CTDB_DBDIR_PERSISTENT=/var/ctdb/persistent
# the directory where service specific event scripts are stored
# defaults to /etc/ctdb/events.d
# CTDB_EVENT_SCRIPT_DIR=/etc/ctdb/events.d
# the location of the local ctdb socket
# defaults to /tmp/ctdb.socket
# CTDB_SOCKET=/tmp/ctdb.socket
# what transport to use. Only tcp is currently supported
# defaults to tcp
# CTDB_TRANSPORT="tcp"
# When set, this variable makes ctdb monitor the amount of free memory
# in the system (the second number in the buffers/cache output from free -m).
# If the amount of free memory drops below this treshold the node will become
# unhealthy and ctdb and all managed services will be shutdown.
# Once this occurs, the administrator needs to find the reason for the OOM
# situation, rectify it and restart ctdb with "service ctdb start"
# The unit is MByte
# CTDB_MONITOR_FREE_MEMORY=100
# When set to yes, the CTDB node will start in DISABLED mode and not host
# any public ip addresses. The administrator needs to explicitely enable
# the node with "ctdb enable"
# CTDB_START_AS_DISABLED="yes"
# LMASTER and RECMASTER capabilities.
# By default all nodes are capable of both being LMASTER for records and
# also for taking the RECMASTER role and perform recovery.
# These parameters can be used to disable these two roles on a node.
# Note: If there are NO available nodes left in a cluster that can perform
# the RECMASTER role, the cluster will not be able to recover from a failure
# and will remain in RECOVERY mode until an RECMASTER capable node becomes
# available. Same for LMASTER.
# These parametersd are useful for scenarios where you have one "remote" node
# in a cluster and you do not want the remote node to be fully participating
# in the cluster and slow things down.
# For that case, set both roles to "no" for the remote node on the remote site
# but leave the roles default to "yes" on the primary nodes in the central
# datacentre.
# CTDB_CAPABILITY_RECMASTER=yes
# CTDB_CAPABILITY_LMASTER=yes
# NAT-GW configuration
# Some services running on nthe CTDB node may need to originate traffic to
# remote servers before the node is assigned any IP addresses,
# This is problematic since before the node has public addresses the node might
# not be able to route traffic to the public networks.
# One solution is to have static public addresses assigned with routing
# in addition to the public address interfaces, thus guaranteeing that
# a node always can route traffic to the external network.
# This is the most simple solution but it uses up a large number of
# additional ip addresses.
#
# A more complex solution is NAT-GW.
# In this mode we only need one additional ip address for the cluster from
# the exsternal public network.
# One of the nodes in the cluster is elected to be hosting this ip address
# so it can reach the external services. This node is also configured
# to use NAT MASQUERADING for all traffic from the internal private network
# to the external network. This node is the NAT-GW node.
#
# All other nodes are set up with policy routing so that all traffic with
# a source address of the private network and a destination outside of
# the private network are instead routed through the NAT-GW node.
#
# The effect of this is that only when a node does not have a public address
# or a route to the external network will the node use the private address
# as the source address and only then will it use the policy routing
# through the NAT-GW.
# As long as a node has a public address and can route to the external network
# the node will always pick the public address as the source address and NAT-GW
# routing will not be used.
#NATGW_PUBLIC_IP=10.0.0.227/24
#NATGW_PUBLIC_IFACE=eth0
#NATGW_DEFAULT_GATEWAY=10.0.0.1
#NATGW_PRIVATE_IFACE=eth0
#NATGW_PRIVATE_NETWORK=10.0.0.0/24
# where to log messages
# the default is /var/log/log.ctdb
# CTDB_LOGFILE=/var/log/log.ctdb
# what debug level to run at. Higher means more verbose
# the default is 2
CTDB_DEBUGLEVEL=2
# set any default tuning options for ctdb
# use CTDB_SET_XXXX=value where XXXX is the name of the tuning
# variable
# for example
# CTDB_SET_TRAVERSETIMEOUT=60
# you can get a list of variables using "ctdb listvars"
# any other options you might want. Run ctdbd --help for a list
# CTDB_OPTIONS=
|