summaryrefslogtreecommitdiffstats
path: root/ext/tk/sample/demos-en/pendulum.rb
blob: a3498d67cf1115f8394c86d5d6f3ab2fb71ae2a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
#
# This demonstration illustrates how Tcl/Tk can be used to construct
# simulations of physical systems.
# (called by 'widget')
#
# based on Tcl/Tk8.5a2 widget demos

# destroy toplevel widget for this demo script
if defined?($pendulum_demo) && $pendulum_demo
  $pendulum_demo.destroy 
  $pendulum_demo = nil
end

# create toplevel widget
$pendulum_demo = TkToplevel.new {|w|
  title("Pendulum Animation Demonstration")
  iconname("pendulum")
  positionWindow(w)
}

# create label
msg = TkLabel.new($pendulum_demo) {
  font $font
  wraplength '4i'
  justify 'left'
  text 'This demonstration shows how Ruby/Tk can be used to carry out animations that are linked to simulations of physical systems. In the left canvas is a graphical representation of the physical system itself, a simple pendulum, and in the right canvas is a graph of the phase space of the system, which is a plot of the angle (relative to the vertical) against the angular velocity. The pendulum bob may be repositioned by clicking and dragging anywhere on the left canvas.'
}
msg.pack('side'=>'top')

# create frame
TkFrame.new($pendulum_demo) {|frame|
  TkButton.new(frame) {
    text 'Dismiss'
    command proc{
      tmppath = $pendulum_demo
      $pendulum_demo = nil
      tmppath.destroy
    }
  }.pack('side'=>'left', 'expand'=>'yes')

  TkButton.new(frame) {
    text 'See Code'
    command proc{showCode 'pendulum'}
  }.pack('side'=>'left', 'expand'=>'yes')

}.pack('side'=>'bottom', 'fill'=>'x', 'pady'=>'2m')

# animated wave
class PendulumAnimationDemo
  def initialize(frame)
    # Create some structural widgets
    @pane = TkPanedWindow.new(frame).pack(:fill=>:both, :expand=>true)
#    @pane.add(@lf1 = TkLabelFrame.new(@pane, :text=>'Pendulum Simulation'))
#    @pane.add(@lf2 = TkLabelFrame.new(@pane, :text=>'Phase Space'))
    @lf1 = TkLabelFrame.new(@pane, :text=>'Pendulum Simulation')
    @lf2 = TkLabelFrame.new(@pane, :text=>'Phase Space')

    # Create the canvas containing the graphical representation of the
    # simulated system.
    @c = TkCanvas.new(@lf1, :width=>320, :height=>200, :background=>'white', 
                      :borderwidth=>2, :relief=>:sunken)
    TkcText.new(@c, 5, 5, :anchor=>:nw, 
                :text=>'Click to Adjust Bob Start Position')
    # Coordinates of these items don't matter; they will be set properly below
    @plate = TkcLine.new(@c, 0, 25, 320, 25, :width=>2, :fill=>'grey50')
    @rod = TkcLine.new(@c, 1, 1, 1, 1, :width=>3, :fill=>'black')
    @bob = TkcOval.new(@c, 1, 1, 2, 2, 
                       :width=>3, :fill=>'yellow', :outline=>'black')
    TkcOval.new(@c, 155, 20, 165, 30, :fill=>'grey50', :outline=>'')

    # pack
    @c.pack(:fill=>:both, :expand=>true)

    # Create the canvas containing the phase space graph; this consists of
    # a line that gets gradually paler as it ages, which is an extremely
    # effective visual trick.
    @k = TkCanvas.new(@lf2, :width=>320, :height=>200, :background=>'white', 
                      :borderwidth=>2, :relief=>:sunken)
    @y_axis = TkcLine.new(@k, 160, 200, 160, 0, :fill=>'grey75', :arrow=>:last)
    @x_axis = TkcLine.new(@k, 0, 100, 320, 100, :fill=>'grey75', :arrow=>:last)

    @graph = {}
    90.step(0, -10){|i|
      # Coordinates of these items don't matter; 
      # they will be set properly below
      @graph[i] = TkcLine.new(@k, 0, 0, 1, 1, :smooth=>true, :fill=>"grey#{i}")
    }

    # labels
    @label_theta = TkcText.new(@k, 0, 0, :anchor=>:ne, 
                               :text=>'q', :font=>'Symbol 8')
    @label_dtheta = TkcText.new(@k, 0, 0, :anchor=>:ne, 
                               :text=>'dq', :font=>'Symbol 8')

    # pack
    @k.pack(:fill=>:both, :expand=>true)

    # Initialize some variables
    @points = []
    @theta = 45.0
    @dTheta = 0.0
    @length = 150

    # animation loop
    @timer = TkTimer.new(15){ repeat }

    # binding
    @c.bindtags_unshift(btag = TkBindTag.new)
    btag.bind('Destroy'){ @timer.stop }
    btag.bind('1', proc{|x, y| @timer.stop; showPendulum(x.to_i, y.to_i)}, 
              '%x %y')
    btag.bind('B1-Motion', proc{|x, y| showPendulum(x.to_i, y.to_i)}, '%x %y')
    btag.bind('ButtonRelease-1', 
              proc{|x, y| showPendulum(x.to_i, y.to_i); @timer.start }, 
              '%x %y')

    btag.bind('Configure', proc{|w| @plate.coords(0, 25, w.to_i, 25)}, '%w')

    @k.bind('Configure', proc{|h, w| 
              h = h.to_i
              w = w.to_i
              @psh = h/2; 
              @psw = w/2
              @x_axis.coords(2, @psh, w-2, @psh)
              @y_axis.coords(@psw, h-2, @psw, 2)
              @label_theta.coords(@psw-4, 6)
              @label_dtheta.coords(w-6, @psh+4)
            }, '%h %w')

    # add
    Tk.update
    @pane.add(@lf1)
    @pane.add(@lf2)

    # init display
    showPendulum

    # animation start
    @timer.start(500)
  end

  # This procedure makes the pendulum appear at the correct place on the
  # canvas. If the additional arguments x, y are passed instead of computing 
  # the position of the pendulum from the length of the pendulum rod and its 
  # angle, the length and angle are computed in reverse from the given 
  # location (which is taken to be the centre of the pendulum bob.)
  def showPendulum(x=nil, y=nil)
    if x && y && (x != 160 || y != 25)
      @dTheta = 0.0
      x2 = x - 160
      y2 = y - 25
      @length = Math.hypot(x2, y2)
      @theta = Math.atan2(x2,y2)*180/Math::PI
    else
      angle = @theta*Math::PI/180
      x = 160 + @length*Math.sin(angle)
      y = 25 + @length*Math.cos(angle)
    end

    @rod.coords(160, 25, x, y)
    @bob.coords(x-15, y-15, x+15, y+15)
  end

  # Update the phase-space graph according to the current angle and the
  # rate at which the angle is changing (the first derivative with
  # respect to time.)
  def showPhase
    unless @psw && @psh
      @psw = @k.width/2
      @psh = @k.height/2
    end
    @points << @theta + @psw << -20*@dTheta + @psh
    if @points.length > 100
      @points = @points[-100..-1]
    end
    (0...100).step(10){|i|
      first = - i
      last = 11 - i
      last = -1 if last >= 0
      next if first > last
      lst = @points[first..last]
      @graph[i].coords(lst) if lst && lst.length >= 4
    }
  end

  # This procedure is the "business" part of the simulation that does
  # simple numerical integration of the formula for a simple rotational
  # pendulum.
  def recomputeAngle
    scaling = 3000.0/@length/@length

    # To estimate the integration accurately, we really need to
    # compute the end-point of our time-step.  But to do *that*, we
    # need to estimate the integration accurately!  So we try this
    # technique, which is inaccurate, but better than doing it in a
    # single step.  What we really want is bound up in the
    # differential equation:
    #       ..             - sin theta
    #      theta + theta = -----------
    #                         length
    # But my math skills are not good enough to solve this!

    # first estimate
    firstDDTheta = -Math.sin(@theta * Math::PI/180) * scaling
    midDTheta = @dTheta + firstDDTheta
    midTheta = @theta + (@dTheta + midDTheta)/2
    # second estimate
    midDDTheta = -Math.sin(midTheta * Math::PI/180) * scaling
    midDTheta = @dTheta + (firstDDTheta + midDDTheta)/2
    midTheta = @theta + (@dTheta + midDTheta)/2
    # Now we do a double-estimate approach for getting the final value
    # first estimate
    midDDTheta = -Math.sin(midTheta * Math::PI/180) * scaling
    lastDTheta = midDTheta + midDDTheta
    lastTheta = midTheta + (midDTheta+ lastDTheta)/2
    # second estimate
    lastDDTheta = -Math.sin(lastTheta * Math::PI/180) * scaling
    lastDTheta = midDTheta + (midDDTheta + lastDDTheta)/2
    lastTheta = midTheta + (midDTheta + lastDTheta)/2
    # Now put the values back in our globals
    @dTheta = lastDTheta
    @theta = lastTheta
  end

  # This method ties together the simulation engine and the graphical
  # display code that visualizes it.
  def repeat
    # Simulate
    recomputeAngle

    # Update the display
    showPendulum
    showPhase
  end
end

# Start the animation processing
PendulumAnimationDemo.new($pendulum_demo)