1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
|
#!/usr/bin/env ruby
#--
# tsort.rb - provides a module for topological sorting and strongly connected components.
#++
#
#
# TSort implements topological sorting using Tarjan's algorithm for
# strongly connected components.
#
# TSort is designed to be able to be used with any object which can be interpreted
# as a directed graph.
# TSort requires two methods to interpret an object as a graph:
# tsort_each_node and tsort_each_child:
#
# * tsort_each_node is used to iterate for all nodes over a graph.
# * tsort_each_child is used to iterate for child nodes of a given node.
#
# The equality of nodes are defined by eql? and hash since
# TSort uses Hash internally.
#
# == A Simple Example
#
# The following example demonstrates how to mix the TSort module into an
# existing class (in this case, Hash). Here, we're treating each key in
# the hash as a node in the graph, and so we simply alias the required
# #tsort_each_node method to Hash's #each_key method. For each key in the
# hash, the associated value is an array of the node's child nodes. This
# choice in turn leads to our implementation of the required #tsort_each_child
# method, which fetches the array of child nodes and then iterates over that
# array using the user-supplied block.
#
# require 'tsort'
#
# class Hash
# include TSort
# alias tsort_each_node each_key
# def tsort_each_child(node, &block)
# fetch(node).each(&block)
# end
# end
#
# {1=>[2, 3], 2=>[3], 3=>[], 4=>[]}.tsort
# #=> [3, 2, 1, 4]
#
# {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}.strongly_connected_components
# #=> [[4], [2, 3], [1]]
#
# == A More Realistic Example
#
# A very simple `make' like tool can be implemented as follows:
#
# require 'tsort'
#
# class Make
# def initialize
# @dep = {}
# @dep.default = []
# end
#
# def rule(outputs, inputs=[], &block)
# triple = [outputs, inputs, block]
# outputs.each {|f| @dep[f] = [triple]}
# @dep[triple] = inputs
# end
#
# def build(target)
# each_strongly_connected_component_from(target) {|ns|
# if ns.length != 1
# fs = ns.delete_if {|n| Array === n}
# raise TSort::Cyclic.new("cyclic dependencies: #{fs.join ', '}")
# end
# n = ns.first
# if Array === n
# outputs, inputs, block = n
# inputs_time = inputs.map {|f| File.mtime f}.max
# begin
# outputs_time = outputs.map {|f| File.mtime f}.min
# rescue Errno::ENOENT
# outputs_time = nil
# end
# if outputs_time == nil ||
# inputs_time != nil && outputs_time <= inputs_time
# sleep 1 if inputs_time != nil && inputs_time.to_i == Time.now.to_i
# block.call
# end
# end
# }
# end
#
# def tsort_each_child(node, &block)
# @dep[node].each(&block)
# end
# include TSort
# end
#
# def command(arg)
# print arg, "\n"
# system arg
# end
#
# m = Make.new
# m.rule(%w[t1]) { command 'date > t1' }
# m.rule(%w[t2]) { command 'date > t2' }
# m.rule(%w[t3]) { command 'date > t3' }
# m.rule(%w[t4], %w[t1 t3]) { command 'cat t1 t3 > t4' }
# m.rule(%w[t5], %w[t4 t2]) { command 'cat t4 t2 > t5' }
# m.build('t5')
#
# == Bugs
#
# * 'tsort.rb' is wrong name because this library uses
# Tarjan's algorithm for strongly connected components.
# Although 'strongly_connected_components.rb' is correct but too long.
#
# == References
#
# R. E. Tarjan, "Depth First Search and Linear Graph Algorithms",
# <em>SIAM Journal on Computing</em>, Vol. 1, No. 2, pp. 146-160, June 1972.
#
module TSort
class Cyclic < StandardError
end
#
# Returns a topologically sorted array of nodes.
# The array is sorted from children to parents, i.e.
# the first element has no child and the last node has no parent.
#
# If there is a cycle, TSort::Cyclic is raised.
#
def tsort
result = []
tsort_each {|element| result << element}
result
end
#
# The iterator version of the #tsort method.
# <tt><em>obj</em>.tsort_each</tt> is similar to <tt><em>obj</em>.tsort.each</tt>, but
# modification of _obj_ during the iteration may lead to unexpected results.
#
# #tsort_each returns +nil+.
# If there is a cycle, TSort::Cyclic is raised.
#
def tsort_each # :yields: node
each_strongly_connected_component {|component|
if component.size == 1
yield component.first
else
raise Cyclic.new("topological sort failed: #{component.inspect}")
end
}
end
#
# Returns strongly connected components as an array of arrays of nodes.
# The array is sorted from children to parents.
# Each elements of the array represents a strongly connected component.
#
def strongly_connected_components
result = []
each_strongly_connected_component {|component| result << component}
result
end
#
# The iterator version of the #strongly_connected_components method.
# <tt><em>obj</em>.each_strongly_connected_component</tt> is similar to
# <tt><em>obj</em>.strongly_connected_components.each</tt>, but
# modification of _obj_ during the iteration may lead to unexpected results.
#
#
# #each_strongly_connected_component returns +nil+.
#
def each_strongly_connected_component # :yields: nodes
id_map = {}
stack = []
tsort_each_node {|node|
unless id_map.include? node
each_strongly_connected_component_from(node, id_map, stack) {|c|
yield c
}
end
}
nil
end
#
# Iterates over strongly connected component in the subgraph reachable from
# _node_.
#
# Return value is unspecified.
#
# #each_strongly_connected_component_from doesn't call #tsort_each_node.
#
def each_strongly_connected_component_from(node, id_map={}, stack=[]) # :yields: nodes
minimum_id = node_id = id_map[node] = id_map.size
stack_length = stack.length
stack << node
tsort_each_child(node) {|child|
if id_map.include? child
child_id = id_map[child]
minimum_id = child_id if child_id && child_id < minimum_id
else
sub_minimum_id =
each_strongly_connected_component_from(child, id_map, stack) {|c|
yield c
}
minimum_id = sub_minimum_id if sub_minimum_id < minimum_id
end
}
if node_id == minimum_id
component = stack.slice!(stack_length .. -1)
component.each {|n| id_map[n] = nil}
yield component
end
minimum_id
end
#
# Should be implemented by a extended class.
#
# #tsort_each_node is used to iterate for all nodes over a graph.
#
def tsort_each_node # :yields: node
raise NotImplementedError.new
end
#
# Should be implemented by a extended class.
#
# #tsort_each_child is used to iterate for child nodes of _node_.
#
def tsort_each_child(node) # :yields: child
raise NotImplementedError.new
end
end
if __FILE__ == $0
require 'test/unit'
class TSortHash < Hash # :nodoc:
include TSort
alias tsort_each_node each_key
def tsort_each_child(node, &block)
fetch(node).each(&block)
end
end
class TSortArray < Array # :nodoc:
include TSort
alias tsort_each_node each_index
def tsort_each_child(node, &block)
fetch(node).each(&block)
end
end
class TSortTest < Test::Unit::TestCase # :nodoc:
def test_dag
h = TSortHash[{1=>[2, 3], 2=>[3], 3=>[]}]
assert_equal([3, 2, 1], h.tsort)
assert_equal([[3], [2], [1]], h.strongly_connected_components)
end
def test_cycle
h = TSortHash[{1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}]
assert_equal([[4], [2, 3], [1]],
h.strongly_connected_components.map {|nodes| nodes.sort})
assert_raise(TSort::Cyclic) { h.tsort }
end
def test_array
a = TSortArray[[1], [0], [0], [2]]
assert_equal([[0, 1], [2], [3]],
a.strongly_connected_components.map {|nodes| nodes.sort})
a = TSortArray[[], [0]]
assert_equal([[0], [1]],
a.strongly_connected_components.map {|nodes| nodes.sort})
end
end
end
|