summaryrefslogtreecommitdiffstats
path: root/sample/dualstack-httpd.rb
blob: 893b29febaa654502a88f1a1c048691723f8d599 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# simple httpd

# The code demonstrates how a multi-protocol daemon should be written.

require "socket"
require "thread"

port = 8888
res = Socket.getaddrinfo(nil, port, nil, Socket::SOCK_STREAM, nil, Socket::AI_PASSIVE)
sockpool = []
names = []
threads = []

res.each do |i|
  s = TCPserver.new(i[3], i[1])
  n = Socket.getnameinfo(s.getsockname, Socket::NI_NUMERICHOST|Socket::NI_NUMERICSERV).join(" port ")
  sockpool.push s
  names.push n
end

(0 .. sockpool.size - 1).each do |i|
  mysock = sockpool[i]
  myname = names[i]
  STDERR.print "socket #{mysock} started, address #{myname}\n"
  threads[i] = Thread.start do		# Thread.start cannot be used here!
    ls = mysock	# copy to dynamic variable
    t = Thread.current
    STDERR.print "socket #{myname} listener started, pid #{$$} thread #{t}\n"
    while TRUE
      as = ls.accept
      Thread.start do
	STDERR.print "socket #{myname} accepted, thread ", Thread.current, "\n"
	s = as	# copy to dynamic variable
	str = ''
	while line = s.gets
	  break if line == "\r\n" or line == "\n"
	  str << line
	end
	STDERR.print "socket #{myname} got string\n"
	s.write("HTTP/1.0 200 OK\n")
	s.write("Content-type: text/plain\n\n")
	s.write("this is test: my name is #{myname}, you sent:\n")
	s.write("---start\n")
	s.write(str)
	s.write("---end\n")
	s.close
	STDERR.print "socket #{myname} processed, thread ", Thread.current, " terminating\n"
      end
    end
  end
end

for t in threads
  t.join
end
3 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 */
#ifndef BN_H_
#define BN_H_

#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/random.h>
#include <linux/ctype.h>

#define CHAR_BIT sizeof(uint8_t)*8

inline static int rand(void)
{
   int res;
   
   get_random_bytes(&res, sizeof(int));
   
   return res;
}

#include <tommath_class.h>

#ifndef MIN
   #define MIN(x,y) ((x)<(y)?(x):(y))
#endif

#ifndef MAX
   #define MAX(x,y) ((x)>(y)?(x):(y))
#endif

#ifdef __cplusplus
extern "C" {

/* C++ compilers don't like assigning void * to mp_digit * */
#define  OPT_CAST(x)  (x *)

#else

/* C on the other hand doesn't care */
#define  OPT_CAST(x)

#endif


/* some default configurations.
 *
 * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
 * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits
 *
 * At the very least a mp_digit must be able to hold 7 bits
 * [any size beyond that is ok provided it doesn't overflow the data type]
 */
#if BITS_PER_LONG <= 64
   /* this is the default case, 28-bit digits */
   
   typedef uint32_t      mp_digit;
   typedef uint64_t      mp_word;
# define DIGIT_BIT          31

#endif

#if 0
   /* if we could get a way to use an 128 bit integer
    * in kernel, use this.
    */
   typedef uint64_t      mp_digit;
   typedef __uint128_t      mp_word;
# define DIGIT_BIT          60

#endif

/* define heap macros */
#ifndef XMALLOC
# define XMALLOC(x) kmalloc(x, GFP_KERNEL)
# define XFREE kfree
# define XREALLOC(x,y) krealloc(x,y, GFP_KERNEL)
# define XCALLOC(x,y) kzalloc(x*y, GPF_KERNEL)
#endif

/* otherwise the bits per digit is calculated automatically from the size of a mp_digit */
#ifndef DIGIT_BIT
//   #define DIGIT_BIT     ((int)((CHAR_BIT * sizeof(mp_digit) - 1)))  /* bits per digit */
#endif

#define MP_DIGIT_BIT     DIGIT_BIT
#define MP_MASK          ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
#define MP_DIGIT_MAX     MP_MASK

/* equalities */
#define MP_LT        -1   /* less than */
#define MP_EQ         0   /* equal to */
#define MP_GT         1   /* greater than */

#define MP_ZPOS       0   /* positive integer */
#define MP_NEG        1   /* negative */

#define MP_OKAY       0   /* ok result */
#define MP_MEM        -2  /* out of mem */
#define MP_VAL        -3  /* invalid input */
#define MP_RANGE      MP_VAL

#define MP_YES        1   /* yes response */
#define MP_NO         0   /* no response */

/* Primality generation flags */
#define LTM_PRIME_BBS      0x0001 /* BBS style prime */
#define LTM_PRIME_SAFE     0x0002 /* Safe prime (p-1)/2 == prime */
#define LTM_PRIME_2MSB_ON  0x0008 /* force 2nd MSB to 1 */

typedef int           mp_err;

/* you'll have to tune these... */
extern int KARATSUBA_MUL_CUTOFF,
           KARATSUBA_SQR_CUTOFF,
           TOOM_MUL_CUTOFF,
           TOOM_SQR_CUTOFF;

/* define this to use lower memory usage routines (exptmods mostly) */
/* #define MP_LOW_MEM */

/* default precision */
#ifndef MP_PREC
   #ifndef MP_LOW_MEM
      #define MP_PREC                 32     /* default digits of precision */
   #else
      #define MP_PREC                 8      /* default digits of precision */
   #endif   
#endif

/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
#define MP_WARRAY               (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))

/* the infamous mp_int structure */
typedef struct  {
    int used, alloc, sign;
    mp_digit *dp;
} mp_int;

/* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */
typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);


#define USED(m)    ((m)->used)
#define DIGIT(m,k) ((m)->dp[(k)])
#define SIGN(m)    ((m)->sign)

/* error code to char* string */
char *mp_error_to_string(int code);

/* ---> init and deinit bignum functions <--- */
/* init a bignum */
int mp_init(mp_int *a);

/* free a bignum */
void mp_clear(mp_int *a);

/* init a null terminated series of arguments */
int mp_init_multi(mp_int *mp, ...);

/* clear a null terminated series of arguments */
void mp_clear_multi(mp_int *mp, ...);

/* exchange two ints */
void mp_exch(mp_int *a, mp_int *b);

/* shrink ram required for a bignum */
int mp_shrink(mp_int *a);

/* grow an int to a given size */
int mp_grow(mp_int *a, int size);

/* init to a given number of digits */
int mp_init_size(mp_int *a, int size);

/* ---> Basic Manipulations <--- */
#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
#define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
#define mp_isodd(a)  (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)

/* set to zero */
void mp_zero(mp_int *a);

/* set to a digit */
void mp_set(mp_int *a, mp_digit b);

/* set a 32-bit const */
int mp_set_int(mp_int *a, unsigned long b);

/* get a 32-bit value */
unsigned long mp_get_int(mp_int * a);

/* initialize and set a digit */
int mp_init_set (mp_int * a, mp_digit b);

/* initialize and set 32-bit value */
int mp_init_set_int (mp_int * a, unsigned long b);

/* copy, b = a */
int mp_copy(mp_int *a, mp_int *b);

/* inits and copies, a = b */
int mp_init_copy(mp_int *a, mp_int *b);

/* trim unused digits */
void mp_clamp(mp_int *a);

/* ---> digit manipulation <--- */

/* right shift by "b" digits */
void mp_rshd(mp_int *a, int b);

/* left shift by "b" digits */
int mp_lshd(mp_int *a, int b);

/* c = a / 2**b */
int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d);

/* b = a/2 */
int mp_div_2(mp_int *a, mp_int *b);

/* c = a * 2**b */
int mp_mul_2d(mp_int *a, int b, mp_int *c);

/* b = a*2 */
int mp_mul_2(mp_int *a, mp_int *b);

/* c = a mod 2**d */
int mp_mod_2d(mp_int *a, int b, mp_int *c);

/* computes a = 2**b */
int mp_2expt(mp_int *a, int b);

/* Counts the number of lsbs which are zero before the first zero bit */
int mp_cnt_lsb(mp_int *a);

/* I Love Earth! */

/* makes a pseudo-random int of a given size */
int mp_rand(mp_int *a, int digits);

/* ---> binary operations <--- */
/* c = a XOR b  */
int mp_xor(mp_int *a, mp_int *b, mp_int *c);

/* c = a OR b */
int mp_or(mp_int *a, mp_int *b, mp_int *c);

/* c = a AND b */
int mp_and(mp_int *a, mp_int *b, mp_int *c);

/* ---> Basic arithmetic <--- */

/* b = -a */
int mp_neg(mp_int *a, mp_int *b);