summaryrefslogtreecommitdiffstats
path: root/scribus/plugins/tools/2geomtools/lib2geom/path-intersection.cpp
blob: 44d722957571c07a8556b8257926b454a7b6fbee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
#include "path-intersection.h"

#include "ord.h"

//for path_direction:
#include "sbasis-geometric.h"

namespace Geom {

/* This function computes the winding of the path, given a reference point.
 * Positive values correspond to counter-clockwise in the mathematical coordinate system,
 * and clockwise in screen coordinates.  This particular implementation casts a ray in
 * the positive x direction.  It iterates the path, checking for intersection with the
 * bounding boxes.  If an intersection is found, the initial/final Y value of the curve is
 * used to derive a delta on the winding value.  If the point is within the bounding box,
 * the curve specific winding function is called.
 */
int winding(Path const &path, Point p) {
  //start on a segment which is not a horizontal line with y = p[y]
  Path::const_iterator start;
  for(Path::const_iterator iter = path.begin(); ; ++iter) {
    if(iter == path.end_closed()) { return 0; }
    if(iter->initialPoint()[Y]!=p[Y])  { start = iter; break; }
    if(iter->finalPoint()[Y]!=p[Y])    { start = iter; break; }
    if(iter->boundsFast().height()!=0.){ start = iter; break; }
  }
  int wind = 0;
  unsigned cnt = 0;
  bool starting = true;
  for (Path::const_iterator iter = start; iter != start || starting
       ; ++iter, iter = (iter == path.end_closed()) ? path.begin() : iter )
  {
    cnt++;
    if(cnt > path.size()) return wind;  //some bug makes this required
    starting = false;
    Rect bounds = iter->boundsFast();
    Coord x = p[X], y = p[Y];
    
    if(x > bounds.right() || !bounds[Y].contains(y)) continue; //ray doesn't intersect box
    
    Point final = iter->finalPoint();
    Point initial = iter->initialPoint();
    Cmp final_to_ray = cmp(final[Y], y);
    Cmp initial_to_ray = cmp(initial[Y], y);
    
    // if y is included, these will have opposite values, giving order.
    Cmp c = cmp(final_to_ray, initial_to_ray); 
    if(x < bounds.left()) {
        // ray goes through bbox
        // winding delta determined by position of endpoints
        if(final_to_ray != EQUAL_TO) {
            wind += int(c); // GT = counter-clockwise = 1; LT = clockwise = -1; EQ = not-included = 0
            //std::cout << int(c) << " ";
            goto cont;
        }
    } else {
        //inside bbox, use custom per-curve winding thingie
        int delt = iter->winding(p);
        wind += delt;
        //std::cout << "n" << delt << " ";
    }
    //Handling the special case of an endpoint on the ray:
    if(final[Y] == y) {
        //Traverse segments until it breaks away from y
        //99.9% of the time this will happen the first go
        Path::const_iterator next = iter;
        next++;
        for(; ; next++) {
            if(next == path.end_closed()) next = path.begin();
            Rect bnds = next->boundsFast();
            //TODO: X considerations
            if(bnds.height() > 0) {
                //It has diverged
                if(bnds.contains(p)) {
                    const double fudge = 0.01;
                    if(cmp(y, next->valueAt(fudge, Y)) == initial_to_ray) {
                        wind += int(c);
                      //  std::cout << "!!!!!" << int(c) << " ";
                    }
                    iter = next; // No increment, as the rest of the thing hasn't been counted.
                } else {
                    Coord ny = next->initialPoint()[Y];
                    if(cmp(y, ny) == initial_to_ray) {
                        //Is a continuation through the ray, so counts windingwise
                        wind += int(c);
                    //    std::cout << "!!!!!" << int(c) << " ";
                    }
                    iter = ++next;
                }
                goto cont;
            }
            if(next==start) return wind;
        }
        //Looks like it looped, which means everything's flat
        return 0;
    }
    
    cont:(void)0;
  }
  return wind;
}

/* This function should only be applied to simple paths (regions), as otherwise
 * a boolean winding direction is undefined.  It returns true for fill, false for
 * hole.  Defaults to using the sign of area when it reaches funny cases.
 */
bool path_direction(Path const &p) {
    if(p.empty()) return false;
    //could probably be more efficient, but this is a quick job
    double y = p.initialPoint()[Y];
    double x = p.initialPoint()[X];
    Cmp res = cmp(p[0].finalPoint()[Y], y);
    goto doh;
    for(unsigned i = 1; i <= p.size(); i++) {
        Cmp final_to_ray = cmp(p[i].finalPoint()[Y], y);
        Cmp initial_to_ray = cmp(p[i].initialPoint()[Y], y);
        // if y is included, these will have opposite values, giving order.
        Cmp c = cmp(final_to_ray, initial_to_ray);
        if(c != EQUAL_TO) {
            std::vector<double> rs = p[i].roots(y, Y);
            for(unsigned j = 0; j < rs.size(); j++) {
                double nx = p[i].valueAt(rs[j], X);
                if(nx > x) {
                    x = nx;
                    res = c;
                }
            }
        } else if(final_to_ray == EQUAL_TO) goto doh;
    }
    return res < 0;
    
    doh:
        //Otherwise fallback on area
        
        Piecewise<D2<SBasis> > pw = p.toPwSb();
        double area;
        Point centre;
        Geom::centroid(pw, centre, area);
        return area > 0;
}

//pair intersect code based on njh's pair-intersect

// A little sugar for appending a list to another
template<typename T>
void append(T &a, T const &b) {
    a.insert(a.end(), b.begin(), b.end());
}

/* Finds the intersection between the lines defined by A0 & A1, and B0 & B1.
 * Returns through the last 3 parameters, returning the t-values on the lines
 * and the cross-product of the deltas (a useful byproduct).  The return value
 * indicates if the time values are within their proper range on the line segments.
 */
bool
linear_intersect(Point A0, Point A1, Point B0, Point B1,
                 double &tA, double &tB, double &det) {
    // kramers rule as cross products
    Point Ad = A1 - A0,
          Bd = B1 - B0,
           d = B0 - A0;
    det = cross(Ad, Bd);
    if( 1.0 + det == 1.0 )
        return false;
    else
    {
        double detinv = 1.0 / det;
        tA = cross(d, Bd) * detinv;
        tB = cross(d, Ad) * detinv;
        return tA >= 0. && tA <= 1. && tB >= 0. && tB <= 1.;
    }
}

/* This uses the local bounds functions of curves to generically intersect two.
 * It passes in the curves, time intervals, and keeps track of depth, while
 * returning the results through the Crossings parameter.
 */
void pair_intersect(Curve const & A, double Al, double Ah, 
                    Curve const & B, double Bl, double Bh,
                    Crossings &ret,  unsigned depth=0) {
   // std::cout << depth << "(" << Al << ", " << Ah << ")\n";
    Rect Ar = A.boundsLocal(Interval(Al, Ah));
    if(Ar.isEmpty()) return;

    Rect Br = B.boundsLocal(Interval(Bl, Bh));
    if(Br.isEmpty()) return;
    
    if(!Ar.intersects(Br)) return;
    
    //Checks the general linearity of the function
    if((depth > 12)) { // || (A.boundsLocal(Interval(Al, Ah), 1).maxExtent() < 0.1 
                    //&&  B.boundsLocal(Interval(Bl, Bh), 1).maxExtent() < 0.1)) {
        double tA, tB, c;
        if(linear_intersect(A.pointAt(Al), A.pointAt(Ah), 
                            B.pointAt(Bl), B.pointAt(Bh), 
                            tA, tB, c)) {
            tA = tA * (Ah - Al) + Al;
            tB = tB * (Bh - Bl) + Bl;
            if(depth % 2)
                ret.push_back(Crossing(tB, tA, c < 0));
            else
                ret.push_back(Crossing(tA, tB, c > 0));
            return;
        }
    }
    if(depth > 12) return;
    double mid = (Bl + Bh)/2;
    pair_intersect(B, Bl, mid,
                    A, Al, Ah,
                    ret, depth+1);
    pair_intersect(B, mid, Bh,
                    A, Al, Ah,
                    ret, depth+1);
}

// A simple wrapper around pair_intersect
Crossings SimpleCrosser::crossings(Curve const &a, Curve const &b) {
    Crossings ret;
    pair_intersect(a, 0, 1, b, 0, 1, ret);
    return ret;
}

/* Takes two paths and time ranges on them, with the invariant that the
 * paths are monotonic on the range.  Splits A when the linear intersection
 * doesn't exist or is inaccurate.  Uses the fact that it is monotonic to
 * do very fast local bounds.
 */
void mono_pair(Path const &A, double Al, double Ah,
               Path const &B, double Bl, double Bh,
               Crossings &ret, double tol, unsigned depth = 0) {
    if( Al >= Ah || Bl >= Bh) return;
 //   std::cout << " " << depth << "[" << Al << ", " << Ah << "]" << "[" << Bl << ", " << Bh << "]";

    Point A0 = A.pointAt(Al), A1 = A.pointAt(Ah),
          B0 = B.pointAt(Bl), B1 = B.pointAt(Bh);
    //inline code that this implies? (without rect/interval construction)
    if(!Rect(A0, A1).intersects(Rect(B0, B1)) || A0 == A1 || B0 == B1) return;
    
    //Checks the general linearity of the function
    //if((depth > 12) || (A.boundsLocal(Interval(Al, Ah), 1).maxExtent() < 0.1 
    //                &&  B.boundsLocal(Interval(Bl, Bh), 1).maxExtent() < 0.1)) {
        double tA, tB, c;
        if(linear_intersect(A0, A1, B0, B1,
                            tA, tB, c)) {
            tA = tA * (Ah - Al) + Al;
            tB = tB * (Bh - Bl) + Bl;
            if(depth % 2)
                ret.push_back(Crossing(tB, tA, c < 0));
            else
                ret.push_back(Crossing(tA, tB, c > 0));
            return;
        }
    //}
    if(depth > 12) return;
    double mid = (Bl + Bh)/2;
    mono_pair(B, Bl, mid,
              A, Al, Ah,
              ret, depth+1);
    mono_pair(B, mid, Bh,
              A, Al, Ah,
              ret, depth+1);
}

// This returns the times when the x or y derivative is 0 in the curve.
std::vector<double> curve_mono_splits(Curve const &d) {
    std::vector<double> rs = d.roots(0, X);
    append(rs, d.roots(0, Y));
    std::sort(rs.begin(), rs.end());
    return rs;
}

// Convenience function to add a value to each entry in a vector of doubles.
std::vector<double> offset_doubles(std::vector<double> const &x, double offs) {
    std::vector<double> ret;
    for(unsigned i = 0; i < x.size(); i++) {
        ret.push_back(x[i] + offs);
    }
    return ret;
}

/* Finds all the monotonic splits for a path.  Only includes the split between
 * curves if they switch derivative directions at that point.
 */
std::vector<double> path_mono_splits(Path const &p) {
    std::vector<double> ret;
    if(p.empty()) return ret;
    ret.push_back(0);
    
    Curve* deriv = p[0].derivative();
    append(ret, curve_mono_splits(*deriv));
    delete deriv;
    
    int pdx=2, pdy=2;  //Previous derivative direction
    for(unsigned i = 0; i <= p.size(); i++) {
        deriv = p[i].derivative();
        std::vector<double> spl = offset_doubles(curve_mono_splits(*deriv), i);
        delete deriv;
        int dx = p[i].initialPoint()[X] > (spl.empty()? p[i].finalPoint()[X] :
                                                         p.valueAt(spl.front(), X));
        int dy = p[i].initialPoint()[Y] > (spl.empty()? p[i].finalPoint()[Y] :
                                                         p.valueAt(spl.front(), Y));
        //The direction changed, include the split time
        if(dx != pdx || dy != pdy) {
            ret.push_back(i);
            pdx = dx; pdy = dy;
        }
        append(ret, spl);
    }
    return ret;
}

/* Applies path_mono_splits to multiple paths, and returns the results such that 
 * time-set i corresponds to Path i.
 */
std::vector<std::vector<double> > paths_mono_splits(std::vector<Path> const &ps) {
    std::vector<std::vector<double> > ret;
    for(unsigned i = 0; i < ps.size(); i++)
        ret.push_back(path_mono_splits(ps[i]));
    return ret;
}

/* Processes the bounds for a list of paths and a list of splits on them, yielding a list of rects for each.
 * Each entry i corresponds to path i of the input.  The number of rects in each entry is guaranteed to be the
 * number of splits for that path, subtracted by one.
 */
std::vector<std::vector<Rect> > split_bounds(std::vector<Path> const &p, std::vector<std::vector<double> > splits) {
    std::vector<std::vector<Rect> > ret;
    for(unsigned i = 0; i < p.size(); i++) {
        std::vector<Rect> res;
        for(unsigned j = 1; j < splits[i].size(); j++)
            res.push_back(Rect(p[i].pointAt(splits[i][j-1]), p[i].pointAt(splits[i][j])));
        ret.push_back(res);
    }
    return ret;
}

/* This is the main routine of "MonoCrosser", and implements a monotonic strategy on multiple curves.
 * Finds crossings between two sets of paths, yielding a CrossingSet.  [0, a.size()) of the return correspond
 * to the sorted crossings of a with paths of b.  The rest of the return, [a.size(), a.size() + b.size()],
 * corresponds to the sorted crossings of b with paths of a.
 *
 * This function does two sweeps, one on the bounds of each path, and after that cull, one on the curves within.
 * This leads to a certain amount of code complexity, however, most of that is factored into the above functions
 */
CrossingSet MonoCrosser::crossings(std::vector<Path> const &a, std::vector<Path> const &b) {
    if(b.empty()) return CrossingSet(a.size(), Crossings());
    CrossingSet results(a.size() + b.size(), Crossings());
    if(a.empty()) return results;
    
    std::vector<std::vector<double> > splits_a = paths_mono_splits(a), splits_b = paths_mono_splits(b);
    std::vector<std::vector<Rect> > bounds_a = split_bounds(a, splits_a), bounds_b = split_bounds(b, splits_b);
    
    std::vector<Rect> bounds_a_union, bounds_b_union; 
    for(unsigned i = 0; i < bounds_a.size(); i++) bounds_a_union.push_back(union_list(bounds_a[i]));
    for(unsigned i = 0; i < bounds_b.size(); i++) bounds_b_union.push_back(union_list(bounds_b[i]));
    
    std::vector<std::vector<unsigned> > cull = sweep_bounds(bounds_a_union, bounds_b_union);
    Crossings n;
    for(unsigned i = 0; i < cull.size(); i++) {
        for(unsigned jx = 0; jx < cull[i].size(); jx++) {
            unsigned j = cull[i][jx];
            unsigned jc = j + a.size();
            Crossings res;
            
            //Sweep of the monotonic portions
            std::vector<std::vector<unsigned> > cull2 = sweep_bounds(bounds_a[i], bounds_b[j]);
            for(unsigned k = 0; k < cull2.size(); k++) {
                for(unsigned lx = 0; lx < cull2[k].size(); lx++) {
                    unsigned l = cull2[k][lx];
                    mono_pair(a[i], splits_a[i][k-1], splits_a[i][k],
                              b[j], splits_b[j][l-1], splits_b[j][l],
                              res, .1);
                }
            }
            
            for(unsigned k = 0; k < res.size(); k++) { res[k].a = i; res[k].b = jc; }
            
            merge_crossings(results[i], res, i);
            merge_crossings(results[i], res, jc);
        }
    }

    return results;
}

/* This function is similar codewise to the MonoCrosser, the main difference is that it deals with
 * only one set of paths and includes self intersection
CrossingSet crossings_among(std::vector<Path> const &p) {
    CrossingSet results(p.size(), Crossings());
    if(p.empty()) return results;
    
    std::vector<std::vector<double> > splits = paths_mono_splits(p);
    std::vector<std::vector<Rect> > prs = split_bounds(p, splits);
    std::vector<Rect> rs;
    for(unsigned i = 0; i < prs.size(); i++) rs.push_back(union_list(prs[i]));
    
    std::vector<std::vector<unsigned> > cull = sweep_bounds(rs);
    
    //we actually want to do the self-intersections, so add em in:
    for(unsigned i = 0; i < cull.size(); i++) cull[i].push_back(i);
    
    for(unsigned i = 0; i < cull.size(); i++) {
        for(unsigned jx = 0; jx < cull[i].size(); jx++) {
            unsigned j = cull[i][jx];
            Crossings res;
            
            //Sweep of the monotonic portions
            std::vector<std::vector<unsigned> > cull2 = sweep_bounds(prs[i], prs[j]);
            for(unsigned k = 0; k < cull2.size(); k++) {
                for(unsigned lx = 0; lx < cull2[k].size(); lx++) {
                    unsigned l = cull2[k][lx];
                    mono_pair(p[i], splits[i][k-1], splits[i][k],
                              p[j], splits[j][l-1], splits[j][l],
                              res, .1);
                }
            }
            
            for(unsigned k = 0; k < res.size(); k++) { res[k].a = i; res[k].b = j; }
            
            merge_crossings(results[i], res, i);
            merge_crossings(results[j], res, j);
        }
    }
    
    return results;
}
*/


Crossings curve_self_crossings(Curve const &a) {
    Crossings res;
    std::vector<double> spl;
    spl.push_back(0);
    append(spl, curve_mono_splits(a));
    spl.push_back(1);
    for(unsigned i = 1; i < spl.size(); i++)
        for(unsigned j = i+1; j < spl.size(); j++)
            pair_intersect(a, spl[i-1], spl[i], a, spl[j-1], spl[j], res);
    return res;
}

/*
void mono_curve_intersect(Curve const & A, double Al, double Ah, 
                          Curve const & B, double Bl, double Bh,
                          Crossings &ret,  unsigned depth=0) {
   // std::cout << depth << "(" << Al << ", " << Ah << ")\n";
    Point A0 = A.pointAt(Al), A1 = A.pointAt(Ah),
          B0 = B.pointAt(Bl), B1 = B.pointAt(Bh);
    //inline code that this implies? (without rect/interval construction)
    if(!Rect(A0, A1).intersects(Rect(B0, B1)) || A0 == A1 || B0 == B1) return;
     
    //Checks the general linearity of the function
    if((depth > 12) || (A.boundsLocal(Interval(Al, Ah), 1).maxExtent() < 0.1 
                    &&  B.boundsLocal(Interval(Bl, Bh), 1).maxExtent() < 0.1)) {
        double tA, tB, c;
        if(linear_intersect(A0, A1, B0, B1, tA, tB, c)) {
            tA = tA * (Ah - Al) + Al;
            tB = tB * (Bh - Bl) + Bl;
            if(depth % 2)
                ret.push_back(Crossing(tB, tA, c < 0));
            else
                ret.push_back(Crossing(tA, tB, c > 0));
            return;
        }
    }
    if(depth > 12) return;
    double mid = (Bl + Bh)/2;
    mono_curve_intersect(B, Bl, mid,
                         A, Al, Ah,
                         ret, depth+1);
    mono_curve_intersect(B, mid, Bh,
                         A, Al, Ah,
                         ret, depth+1);
}

std::vector<std::vector<double> > curves_mono_splits(Path const &p) {
    std::vector<std::vector<double> > ret;
    for(unsigned i = 0; i <= p.size(); i++) {
        std::vector<double> spl;
        spl.push_back(0);
        append(spl, curve_mono_splits(p[i]));
        spl.push_back(1);
        ret.push_back(spl);
    }
}

std::vector<std::vector<Rect> > curves_split_bounds(Path const &p, std::vector<std::vector<double> > splits) {
    std::vector<std::vector<Rect> > ret;
    for(unsigned i = 0; i < splits.size(); i++) {
        std::vector<Rect> res;
        for(unsigned j = 1; j < splits[i].size(); j++)
            res.push_back(Rect(p.pointAt(splits[i][j-1]+i), p.pointAt(splits[i][j]+i)));
        ret.push_back(res);
    }
    return ret;
}

Crossings path_self_crossings(Path const &p) {
    Crossings ret;
    std::vector<std::vector<unsigned> > cull = sweep_bounds(bounds(p));
    std::vector<std::vector<double> > spl = curves_mono_splits(p);
    std::vector<std::vector<Rect> > bnds = curves_split_bounds(p, spl);
    for(unsigned i = 0; i < cull.size(); i++) {
        Crossings res;
        for(unsigned k = 1; k < spl[i].size(); k++)
            for(unsigned l = k+1; l < spl[i].size(); l++)
                mono_curve_intersect(p[i], spl[i][k-1], spl[i][k], p[i], spl[i][l-1], spl[i][l], res);
        offset_crossings(res, i, i);
        append(ret, res);
        for(unsigned jx = 0; jx < cull[i].size(); jx++) {
            unsigned j = cull[i][jx];
            res.clear();
            
            std::vector<std::vector<unsigned> > cull2 = sweep_bounds(bnds[i], bnds[j]);
            for(unsigned k = 0; k < cull2.size(); k++) {
                for(unsigned lx = 0; lx < cull2[k].size(); lx++) {
                    unsigned l = cull2[k][lx];
                    mono_curve_intersect(p[i], spl[i][k-1], spl[i][k], p[j], spl[j][l-1], spl[j][l], res);
                }
            }
            
            //if(fabs(int(i)-j) == 1 || fabs(int(i)-j) == p.size()-1) {
                Crossings res2;
                for(unsigned k = 0; k < res.size(); k++) {
                    if(res[k].ta != 0 && res[k].ta != 1 && res[k].tb != 0 && res[k].tb != 1) {
                        res.push_back(res[k]);
                    }
                }
                res = res2;
            //}
            offset_crossings(res, i, j);
            append(ret, res);
        }
    }
    return ret;
}
*/

Crossings self_crossings(Path const &p) {
    Crossings ret;
    std::vector<std::vector<unsigned> > cull = sweep_bounds(bounds(p));
    for(unsigned i = 0; i < cull.size(); i++) {
        Crossings res = curve_self_crossings(p[i]);
        offset_crossings(res, i, i);
        append(ret, res);
        for(unsigned jx = 0; jx < cull[i].size(); jx++) {
            unsigned j = cull[i][jx];
            res.clear();
            pair_intersect(p[i], 0, 1, p[j], 0, 1, res);
            
            //if(fabs(int(i)-j) == 1 || fabs(int(i)-j) == p.size()-1) {
                Crossings res2;
                for(unsigned k = 0; k < res.size(); k++) {
                    if(res[k].ta != 0 && res[k].ta != 1 && res[k].tb != 0 && res[k].tb != 1) {
                        res2.push_back(res[k]);
                    }
                }
                res = res2;
            //}
            offset_crossings(res, i, j);
            append(ret, res);
        }
    }
    return ret;
}

void flip_crossings(Crossings &crs) {
    for(unsigned i = 0; i < crs.size(); i++)
        crs[i] = Crossing(crs[i].tb, crs[i].ta, crs[i].b, crs[i].a, !crs[i].dir);
}

CrossingSet crossings_among(std::vector<Path> const &p) {
    CrossingSet results(p.size(), Crossings());
    if(p.empty()) return results;
    
    SimpleCrosser cc;
    
    std::vector<std::vector<unsigned> > cull = sweep_bounds(bounds(p));
    for(unsigned i = 0; i < cull.size(); i++) {
        Crossings res = self_crossings(p[i]);
        for(unsigned k = 0; k < res.size(); k++) { res[k].a = res[k].b = i; }
        merge_crossings(results[i], res, i);
        flip_crossings(res);
        merge_crossings(results[i], res, i);
        for(unsigned jx = 0; jx < cull[i].size(); jx++) {
            unsigned j = cull[i][jx];
            
            Crossings res = cc.crossings(p[i], p[j]);
            for(unsigned k = 0; k < res.size(); k++) { res[k].a = i; res[k].b = j; }
            merge_crossings(results[i], res, i);
            merge_crossings(results[j], res, j);
        }
    }
    return results;
}

}