1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
|
#include "solver.h"
#include "point.h"
#include <algorithm>
/*** Find the zeros of the bernstein function. The code subdivides until it is happy with the
* linearity of the function. This requires an O(degree^2) subdivision for each step, even when
* there is only one solution.
*/
namespace Geom{
template<class t>
static int SGN(t x) { return (x > 0 ? 1 : (x < 0 ? -1 : 0)); }
/*
* Forward declarations
*/
static void
Bernstein(double const *V,
unsigned degree,
double t,
double *Left,
double *Right);
static unsigned
control_poly_flat_enough(double const *V, unsigned degree,
double left_t, double right_t);
const unsigned MAXDEPTH = 64; /* Maximum depth for recursion */
const double BEPSILON = ldexp(1.0,((signed)-1)-MAXDEPTH); /*Flatness control value */
/*
* find_bernstein_roots : Given an equation in Bernstein-Bernstein form, find all
* of the roots in the open interval (0, 1). Return the number of roots found.
*/
void
find_bernstein_roots(double const *w, /* The control points */
unsigned degree, /* The degree of the polynomial */
std::vector<double> &solutions, /* RETURN candidate t-values */
unsigned depth, /* The depth of the recursion */
double left_t, double right_t)
{
unsigned n_crossings = 0; /* Number of zero-crossings */
int old_sign = SGN(w[0]);
for (unsigned i = 1; i <= degree; i++) {
int sign = SGN(w[i]);
if (sign) {
if (sign != old_sign && old_sign) {
n_crossings++;
}
old_sign = sign;
}
}
switch (n_crossings) {
case 0: /* No solutions here */
return;
case 1:
/* Unique solution */
/* Stop recursion when the tree is deep enough */
/* if deep enough, return 1 solution at midpoint */
if (depth >= MAXDEPTH) {
solutions.push_back((left_t + right_t) / 2.0);
return;
}
// I thought secant method would be faster here, but it'aint. -- njh
if (control_poly_flat_enough(w, degree, left_t, right_t)) {
const double Ax = right_t - left_t;
const double Ay = w[degree] - w[0];
solutions.push_back(left_t - Ax*w[0] / Ay);
return;
}
break;
}
/* Otherwise, solve recursively after subdividing control polygon */
std::vector<double> Left(degree+1); /* New left and right */
std::vector<double> Right(degree+1);/* control polygons */
const double split = 0.5;
Bernstein(w, degree, split, &Left[0], &Right[0]);
double mid_t = left_t*(1-split) + right_t*split;
find_bernstein_roots(&Left[0], degree, solutions, depth+1, left_t, mid_t);
/* Solution is exactly on the subdivision point. */
if (Right[0] == 0)
solutions.push_back(mid_t);
find_bernstein_roots(&Right[0], degree, solutions, depth+1, mid_t, right_t);
}
/*
* control_poly_flat_enough :
* Check if the control polygon of a Bernstein curve is flat enough
* for recursive subdivision to bottom out.
*
*/
static unsigned
control_poly_flat_enough(double const *V, /* Control points */
unsigned degree,
double left_t, double right_t) /* Degree of polynomial */
{
/* Find the perpendicular distance from each interior control point to line connecting V[0] and
* V[degree] */
/* Derive the implicit equation for line connecting first */
/* and last control points */
const double a = V[0] - V[degree];
const double b = right_t - left_t;
const double c = left_t * V[degree] - right_t * V[0] + a * left_t;
double max_distance_above = 0.0;
double max_distance_below = 0.0;
double ii = 0, dii = 1./degree;
for (unsigned i = 1; i < degree; i++) {
ii += dii;
/* Compute distance from each of the points to that line */
const double d = (a + V[i]) * ii*b + c;
double dist = d*d;
// Find the largest distance
if (d < 0.0)
max_distance_below = std::min(max_distance_below, -dist);
else
max_distance_above = std::max(max_distance_above, dist);
}
const double abSquared = (a * a) + (b * b);
const double intercept_1 = -(c + max_distance_above / abSquared);
const double intercept_2 = -(c + max_distance_below / abSquared);
/* Compute bounding interval*/
const double left_intercept = std::min(intercept_1, intercept_2);
const double right_intercept = std::max(intercept_1, intercept_2);
const double error = 0.5 * (right_intercept - left_intercept);
if (error < BEPSILON * a)
return 1;
return 0;
}
/*
* Bernstein :
* Evaluate a Bernstein function at a particular parameter value
* Fill in control points for resulting sub-curves.
*
*/
static void
Bernstein(double const *V, /* Control pts */
unsigned degree, /* Degree of bernstein curve */
double t, /* Parameter value */
double *Left, /* RETURN left half ctl pts */
double *Right) /* RETURN right half ctl pts */
{
const unsigned size=degree+1;
std::vector<double> vtemp(V,V+size);
/* Copy control points */
Left[0] = vtemp[0];
Right[degree]= vtemp[degree];
/* Triangle computation */
const double omt = (1-t);
for (unsigned i = 1; i < size; ++i) {
for (unsigned j = 0; j < size - i; ++j) {
vtemp[j] = omt*vtemp[j]+t*vtemp[j+1];
}
Left[i] =vtemp[0];
Right[degree-i]=vtemp[degree-i];
}
}
};
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(substatement-open . 0))
indent-tabs-mode:nil
c-brace-offset:0
fill-column:99
End:
vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4 :
*/
|