1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
|
# Authors:
# John Dennis <jdennis@redhat.com>
#
# Copyright (C) 2011 Red Hat
# see file 'COPYING' for use and warranty information
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
'''
Goal
----
To allow a Python programmer the ability to operate on DN's
(Distinguished Names) in a simple intuitive manner supporting all the
Pythonic mechanisms for manipulating objects such that the simple
majority case remains simple with simple code, yet the corner cases
are fully supported. With the result both simple and complex cases are
100% correct.
This is achieved with a fair of amount of syntax sugar which is best
described as "Do What I Mean" (i.e. DWIM). The class implementations
take simple expressions and internally convert them to their more
complex full definitions hiding much of the complexity from the
programmer.
Anatomy of a DN
---------------
Some definitions:
AVA
An AVA is an Attribute Value Assertion. In more simple terms it's
an attribute value pair typically expressed as attr=value
(e.g. cn=Bob). Both the attr and value in an AVA when expressed in
a string representation are subject to encoding rules.
RDN
A RDN is a Relative Distinguished Name. A RDN is a non-empty set of
AVA's. In the common case a RDN is single valued consisting of 1
AVA (e.g. cn=Bob). But a RDN may be multi-valued consisting of
more than one AVA. Because the RDN is a set of AVA's the AVA's are
unordered when they appear in a multi-valued RDN. In the string
representation of a RDN AVA's are separated by the plus sign (+).
DN
A DN is a ordered sequence of 1 or more RDN's. In the string
representation of a DN each RDN is separated by a comma (,)
Thus a DN is:
Sequence of set of <encoded attr, encoded value> pairs
The following are valid DN's
# 1 RDN with 1 AVA (e.g. cn=Bob)
RDN(AVA)
# 2 RDN's each with 1 AVA (e.g. cn=Bob,dc=redhat.com)
RDN(AVA),RDN(AVA)
# 2 RDN's the first RDN is multi-valued with 2 AVA's
# the second RDN is singled valued with 1 AVA
# (e.g. cn=Bob+ou=people,dc=redhat.com
RDN({AVA,AVA}),RDN(AVA)
Common programming mistakes
---------------------------
DN's present a pernicious problem for programmers. They appear to have
a very simple string format in the majority case, a sequence of
attr=value pairs separated by commas. For example:
dn='cn=Bob,ou=people,dc=redhat,dc=com'
As such there is a tendency to believe you can form DN's by simple
string manipulations such as:
dn='%s=%s' % ('cn','Bob') + ',ou=people,dc=redhat,dc=com'
Or to extract a attr & value by searching the string, for example:
attr=dn[0 : dn.find('=')]
value=dn[dn.find('=')+1 : dn.find(',')]
Or compare a value returned by an LDAP query to a known value:
if value == 'Bob'
All of these simple coding assumptions are WRONG and will FAIL when a
DN is not one of the simple DN's (simple DN's are probably the 95% of
all DN's). This is what makes DN handling pernicious. What works in
95% of the cases and is simple, fails for the 5% of DN's which are not
simple.
Examples of where the simple assumptions fail are:
* A RDN may be multi-valued
* A multi-valued RDN has no ordering on it's components
* Attr's and values must be UTF-8 encoded
* String representations of AVA's, RDN's and DN's must be completely UTF-8
* An attr or value may have reserved characters which must be escaped.
* Whitespace needs special handling
To complicate matters a bit more the RFC for the string representation
of DN's (RFC 4514) permits a variety of different syntax's each of
which can evaluate to exactly the same DN but have different string
representations. For example, the attr "r,w" which contains a reserved
character (the comma) can be encoded as a string in these different
ways:
'r\,w' # backslash escape
'r\2cw' # hexadecimal ascii escape
'#722C77' # binary encoded
It should be clear a DN string may NOT be a simple string, rather a DN
string is ENCODED. For simple strings the encoding of the DN is
identical to the simple string value (this common case leads to
erroneous assumptions and bugs because it does not account for
encodings).
The openldap library we use at the client level uses the backslash
escape form. The LDAP server we use uses the hexadecimal ascii escape
form. Thus 'r,w' appears as 'r\,w' when sent from the client to the
LDAP server as part of a DN. But when it's returned as a DN from the
server in an LDAP search it's returned as 'r\2cw'. Any attempt to
compare 'r\,w' to 'r\2cw' for equality will fail despite the fact they
are indeed equal once decoded. Such a test fails because you're
comparing two different encodings of the same value. In MIME you
wouldn't expect the base64 encoding of a string to be equal to the
same string encoded as quoted-printable would you?
When you are comparing attrs or values which are part of a DN and
other string you MUST:
* Know if either of the strings have been encoded and make sure you're
comparing only decoded components component-wise.
* Extract the component from the DN and decode it. You CANNOT decode
the entire DN as a string and operate on it. Why? Consider a value
with a comma embedded in it. For example:
cn=r\2cw,cn=privilege
Is a DN with 2 RDN components: cn=r,w followed by "cn=privilege"
But if you decode the entire DN string as a whole you would get:
cn=r,w,cn=privilege
Which is a malformed DN with 3 RDN's, the 2nd RDN is invalid.
* Determine if a RDN is multi-valued, if so you must account
for the fact each AVA component in the multi-valued RDN can appear
in any order and still be equivalent. For example the following two
RDN's are equal:
cn=Bob+ou=people
ou=people+cn=Bob
In addition each AVA (cn=Bob & ou=people) needs to be
INDEPENDENTLY decoded prior to comparing the unordered set of AVA's
in the multi-valued RDN.
If you are trying to form a new DN or RDN from a raw string you cannot
simply do string concatenation or string formatting unless you ESCAPE
the components independently prior to concatenation, for example:
base = 'dc=redhat,dc=com'
value = 'r,w'
dn = 'cn=%s,%s' % (value, base)
Will result in the malformed DN 'cn=r,w,dc=redhat,dc=com'
Syntax Sugar
------------
The majority of DN's have a simple string form:
attr=value,attr=value
We want the programmer to be able to create DN's, compare them, and
operate on their components as simply and concisely as possible so
the classes are implemented to provide a lot of syntax sugar.
The classes automatically handle UTF-8 <-> Unicode conversions. Every
attr and value which is returned from a class will be Unicode. Every
attr and value assigned into an object will be promoted to
Unicode. All string representations in RFC 4514 format will be UTF-8
and properly escaped. Thus at the "user" or "API" level every string
is Unicode with the single exception that the str() method returns RFC
compliant escaped UTF-8.
RDN's are assumed to be single-valued. If you need a multi-valued RDN
(an exception) you must explicitly create a multi-valued RDN.
Thus DN's are assumed to be a sequence of attr, value pairs, which is
equivalent to a sequence of RDN's. The attr and value in the pair MUST
be strings.
The DN and RDN constructors take a sequence, the constructor parses
the sequence to find items it knows about.
The DN constructor will accept in it's sequence:
* tuple of 2 strings, converting it to an RDN
* list of 2 strings, converting it to an RDN
* a RDN object
* a DN syntax string (e.g. 'cn=Bob,dc=redhat.com')
Note DN syntax strings should be avoided if possible when passing to a
constructor because they run afoul of the problems outlined above
which the DN, RDN & AVA classes are meant to overcome. But sometimes a
DN syntax string is all you have to work with. DN strings which come
from a LDAP library or server will be properly formed and it's safe to
use those. However DN strings provided via user input should be
treated suspiciously as they may be improperly formed. You can test
for this by passing the string to the DN constructor and see if it
throws an exception.
The sequence passed to the DN constructor takes each item in order,
produces one or more RDN's from it and appends those RDN in order to
its internal RDN sequence.
For example:
DN(('cn', 'Bob'), ('dc', 'redhat.com'))
This is equivalent to the DN string:
cn=Bob,dc=redhat.com
And is exactly equal to:
DN(RDN(AVA('cn','Bob')),RDN(AVA('dc','redhat.com')))
The following are alternative syntax's which are all exactly
equivalent to the above example.
DN(['cn', 'Bob'], ['dc', 'redhat.com'])
DN(RDN('cn', 'Bob'), RDN('dc', 'redhat.com'))
You can provide a properly escaped string representation.
DN('cn=Bob,dc=redhat.com')
You can mix and match any of the forms in the constructor parameter
list.
DN(('cn', 'Bob'), 'dc=redhat.com')
DN(('cn', 'Bob'), RDN('dc', 'redhat.com'))
AVA's have an attr and value property, thus if you have an AVA
# Get the attr and value
ava.attr -> u'cn'
ava.value -> u'Bob'
# Set the attr and value
ava.attr = 'cn'
ava.value = 'Bob'
Since RDN's are assumed to be single valued, exactly the same
behavior applies to an RDN. If the RDN is multi-valued then the attr
property returns the attr of the first AVA, likewise for the value.
# Get the attr and value
rdn.attr -> u'cn'
rdn.value -> u'Bob'
# Set the attr and value
rdn.attr = 'cn'
rdn.value = 'Bob'
Also RDN's can be indexed by name or position (see the RDN class doc
for details).
rdn['cn'] -> u'Bob'
rdn[0] -> AVA('cn', 'Bob')
A DN is a sequence of RDN's, as such any of Python's container
operators can be applied to a DN in a intuitive way.
# How many RDN's in a DN?
len(dn)
# WARNING, this a count of RDN's not how characters there are in the
# string representation the dn, instead that would be:
len(str(dn))
# Iterate over each RDN in a DN
for rdn in dn:
# Get the first RDN in a DN
dn[0] -> RDN('cn', 'Bob')
# Get the value of the first RDN in a DN
dn[0].value -> u'Bob'
# Get the value of the first RDN by indexing by attr name
dn['cn'] -> u'Bob'
# WARNING, when a string is used as an index key the FIRST RDN's value
# in the sequence whose attr matches the key is returned. Thus if you
# have a DN like this "cn=foo,cn=bar" then dn['cn'] will always return
# 'foo' even though there is another attr with the name 'cn'. This is
# almost always what the programmer wants. See the class doc for how
# you can override this default behavior and get a list of every value
# whose attr matches the key.
# Set the first RDN in the DN (all are equivalent)
dn[0] = ('cn', 'Bob')
dn[0] = ['cn', 'Bob']
dn[0] = RDN('cn', 'Bob')
dn[0].attr = 'cn'
dn[0].value = 'Bob'
# Get the first two RDN's using slices
dn[0:2]
# Get the last two RDN's using slices
dn[-2:]
# Get a list of all RDN's using slices
dn[:]
# Set the 2nd and 3rd RDN using slices (all are equivalent)
dn[1:3] = ('cn', 'Bob), ('dc', 'redhat.com')
dn[1:3] = RDN('cn', 'Bob), RDN('dc', 'redhat.com')
String representations and escapes:
# To get an RFC compliant string representation of a DN, RDN or AVA
# simply call str() on it or evaluate it in a string context.
str(dn) -> 'cn=Bob,dc=redhat.com'
# When working with attr's and values you do not have to worry about
# escapes, simply use the raw unescaped string in a natural fashion.
rdn = RDN('cn', 'r,w')
# Thus:
rdn.value == 'r,w' -> True
# But:
str(rdn) == 'cn=r,w' -> False
# Because:
str(rdn) -> 'cn=r\2cw' or 'cn='r\,w' # depending on the underlying LDAP library
Equality and Comparing:
# All DN's, RDN's and AVA's support equality testing in an intuitive
# manner.
dn1 = DN(('cn', 'Bob'))
dn2 = DN(RDN('cn', 'Bob'))
dn1 == dn2 -> True
dn1[0] == dn2[0] -> True
dn1[0].value = 'Bobby'
dn1 == dn2 -> False
DN objects implement startswith(), endswith() and the "in" membership
operator. You may pass a DN or RDN object to these. Examples:
if dn.endswith(base_dn):
if dn.startswith(rdn1):
if container_dn in dn:
# See the class doc for how DN's, RDN's and AVA's compare
# (e.g. cmp()). The general rule is for objects supporting multiple
# values first their lengths are compared, then if the lengths match
# the respective components of each are pair-wise compared until one
# is discovered to be non-equal. The comparision is case insensitive.
Cloning (Object Copy):
All the class types are capable of cloning by passing an object of the
same type (or subclass) to the constructor. The new object is a copy
of the object passed as input to the constructor. One place this is
useful is when you want to coerce between immutable and mutable
versions in order to modify an object.
Concatenation, In-Place Addition, Insertion:
# DN's and RDN's can be concatenated.
# Return a new DN by appending the RDN's of dn2 to dn1
dn3 = dn1 + dn2
# Append a RDN to DN's RDN sequence (all are equivalent)
dn += ('cn', 'Bob')
dn += RDN('cn', 'Bob')
# Append a DN to an existing DN
dn1 += dn2
# Prepend a RDN to an existing DN
dn1.insert(0, RDN('cn', 'Bob'))
Finally see the unittest for a more complete set of ways you can
manipulate these objects.
Mutability
----------
Python makes a clear distinction between mutable and immutable
objects. Examples of immutable Python objects are strings, integers
and floats. Examples of mutable Python objects are lists, dicts, and
sets. Immutable objects cannot be modified, mutable objects can be
modified. An object's mutability affects how the object behaves when
passed to a function or method, this is because it's the object's
reference which is always passed, thus immutable objects behave as if
it were "call by value" and mutable objects behave as if it were "call
by reference" (mutable objects can be modifed inside the
function/method and that modification will be visible to the
caller. On object's mutability also affects how an object will behave
when used as a key in a dict or as a member of a set.
The following discussion applies equally to AVA, RDN and DN object
class variants.
The AVA, RDN and DN classes have both immutable and mutable
variants. The base classes (AVA, RDN, DN) are immutable. Each of the
immutable base classes have a mutable subclass whose name begins with
'Editable'. Thus the DN class is immutable, instances of that class
cannot be modified, there is a mutable class EditableDN derived from
DN whose instances can be modified. The primary difference between the
immutable and mutable variants is:
* Immutable variants are preferred.
* Mutable variants are exactly identical in behavior to their
immutable parent class (except for supporting assignment, etc.)
* Immutable objects that test as equal will be the same as dict keys
and set members even if they are different objects. Mutable variants
are not hashable and thus cannot be used as a dict key nor inserted
into a set.
* Only mutable variants support modification via assignment, insert or
in-place addition (e.g. +=).
* In-place addtion (e.g. +=) works for both immutable and mutable
variants. The distinction is for immutable objects the lhs is
replaced with a new immutable result while a mutable object will be
modfied in place and lhs object remains the same object.
It is trival to coerce between an mutable and immutable AVA, RDN and
DN types. These classes can clone their objects by passing an object
of the same type to the constructor. For example:
dn1 = DN(('cn', 'Bob')) # dn1 is immutable
dn2 = EditableDN(dn1) # dn2 is mutable copy of dn1,
# equal to dn1 until it's modified
and visa-versa
dn1 = EditableDN(('cn', 'Bob')) # dn1 is mutable
dn2 = DN(dn1) # dn2 is immutable copy of dn1, equal to dn1
'''
from ldap.dn import str2dn, dn2str
from ldap import DECODING_ERROR
import sys
__all__ = ['AVA', 'EditableAVA', 'RDN', 'EditableRDN', 'DN', 'EditableDN']
def _adjust_indices(start, end, length):
'helper to fixup start/end slice values'
if end > length:
end = length
elif end < 0:
end += length
if end < 0:
end = 0
if start < 0:
start += length
if start < 0:
start = 0
return start, end
class AVA(object):
'''
AVA(arg0, ...)
An AVA is an LDAP Attribute Value Assertion. It is convenient to think of
AVA's as a <attr,value> pair. AVA's are members of RDN's (Relative
Distinguished Name).
The AVA constructor is passed a sequence of args and a set of
keyword parameters used for configuration.
The arg sequence may be:
1) With 2 arguments, the first argument will be the attr, the 2nd
the value. Each argument must be scalar convertable to unicode.
2) With a sigle list or tuple argument containing exactly 2 items.
Each item must be scalar convertable to unicode.
3) With a single string (or unicode) argument, in this case the string will
be interpretted using the DN syntax described in RFC 4514 to yield a AVA
<attr,value> pair. The parsing recognizes the DN syntax escaping rules.
For example:
ava = AVA('cn', 'Bob') # case 1: two strings
ava = AVA(('cn', 'Bob')) # case 2: 2-valued tuple
ava = AVA(['cn', 'Bob']) # case 2: 2-valued list
ava = AVA('cn=Bob') # case 3: DN syntax
AVA object have two properties for accessing their data:
attr: the attribute name, cn in our exmaple
value: the attribute's value, Bob in our example
When attr and value are returned they will always be unicode. When
attr or value are set they will be promoted to unicode.
AVA objects support indexing by name, e.g.
ava['cn']
returns the value (Bob in our example). If the index does key does not match
the attr then a KeyError will be raised.
AVA objects support equality testing and comparsion (e.g. cmp()). When they
are compared the attr is compared first, if the 2 attr's are equal then the
values are compared. The comparision is case insensitive (because attr's map
to numeric OID's and their values derive from from the 'name' atribute type
(OID 2.5.4.41) whose EQUALITY MATCH RULE is caseIgnoreMatch.
The str method of an AVA returns the string representation in RFC 4514 DN
syntax with proper escaping.
'''
is_mutable = False
flags = 0
def __init__(self, *args, **kwds):
if len(args) == 1:
arg = args[0]
if isinstance(arg, AVA):
ava = (arg.attr, arg.value)
elif isinstance(arg, basestring):
try:
rdns = str2dn(arg.encode('utf-8'))
except DECODING_ERROR:
raise ValueError("malformed AVA string = \"%s\"" % arg)
if len(rdns) != 1:
raise ValueError("multiple RDN's specified by \"%s\"" % (arg))
rdn = rdns[0]
if len(rdn) != 1:
raise ValueError("multiple AVA's specified by \"%s\"" % (arg))
ava = rdn[0]
elif isinstance(arg, (tuple, list)):
ava = arg
if len(ava) != 2:
raise ValueError("tuple or list must be 2-valued, not \"%s\"" % (ava))
else:
raise TypeError("with 1 argument, argument must be str,unicode,tuple or list, got %s instead" % \
arg.__class__.__name__)
attr = ava[0]
value = ava[1]
elif len(args) == 2:
attr = args[0]
value = args[1]
else:
raise TypeError("takes 1 or 2 arguments (%d given)" % (len(args)))
self._set_attr(attr)
self._set_value(value)
def _get_attr(self):
return self._attr_unicode
def _set_attr(self, new_attr):
# Scalars only
if isinstance(new_attr, (tuple, list)):
raise TypeError("attr must be scalar, got %s" % type(new_attr))
try:
if isinstance(new_attr, unicode):
self._attr_unicode = new_attr
elif isinstance(new_attr, str):
self._attr_unicode = new_attr.decode('utf-8')
else:
self._attr_unicode = unicode(new_attr)
except Exception, e:
raise ValueError('unable to convert attr "%s" to unicode: %s' % (new_attr, e))
attr = property(_get_attr)
def _get_value(self):
return self._value_unicode
def _set_value(self, new_value):
# Scalars only
if isinstance(new_value, (tuple, list)):
raise TypeError("value must be scalar, got %s" % type(new_value))
try:
if isinstance(new_value, unicode):
self._value_unicode = new_value
elif isinstance(new_value, str):
self._value_unicode = new_value.decode('utf-8')
else:
self._value_unicode = unicode(new_value)
except Exception, e:
raise ValueError('unable to convert value "%s" to unicode: %s' % (new_value, e))
value = property(_get_value)
def _to_openldap(self):
return [[(self._attr_unicode.encode('utf-8'), self._value_unicode.encode('utf-8'), self.flags)]]
def __str__(self):
return dn2str(self._to_openldap())
def __repr__(self):
return "%s.%s('%s')" % (self.__module__, self.__class__.__name__, self.__str__())
def __getitem__(self, key):
if isinstance(key, basestring):
if key == self._attr_unicode:
return self._value_unicode
raise KeyError("\"%s\" not found in %s" % (key, self.__str__()))
else:
raise TypeError("unsupported type for AVA indexing, must be basestring; not %s" % \
(key.__class__.__name__))
def __hash__(self):
# Hash is computed from AVA's string representation because it's immutable
return hash(str(self))
def __eq__(self, other):
'''
The attr comparison is case insensitive because attr is
really an LDAP attribute type which means it's specified with
an OID (dotted number) and not a string. Since OID's are
numeric the human readable name which maps to the OID is not
significant in case.
The value comparison is also case insensitive because the all
attribute types used in a DN are derived from the 'name'
atribute type (OID 2.5.4.41) whose EQUALITY MATCH RULE is
caseIgnoreMatch.
'''
# Try coercing string to AVA, if successful compare to coerced object
if isinstance(other, basestring):
try:
other_ava = AVA(other)
return self.__eq__(other_ava)
except Exception:
return False
# If it's not an AVA it can't be equal
if not isinstance(other, AVA):
return False
# Perform comparision between objects of same type
return self._attr_unicode.lower() == other.attr.lower() and \
self._value_unicode.lower() == other.value.lower()
def __ne__(self, other):
return not self.__eq__(other)
def __cmp__(self, other):
'comparision is case insensitive, see __eq__ doc for explanation'
if not isinstance(other, AVA):
raise TypeError("expected AVA but got %s" % (other.__class__.__name__))
result = cmp(self._attr_unicode.lower(), other.attr.lower())
if result != 0:
return result
result = cmp(self._value_unicode.lower(), other.value.lower())
return result
class EditableAVA(AVA):
'''
Exactly identical to the AVA class except
* Hash value is based on object identity, not object
value. Objects that test as equal will be non-unique when
used as a dict key or member of a set.
* The attr and value properties may be modified after object creation.
'''
is_mutable = True
__hash__ = None
attr = property(AVA._get_attr, AVA._set_attr)
value = property(AVA._get_value, AVA._set_value)
class RDN(object):
'''
RDN(arg0, ...)
An RDN is a LDAP Relative Distinguished Name. RDN's are members of DN's
(Distinguished Name). An RDN contains 1 or more AVA's. If the RDN contains
more than one AVA it is said to be a multi-valued RDN. When an RDN is
multi-valued the AVA's are unorderd comprising a set. However this
implementation orders the AVA's according to the AVA comparison function to
make equality and comparison testing easier. Think of this a canonical
normalization (however LDAP does not impose any ordering on multiple AVA's
within an RDN). Single valued RDN's are the norm and thus the RDN
constructor has simple syntax for them.
The RDN constructor is passed a sequence of args and a set of
keyword parameters used for configuration.
The constructor iterates though the sequence and adds AVA's to the RDN.
The arg sequence may be:
* A 2-valued tuple or list denotes the <attr,value> pair of an AVA. The
first member is the attr and the second member is the value, both members
must be strings (or unicode). The tuple or list is passed to the AVA
constructor and the resulting AVA is added to the RDN. Multiple tuples or
lists may appear in the argument list, each adds one additional AVA to the
RDN.
* A single string (or unicode) argument, in this case the string will
be interpretted using the DN syntax described in RFC 4514 to yield one or
more AVA <attr,value> pairs. The parsing recognizes the DN syntax escaping
rules.
* A AVA object, the AVA will be copied into the new RDN respecting
the constructors keyword configuration parameters.
* A RDN object, the AVA's in the RDN are copied into the new RDN
respecting the constructors keyword configuration parameters.
Single AVA Examples:
RDN(('cn', 'Bob')) # tuple yields 1 AVA
RDN('cn=Bob') # DN syntax with 1 AVA
RDN(AVA('cn', 'Bob')) # AVA object adds 1 AVA
Multiple AVA Examples:
RDN(('cn', 'Bob'),('ou', 'people')) # 2 tuples yields 2 AVA's
RDN('cn=Bob+ou=people') # DN syntax with 2 AVA's
RDN(AVA('cn', 'Bob'),AVA('ou', 'people')) # 2 AVA objects adds 2 AVA's
RDN(('cn', 'Bob'), 'ou=people') # 2 args, 1st tuple forms 1 AVA,
# 2nd DN syntax string adds 1 AVA,
# 2 AVA's in total
Note: The RHS of a slice assignment is interpreted exactly in the
same manner as the constructor argument list (see above examples).
RDN objects support iteration over their AVA members. You can iterate all
AVA members via any Python iteration syntax. RDN objects support full Python
indexing using bracket [] notation. Examples:
len(rdn) # return the number of AVA's
rdn[0] # indexing the first AVA
rdn['cn'] # index by AVA attr, returns AVA value
for ava in rdn: # iterate over each AVA
rdn[:] # a slice, in this case a copy of each AVA
WARNING: When indexing by attr (e.g. rdn['cn']) there is a possibility more
than one AVA has the same attr name as the index key. The default behavior
is to return the value of the first AVA whose attr matches the index
key.
RDN objects support the AVA attr and value properties as another programmer
convenience because the vast majority of RDN's are single valued. The attr
and value properties return the attr and value properties of the first AVA
in the RDN, for example:
rdn = RDN(('cn', 'Bob')) # rdn has 1 AVA whose attr == 'cn' and value == 'Bob'
len(rdn) -> 1
rdn.attr -> u'cn' # exactly equivalent to rdn[0].attr
rdn.value -> u'Bob' # exactly equivalent to rdn[0].value
When attr and value are returned they will always be unicode. When
attr or value are set they will be promoted to unicode.
If an RDN is multi-valued the attr and value properties still return only
the first AVA's properties, programmer beware! Recall the AVA's in the RDN
are sorted according the to AVA collating semantics.
RDN objects support equality testing and comparision. See AVA for the
definition of the comparision method.
RDN objects support concatenation and addition with other RDN's or AVA's
rdn1 + rdn2 # yields a new RDN object with the contents of each RDN.
rdn1 + ava1 # yields a new RDN object with the contents of rdn1 and ava1
RDN objects can add AVA's objects via in-place addition.
rdn1 += rdn2 # rdn1 now contains the sum of rdn1 and rdn2
rdn1 += ava1 # rdn1 has ava1 added to it.
The str method of an RDN returns the string representation in RFC 4514 DN
syntax with proper escaping.
'''
is_mutable = False
flags = 0
AVA_type = AVA
def __init__(self, *args, **kwds):
self.avas = self._avas_from_sequence(args)
self.avas.sort()
def _ava_from_value(self, value):
if isinstance(value, AVA):
return self.AVA_type(value.attr, value.value)
elif isinstance(value, RDN):
avas = []
for ava in value.avas:
avas.append(self.AVA_type(ava.attr, ava.value))
if len(avas) == 1:
return avas[0]
else:
return avas
elif isinstance(value, basestring):
try:
rdns = str2dn(value.encode('utf-8'))
if len(rdns) != 1:
raise ValueError("multiple RDN's specified by \"%s\"" % (value))
rdn = rdns[0]
if len(rdn) == 1:
return self.AVA_type(rdn[0][0], rdn[0][1])
else:
avas = []
for ava_tuple in rdn:
avas.append(self.AVA_type(ava_tuple[0], ava_tuple[1]))
return avas
except DECODING_ERROR:
raise ValueError("malformed RDN string = \"%s\"" % value)
elif isinstance(value, (tuple, list)):
if len(value) != 2:
raise ValueError("tuple or list must be 2-valued, not \"%s\"" % (value))
return self.AVA_type(value)
else:
raise TypeError("must be str,unicode,tuple, or AVA, got %s instead" % \
value.__class__.__name__)
def _avas_from_sequence(self, seq):
avas = []
for item in seq:
ava = self._ava_from_value(item)
if isinstance(ava, list):
avas.extend(ava)
else:
avas.append(ava)
return avas
def _to_openldap(self):
return [[(ava.attr.encode('utf-8'), ava.value.encode('utf-8'), self.flags) for ava in self.avas]]
def __str__(self):
return dn2str(self._to_openldap())
def __repr__(self):
return "%s.%s('%s')" % (self.__module__, self.__class__.__name__, self.__str__())
def _next(self):
for ava in self.avas:
yield ava
def __iter__(self):
return self._next()
def __len__(self):
return len(self.avas)
def __getitem__(self, key):
if isinstance(key, (int, long, slice)):
return self.avas[key]
elif isinstance(key, basestring):
for ava in self.avas:
if key == ava.attr:
return ava.value
raise KeyError("\"%s\" not found in %s" % (key, self.__str__()))
else:
raise TypeError("unsupported type for RDN indexing, must be int, basestring or slice; not %s" % \
(key.__class__.__name__))
def _get_attr(self):
if len(self.avas) == 0:
raise IndexError("No AVA's in this RDN")
return self.avas[0].attr
def _set_attr(self, new_attr):
if len(self.avas) == 0:
raise IndexError("No AVA's in this RDN")
self.avas[0].attr = new_attr
attr = property(_get_attr)
def _get_value(self):
if len(self.avas) == 0:
raise IndexError("No AVA's in this RDN")
return self.avas[0].value
def _set_value(self, new_value):
if len(self.avas) == 0:
raise IndexError("No AVA's in this RDN")
self.avas[0].value = new_value
value = property(_get_value)
def __hash__(self):
# Hash is computed from RDN's string representation because it's immutable
return hash(str(self))
def __eq__(self, other):
# Try coercing string to RDN, if successful compare to coerced object
if isinstance(other, basestring):
try:
other_rdn = RDN(other)
return self.__eq__(other_rdn)
except Exception:
return False
# If it's not an RDN it can't be equal
if not isinstance(other, RDN):
return False
# Perform comparision between objects of same type
return self.avas == other.avas
def __ne__(self, other):
return not self.__eq__(other)
def __cmp__(self, other):
if not isinstance(other, RDN):
raise TypeError("expected RDN but got %s" % (other.__class__.__name__))
result = cmp(len(self), len(other))
if result != 0:
return result
i = 0
while i < len(self):
result = cmp(self[i], other[i])
if result != 0:
return result
i += 1
return 0
def __add__(self, other):
result = self.__class__(self)
if isinstance(other, RDN):
for ava in other.avas:
result.avas.append(self.AVA_type(ava.attr, ava.value))
elif isinstance(other, AVA):
result.avas.append(self.AVA_type(other.attr, other.value))
elif isinstance(other, basestring):
rdn = self.__class__(other)
for ava in rdn.avas:
result.avas.append(self.AVA_type(ava.attr, ava.value))
else:
raise TypeError("expected RDN, AVA or basestring but got %s" % (other.__class__.__name__))
result.avas.sort()
return result
class EditableRDN(RDN):
'''
Exactly identical to the RDN class except
* Hash value is based on object identity, not object
value. Objects that test as equal will be non-unique when
used as a dict key or member of a set.
* AVA components may be assigned via assignment statements.
* In-place addition modifes the lhs object.
* The attr and value properties may be modified after object creation.
'''
is_mutable = True
__hash__ = None
AVA_type = EditableAVA
def __setitem__(self, key, value):
if isinstance(key, (int, long)):
new_ava = self._ava_from_value(value)
if isinstance(new_ava, list):
raise TypeError("cannot assign multiple AVA's to single entry")
self.avas[key] = new_ava
elif isinstance(key, slice):
avas = self._avas_from_sequence(value)
self.avas[key] = avas
elif isinstance(key, basestring):
new_ava = self._ava_from_value(value)
if isinstance(new_ava, list):
raise TypeError("cannot assign multiple AVA's to single entry")
found = False
i = 0
while i < len(self.avas):
if key == self.avas[i].attr:
found = True
self.avas[i] = new_ava
break
i += 1
if not found:
raise KeyError("\"%s\" not found in %s" % (key, self.__str__()))
else:
raise TypeError("unsupported type for RDN indexing, must be int, basestring or slice; not %s" % \
(key.__class__.__name__))
self.avas.sort()
attr = property(RDN._get_attr, RDN._set_attr)
value = property(RDN._get_value, RDN._set_value)
def __iadd__(self, other):
# If __iadd__ is not available Python will emulate += by
# replacing the lhs object with the result of __add__ (if available).
if isinstance(other, RDN):
for ava in other.avas:
self.avas.append(self.AVA_type(ava.attr, ava.value))
elif isinstance(other, AVA):
self.avas.append(self.AVA_type(other.attr, other.value))
elif isinstance(other, basestring):
rdn = self.__class__(other)
for ava in rdn.avas:
self.avas.append(self.AVA_type(ava.attr, ava.value))
else:
raise TypeError("expected RDN, AVA or basestring but got %s" % (other.__class__.__name__))
self.avas.sort()
return self
class DN(object):
'''
DN(arg0, ...)
A DN is a LDAP Distinguished Name. A DN is an ordered sequence of RDN's.
The DN constructor is passed a sequence of args and a set of
keyword parameters used for configuration. normalize means the
attr and value will be converted to lower case.
The constructor iterates through the sequence and adds the RDN's
it finds in order to the DN object. Each item in the sequence may
be:
* A 2-valued tuple or list. The first member is the attr and the
second member is the value of an RDN, both members must be
strings (or unicode). The tuple or list is passed to the RDN
constructor and the resulting RDN is appended to the
DN. Multiple tuples or lists may appear in the argument list,
each adds one additional RDN to the DN.
* A single string (or unicode) argument, in this case the string
will be interpretted using the DN syntax described in RFC 4514
to yield one or more RDN's which will be appended in order to
the DN. The parsing recognizes the DN syntax escaping rules.
* A RDN object, the RDN will copied respecting the constructors
keyword configuration parameters and appended in order.
* A DN object, the RDN's in the DN are copied respecting the
constructors keyword configuration parameters and appended in
order.
Single DN Examples:
DN(('cn', 'Bob')) # tuple yields 1 RDN
DN(['cn', 'Bob']) # list yields 1 RDN
DN('cn=Bob') # DN syntax with 1 RDN
DN(RDN('cn', 'Bob')) # RDN object adds 1 RDN
Multiple RDN Examples:
DN(('cn', 'Bob'),('ou', 'people')) # 2 tuples yields 2 RDN's
# 2 RDN's total
DN('cn=Bob,ou=people') # DN syntax with 2 RDN's
# 2 RDN's total
DN(RDN('cn', 'Bob'),RDN('ou', 'people')) # 2 RDN objects
# 2 RDN's total
DN(('cn', 'Bob'), "ou=people') # 1st tuple adds 1 RDN
# 2nd DN syntax string adds 1 RDN
# 2 RDN's total
base_dn = DN('dc=redhat,dc=com')
container_dn = DN('cn=sudorules,cn=sudo')
DN(('cn', 'Bob'), container_dn, base_dn)
# 1st arg adds 1 RDN, cn=Bob
# 2nd arg adds 2 RDN's, cn=sudorules,cn=sudo
# 3rd arg adds 2 RDN's, dc=redhat,dc=com
# 5 RDN's total
Note: The RHS of a slice assignment is interpreted exactly in the
same manner as the constructor argument list (see above examples).
DN objects support iteration over their RDN members. You can iterate all
RDN members via any Python iteration syntax. DN objects support full Python
indexing using bracket [] notation. Examples:
len(rdn) # return the number of RDN's
rdn[0] # indexing the first RDN
rdn['cn'] # index by RDN attr, returns RDN value
for ava in rdn: # iterate over each RDN
rdn[:] # a slice, in this case a copy of each RDN
WARNING: When indexing by attr (e.g. dn['cn']) there is a
possibility more than one RDN has the same attr name as the index
key. The default behavior is to return the value of the first RDN
whose attr matches the index key. If it's important the attr
belong to a specific RDN (e.g. the first) then this is the
suggested construct:
try:
cn = dn[0]['cn']
except (IndexError, KeyError):
raise ValueError("dn '%s' missing expected cn as first attribute" % dn)
The IndexError catches a DN which does not have the expected
number of RDN's and the KeyError catches the case where the
indexed RDN does not have the expected attr.
DN object support slices.
# Get the first two RDN's using slices
dn[0:2]
# Get the last two RDN's using slices
dn[-2:]
# Get a list of all RDN's using slices
dn[:]
# Set the 2nd and 3rd RDN using slices (all are equivalent)
dn[1:3] = ('cn', 'Bob'), ('dc', 'redhat.com')
dn[1:3] = [['cn', 'Bob'], ['dc', 'redhat.com']]
dn[1:3] = RDN('cn', 'Bob'), RDN('dc', 'redhat.com')
DN objects support the insert operation.
dn.insert(i,x) is exactly equivalent to dn[i:i] = [x], thus the following
are all equivalent:
dn.insert(i, ('cn','Bob'))
dn.insert(i, ['cn','Bob'])
dn.insert(i, RDN(('cn','Bob')))
dn[i:i] = [('cn','Bob')]
DN objects support equality testing and comparision. See RDN for the
definition of the comparision method.
DN objects implement startswith(), endswith() and the "in" membership
operator. You may pass a DN or RDN object to these. Examples:
# Test if dn ends with the contents of base_dn
if dn.endswith(base_dn):
# Test if dn starts with a rdn
if dn.startswith(rdn1):
# Test if a container is present in a dn
if container_dn in dn:
DN objects support concatenation and addition with other DN's or RDN's
or strings (interpreted as RFC 4514 DN syntax).
# yields a new DN object with the RDN's of dn2 appended to the RDN's of dn1
dn1 + dn2
# yields a new DN object with the rdn1 appended to the RDN's of dn1
dn1 + rdn1
DN objects can add RDN's objects via in-place addition.
dn1 += dn2 # dn2 RDN's are appended to the dn1's RDN's
dn1 += rdn1 # dn1 has rdn appended to its RDN's
dn1 += "dc=redhat.com" # string is converted to DN, then appended
The str method of an DN returns the string representation in RFC 4514 DN
syntax with proper escaping.
'''
is_mutable = False
flags = 0
AVA_type = AVA
RDN_type = RDN
def __init__(self, *args, **kwds):
self.rdns = self._rdns_from_sequence(args)
def _rdn_from_value(self, value):
if isinstance(value, RDN):
return self.RDN_type(value)
elif isinstance(value, DN):
rdns = []
for rdn in value.rdns:
rdns.append(self.RDN_type(rdn))
if len(rdns) == 1:
return rdns[0]
else:
return rdns
elif isinstance(value, basestring):
rdns = []
try:
dn_list = str2dn(value.encode('utf-8'))
for rdn_list in dn_list:
avas = []
for ava_tuple in rdn_list:
avas.append(self.AVA_type(ava_tuple[0], ava_tuple[1]))
rdn = self.RDN_type(*avas)
rdns.append(rdn)
except DECODING_ERROR:
raise ValueError("malformed RDN string = \"%s\"" % value)
if len(rdns) == 1:
return rdns[0]
else:
return rdns
elif isinstance(value, (tuple, list)):
if len(value) != 2:
raise ValueError("tuple or list must be 2-valued, not \"%s\"" % (value))
rdn = self.RDN_type(value)
return rdn
else:
raise TypeError("must be str,unicode,tuple, or RDN, got %s instead" % \
value.__class__.__name__)
def _rdns_from_sequence(self, seq):
rdns = []
for item in seq:
rdn = self._rdn_from_value(item)
if isinstance(rdn, list):
rdns.extend(rdn)
else:
rdns.append(rdn)
return rdns
def _to_openldap(self):
return [[(ava.attr.encode('utf-8'), ava.value.encode('utf-8'), self.flags) for ava in rdn] for rdn in self.rdns]
def __str__(self):
return dn2str(self._to_openldap())
def __repr__(self):
return "%s.%s('%s')" % (self.__module__, self.__class__.__name__, self.__str__())
def _next(self):
for rdn in self.rdns:
yield rdn
def __iter__(self):
return self._next()
def __len__(self):
return len(self.rdns)
def __getitem__(self, key):
if isinstance(key, (int, long, slice)):
return self.rdns[key]
elif isinstance(key, basestring):
for rdn in self.rdns:
if key == rdn.attr:
return rdn.value
raise KeyError("\"%s\" not found in %s" % (key, self.__str__()))
else:
raise TypeError("unsupported type for DN indexing, must be int, basestring or slice; not %s" % \
(key.__class__.__name__))
def __hash__(self):
# Hash is computed from DN's string representation because it's immutable
return hash(str(self))
def __eq__(self, other):
# Try coercing string to DN, if successful compare to coerced object
if isinstance(other, basestring):
try:
other_dn = DN(other)
return self.__eq__(other_dn)
except Exception:
return False
# If it's not an DN it can't be equal
if not isinstance(other, DN):
return False
# Perform comparision between objects of same type
return self.rdns == other.rdns
def __ne__(self, other):
return not self.__eq__(other)
def __cmp__(self, other):
if not isinstance(other, DN):
raise TypeError("expected DN but got %s" % (other.__class__.__name__))
result = cmp(len(self), len(other))
if result != 0:
return result
return self._cmp_sequence(other, 0, len(self))
def _cmp_sequence(self, pattern, self_start, pat_len):
self_idx = self_start
pat_idx = 0
while pat_idx < pat_len:
result = cmp(self[self_idx], pattern[pat_idx])
if result != 0:
return result
self_idx += 1
pat_idx += 1
return 0
def __add__(self, other):
result = self.__class__(self)
if isinstance(other, DN):
for rdn in other.rdns:
result.rdns.append(self.RDN_type(rdn))
elif isinstance(other, RDN):
result.rdns.append(self.RDN_type(other))
elif isinstance(other, basestring):
dn = self.__class__(other)
for rdn in dn.rdns:
result.rdns.append(rdn)
else:
raise TypeError("expected DN, RDN or basestring but got %s" % (other.__class__.__name__))
return result
# The implementation of startswith, endswith, tailmatch, adjust_indices
# was based on the Python's stringobject.c implementation
def startswith(self, prefix, start=0, end=sys.maxsize):
'''
Return True if the dn starts with the specified prefix (either a DN or
RDN object), False otherwise. With optional start, test dn beginning at
that position. With optional end, stop comparing dn at that position.
prefix can also be a tuple of dn's or rdn's to try.
'''
if isinstance(prefix, tuple):
for pat in prefix:
if self._tailmatch(pat, start, end, -1):
return True
return False
return self._tailmatch(prefix, start, end, -1)
def endswith(self, suffix, start=0, end=sys.maxsize):
'''
Return True if dn ends with the specified suffix (either a DN or RDN
object), False otherwise. With optional start, test dn beginning at
that position. With optional end, stop comparing dn at that position.
suffix can also be a tuple of dn's or rdn's to try.
'''
if isinstance(suffix, tuple):
for pat in suffix:
if self._tailmatch(pat, start, end, +1):
return True
return False
return self._tailmatch(suffix, start, end, +1)
def _tailmatch(self, pattern, start, end, direction):
'''
Matches the end (direction >= 0) or start (direction < 0) of self
against pattern (either a DN or RDN), using the start and end
arguments. Returns 0 if not found and 1 if found.
'''
if isinstance(pattern, DN):
pat_len = len(pattern)
elif isinstance(pattern, RDN):
pat_len = 1
else:
raise TypeError("expected DN or RDN but got %s" % (pattern.__class__.__name__))
self_len = len(self)
start, end = _adjust_indices(start, end, self_len)
if direction < 0: # starswith
if start+pat_len > self_len:
return 0
else: # endswith
if end-start < pat_len or start > self_len:
return 0
if end-pat_len >= start:
start = end - pat_len
if isinstance(pattern, DN):
if end-start >= pat_len:
return not self._cmp_sequence(pattern, start, pat_len)
return 0
else:
return self.rdns[start] == pattern
def __contains__(self, other):
'Return the outcome of the test other in self. Note the reversed operands.'
if isinstance(other, DN):
other_len = len(other)
end = len(self) - other_len
i = 0
while i <= end:
result = self._cmp_sequence(other, i, other_len)
if result == 0:
return True
i += 1
return False
elif isinstance(other, RDN):
return other in self.rdns
else:
raise TypeError("expected DN or RDN but got %s" % (other.__class__.__name__))
def find(self, pattern, start=None, end=None):
'''
Return the lowest index in the DN where pattern DN (or RDN) is found,
such that pattern is contained in the range [start, end]. Optional
arguments start and end are interpreted as in slice notation. Return
-1 if pattern is not found.
'''
if isinstance(pattern, DN):
pat_len = len(pattern)
elif isinstance(pattern, RDN):
pat_len = 1
else:
raise TypeError("expected DN or RDN but got %s" % (pattern.__class__.__name__))
self_len = len(self)
if start is None:
start = 0
if end is None:
end = self_len
start, end = _adjust_indices(start, end, self_len)
i = start
stop = max(start, end - pat_len)
if isinstance(pattern, DN):
while i <= stop:
result = self._cmp_sequence(pattern, i, pat_len)
if result == 0:
return i
i += 1
return -1
else:
while i <= stop:
if self.rdns[i] == pattern:
return i
i += 1
return -1
def index(self, pattern, start=None, end=None):
'''
Like find() but raise ValueError when the pattern is not found.
'''
i = self.find(pattern, start, end)
if i == -1:
raise ValueError("pattern not found")
return i
def rfind(self, pattern, start=None, end=None):
'''
Return the highest index in the DN where pattern DN (or RDN) is found,
such that pattern is contained in the range [start, end]. Optional
arguments start and end are interpreted as in slice notation. Return
-1 if pattern is not found.
'''
if isinstance(pattern, DN):
pat_len = len(pattern)
elif isinstance(pattern, RDN):
pat_len = 1
else:
raise TypeError("expected DN or RDN but got %s" % (pattern.__class__.__name__))
self_len = len(self)
if start is None:
start = 0
if end is None:
end = self_len
start, end = _adjust_indices(start, end, self_len)
i = max(start, min(end, self_len - pat_len))
stop = start
if isinstance(pattern, DN):
while i >= stop:
result = self._cmp_sequence(pattern, i, pat_len)
if result == 0:
return i
i -= 1
return -1
else:
while i >= stop:
if self.rdns[i] == pattern:
return i
i -= 1
return -1
def rindex(self, pattern, start=None, end=None):
'''
Like rfind() but raise ValueError when the pattern is not found.
'''
i = self.rfind(pattern, start, end)
if i == -1:
raise ValueError("pattern not found")
return i
class EditableDN(DN):
'''
Exactly identical to the DN class except
* Hash value is based on object identity, not object
value. Objects that test as equal will be non-unique when
used as a dict key or member of a set.
* RDN components may be assigned via assignment statements.
* RDN components may be inserted.
* In-place addition modifes the lhs object.
'''
is_mutable = True
__hash__ = None
AVA_type = EditableAVA
RDN_type = EditableRDN
def __setitem__(self, key, value):
if isinstance(key, (int, long)):
new_rdn = self._rdn_from_value(value)
if isinstance(new_rdn, list):
raise TypeError("cannot assign multiple RDN's to single entry")
self.rdns[key] = new_rdn
elif isinstance(key, slice):
rdns = self._rdns_from_sequence(value)
self.rdns[key] = rdns
elif isinstance(key, basestring):
new_rdn = self._rdn_from_value(value)
if isinstance(new_rdn, list):
raise TypeError("cannot assign multiple values to single entry")
found = False
i = 0
while i < len(self.rdns):
if key == self.rdns[i].attr:
found = True
self.rdns[i] = new_rdn
break
i += 1
if not found:
raise KeyError("\"%s\" not found in %s" % (key, self.__str__()))
else:
raise TypeError("unsupported type for DN indexing, must be int, basestring or slice; not %s" % \
(key.__class__.__name__))
def __iadd__(self, other):
# If __iadd__ is not available Python will emulate += by
# replacing the lhs object with the result of __add__ (if available).
if isinstance(other, DN):
for rdn in other.rdns:
self.rdns.append(self.RDN_type(rdn))
elif isinstance(other, RDN):
self.rdns.append(self.RDN_type(other))
elif isinstance(other, basestring):
dn = self.__class__(other)
self.__iadd__(dn)
else:
raise TypeError("expected DN, RDN or basestring but got %s" % (other.__class__.__name__))
return self
def insert(self, i, x):
'''
x must be a 2-value tuple or list promotable to an RDN object,
or a RDN object.
dn.insert(i, x) is the same as s[i:i] = [x]
When a negative index is passed as the first parameter to the
insert() method, the list length is added, as for slice
indices. If it is still negative, it is truncated to zero, as
for slice indices.
'''
self.rdns.insert(i, self._rdn_from_value(x))
def replace(self, old, new, count=sys.maxsize):
'''
Replace all occurrences of old DN (or RDN) with new DN (or
RDN). If the optional argument count is given, only the first
count occurrences are replaced.
Returns the number of replacements made.
'''
if not isinstance(old, (DN, RDN)):
raise TypeError("old must be DN or RDN but got %s" % (old.__class__.__name__))
if not isinstance(new, (DN, RDN)):
raise TypeError("new must be DN or RDN but got %s" % (new.__class__.__name__))
start = 0
pat_len = len(old)
n_replaced = 0
while n_replaced < count:
index = self.find(old, start)
if index < 0:
return n_replaced
self[index : index+pat_len] = new
n_replaced += 1
start = index + pat_len
return n_replaced
|