1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
|
module CMath
include Math
alias exp! exp
alias log! log
alias log10! log10
alias sqrt! sqrt
alias sin! sin
alias cos! cos
alias tan! tan
alias sinh! sinh
alias cosh! cosh
alias tanh! tanh
alias asin! asin
alias acos! acos
alias atan! atan
alias atan2! atan2
alias asinh! asinh
alias acosh! acosh
alias atanh! atanh
def exp(z)
if Complex.generic?(z)
exp!(z)
else
Complex(exp!(z.real) * cos!(z.image),
exp!(z.real) * sin!(z.image))
end
end
def log(*args)
z, b = args
if Complex.generic?(z) and z >= 0 and (b.nil? or b >= 0)
log!(*args)
else
r, theta = z.polar
a = Complex(log!(r.abs), theta)
if b
a /= log(b)
end
a
end
end
def log10(z)
if Complex.generic?(z)
log10!(z)
else
log(z) / log!(10)
end
end
def sqrt(z)
if Complex.generic?(z)
if z >= 0
sqrt!(z)
else
Complex(0,sqrt!(-z))
end
else
if z.image < 0
sqrt(z.conjugate).conjugate
else
r = z.abs
x = z.real
Complex(sqrt!((r + x) / 2), sqrt!((r - x) / 2))
end
end
end
def sin(z)
if Complex.generic?(z)
sin!(z)
else
Complex(sin!(z.real) * cosh!(z.image),
cos!(z.real) * sinh!(z.image))
end
end
def cos(z)
if Complex.generic?(z)
cos!(z)
else
Complex(cos!(z.real) * cosh!(z.image),
-sin!(z.real) * sinh!(z.image))
end
end
def tan(z)
if Complex.generic?(z)
tan!(z)
else
sin(z)/cos(z)
end
end
def sinh(z)
if Complex.generic?(z)
sinh!(z)
else
Complex(sinh!(z.real) * cos!(z.image),
cosh!(z.real) * sin!(z.image))
end
end
def cosh(z)
if Complex.generic?(z)
cosh!(z)
else
Complex(cosh!(z.real) * cos!(z.image),
sinh!(z.real) * sin!(z.image))
end
end
def tanh(z)
if Complex.generic?(z)
tanh!(z)
else
sinh(z) / cosh(z)
end
end
def asin(z)
if Complex.generic?(z) and z >= -1 and z <= 1
asin!(z)
else
-1.0.im * log(1.0.im * z + sqrt(1.0 - z * z))
end
end
def acos(z)
if Complex.generic?(z) and z >= -1 and z <= 1
acos!(z)
else
-1.0.im * log(z + 1.0.im * sqrt(1.0 - z * z))
end
end
def atan(z)
if Complex.generic?(z)
atan!(z)
else
1.0.im * log((1.0.im + z) / (1.0.im - z)) / 2.0
end
end
def atan2(y,x)
if Complex.generic?(y) and Complex.generic?(x)
atan2!(y,x)
else
-1.0.im * log((x + 1.0.im * y) / sqrt(x * x + y * y))
end
end
def acosh(z)
if Complex.generic?(z) and z >= 1
acosh!(z)
else
log(z + sqrt(z * z - 1.0))
end
end
def asinh(z)
if Complex.generic?(z)
asinh!(z)
else
log(z + sqrt(1.0 + z * z))
end
end
def atanh(z)
if Complex.generic?(z) and z >= -1 and z <= 1
atanh!(z)
else
log((1.0 + z) / (1.0 - z)) / 2.0
end
end
module_function :exp!
module_function :exp
module_function :log!
module_function :log
module_function :log10!
module_function :log10
module_function :sqrt!
module_function :sqrt
module_function :sin!
module_function :sin
module_function :cos!
module_function :cos
module_function :tan!
module_function :tan
module_function :sinh!
module_function :sinh
module_function :cosh!
module_function :cosh
module_function :tanh!
module_function :tanh
module_function :asin!
module_function :asin
module_function :acos!
module_function :acos
module_function :atan!
module_function :atan
module_function :atan2!
module_function :atan2
module_function :asinh!
module_function :asinh
module_function :acosh!
module_function :acosh
module_function :atanh!
module_function :atanh
end
|