summaryrefslogtreecommitdiffstats
path: root/scribus/plugins/tools/2geomtools/lib2geom/convex-cover.cpp
blob: 5284e1ac7849bf390d9a77f59a1488709e793e50 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
/*
 * convex-cover.cpp
 *
 * Copyright 2006 Nathan Hurst <njh@mail.csse.monash.edu.au>
 * Copyright 2006 Michael G. Sloan <mgsloan@gmail.com>
 *
 * This library is free software; you can redistribute it and/or
 * modify it either under the terms of the GNU Lesser General Public
 * License version 2.1 as published by the Free Software Foundation
 * (the "LGPL") or, at your option, under the terms of the Mozilla
 * Public License Version 1.1 (the "MPL"). If you do not alter this
 * notice, a recipient may use your version of this file under either
 * the MPL or the LGPL.
 *
 * You should have received a copy of the LGPL along with this library
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 * You should have received a copy of the MPL along with this library
 * in the file COPYING-MPL-1.1
 *
 * The contents of this file are subject to the Mozilla Public License
 * Version 1.1 (the "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
 * the specific language governing rights and limitations.
 *
 */

#include "convex-cover.h"
#include <algorithm>
#include <map>
/** Todo:
    + modify graham scan to work top to bottom, rather than around angles
    + intersection
    + minimum distance between convex hulls
    + maximum distance between convex hulls
    + hausdorf metric?
    + check all degenerate cases carefully
    + check all algorithms meet all invariants
    + generalise rotating caliper algorithm (iterator/circulator?)
*/

using std::vector;
using std::map;
using std::pair;

namespace Geom{

/*** SignedTriangleArea
 * returns the area of the triangle defined by p0, p1, p2.  A clockwise triangle has positive area.
 */
double
SignedTriangleArea(Point p0, Point p1, Point p2) {
    return cross((p1 - p0), (p2 - p0));
}

class angle_cmp{
public:
    Point o;
    angle_cmp(Point o) : o(o) {}
    
    bool
    operator()(Point a, Point b) {
        Point da = a - o;
        Point db = b - o;
        
#if 1
        double aa = da[0];
        double ab = db[0];
        if((da[1] == 0) && (db[1] == 0))
            return da[0] < db[0];
        if(da[1] == 0)
            return true; // infinite tangent
        if(db[1] == 0)
            return false; // infinite tangent
        aa = da[0] / da[1];
        ab = db[0] / db[1];
        if(aa > ab)
            return true;
#else
        //assert((ata > atb) == (aa < ab));
        double aa = atan2(da);
        double ab = atan2(db);
        if(aa < ab)
            return true;
#endif
        if(aa == ab)
            return L2sq(da) < L2sq(db);
        return false;
    }
};

void
ConvexHull::find_pivot() {
    // Find pivot P;
    unsigned pivot = 0;
    for(unsigned i = 1; i < boundary.size(); i++)
        if(boundary[i] <= boundary[pivot])
            pivot = i;
    
    std::swap(boundary[0], boundary[pivot]);
}

void
ConvexHull::angle_sort() {
// sort points by angle (resolve ties in favor of point farther from P);
// we leave the first one in place as our pivot
    std::sort(boundary.begin()+1, boundary.end(), angle_cmp(boundary[0]));
}

void
ConvexHull::graham_scan() {
    unsigned stac = 2;
    for(unsigned i = 2; i < boundary.size(); i++) {
        double o = SignedTriangleArea(boundary[stac-2], 
                                      boundary[stac-1], 
                                      boundary[i]);
        if(o == 0) { // colinear - dangerous...
            stac--;
        } else if(o < 0) { // anticlockwise
        } else { // remove concavity
            while(o >= 0 && stac > 2) {
                stac--;
                o = SignedTriangleArea(boundary[stac-2], 
                                       boundary[stac-1], 
                                       boundary[i]);
            }
        }
        boundary[stac++] = boundary[i];
    }
    boundary.resize(stac);
}

void
ConvexHull::graham() {
    find_pivot();
    angle_sort();
    graham_scan();
}

//Mathematically incorrect mod, but more useful.
int mod(int i, int l) {
    return i >= 0 ? 
           i % l : (i % l) + l;
}
//OPT: usages can often be replaced by conditions

/*** ConvexHull::left
 * Tests if a point is left (outside) of a particular segment, n. */
bool
ConvexHull::is_left(Point p, int n) {
    return SignedTriangleArea((*this)[n], (*this)[n+1], p) > 0;
}

/*** ConvexHull::find_positive
 * May return any number n where the segment n -> n + 1 (possibly looped around) in the hull such
 * that the point is on the wrong side to be within the hull.  Returns -1 if it is within the hull.*/
int
ConvexHull::find_left(Point p) {
    int l = boundary.size(); //Who knows if C++ is smart enough to optimize this?
    for(int i = 0; i < l; i++) {
        if(is_left(p, i)) return i;
    }
    return -1;
}
//OPT: do a spread iteration - quasi-random with no repeats and full coverage. 

/*** ConvexHull::contains_point
 * In order to test whether a point is inside a convex hull we can travel once around the outside making
 * sure that each triangle made from an edge and the point has positive area. */
bool
ConvexHull::contains_point(Point p) {
    return find_left(p) == -1;
}

/*** ConvexHull::add_point
 * to add a point we need to find whether the new point extends the boundary, and if so, what it
 * obscures.  Tarjan?  Jarvis?*/
void
ConvexHull::merge(Point p) {
    std::vector<Point> out;

    int l = boundary.size();

    if(l < 2) {
        boundary.push_back(p);
        return;
    }

    bool pushed = false;

    bool pre = is_left(p, -1);
    for(int i = 0; i < l; i++) {
        bool cur = is_left(p, i);
        if(pre) {
            if(cur) {
                if(!pushed) {
                    out.push_back(p);
                    pushed = true;
                }
                continue;
            }
            else if(!pushed) {
                out.push_back(p);
                pushed = true;
            }
        }
        out.push_back(boundary[i]);
        pre = cur;
    }
    
    boundary = out;
}
//OPT: quickly find an obscured point and find the bounds by extending from there.  then push all points not within the bounds in order.
  //OPT: use binary searches to find the actual starts/ends, use known rights as boundaries.  may require cooperation of find_left algo.

/*** ConvexHull::is_clockwise
 * We require that successive pairs of edges always turn right.
 * proposed algorithm: walk successive edges and require triangle area is positive.
 */
bool
ConvexHull::is_clockwise() const {
    if(is_degenerate())
        return true;
    Point first = boundary[0];
    Point second = boundary[1];
    for(std::vector<Point>::const_iterator it(boundary.begin()+2), e(boundary.end());
        it != e;) {
        if(SignedTriangleArea(first, second, *it) > 0)
            return false;
        first = second;
        second = *it;
        ++it;
    }
    return true;
}

/*** ConvexHull::top_point_first
 * We require that the first point in the convex hull has the least y coord, and that off all such points on the hull, it has the least x coord.
 * proposed algorithm: track lexicographic minimum while walking the list.
 */
bool
ConvexHull::top_point_first() const {
    std::vector<Point>::const_iterator pivot = boundary.begin();
    for(std::vector<Point>::const_iterator it(boundary.begin()+1), 
            e(boundary.end());
        it != e; it++) {
        if((*it)[1] < (*pivot)[1])
            pivot = it;
        else if(((*it)[1] == (*pivot)[1]) && 
                ((*it)[0] < (*pivot)[0]))
            pivot = it;
    }
    return pivot == boundary.begin();
}
//OPT: since the Y values are orderly there should be something like a binary search to do this.

/*** ConvexHull::no_colinear_points
 * We require that no three vertices are colinear.
proposed algorithm:  We must be very careful about rounding here.
*/
bool
ConvexHull::no_colinear_points() const {
	return true;
}

bool
ConvexHull::meets_invariants() const {
    return is_clockwise() && top_point_first() && no_colinear_points();
}

/*** ConvexHull::is_degenerate
 * We allow three degenerate cases: empty, 1 point and 2 points.  In many cases these should be handled explicitly.
 */
bool
ConvexHull::is_degenerate() const {
    return boundary.size() < 3;
}


/* Here we really need a rotating calipers implementation.  This implementation is slow and incorrect.
   This incorrectness is a problem because it throws off the algorithms.  Perhaps I will come up with
   something better tomorrow.  The incorrectness is in the order of the bridges - they must be in the
   order of traversal around.  Since the a->b and b->a bridges are seperated, they don't need to be merge
   order, just the order of the traversal of the host hull.  Currently some situations make a n->0 bridge
   first.*/
pair< map<int, int>, map<int, int> >
bridges(ConvexHull a, ConvexHull b) {
    map<int, int> abridges;
    map<int, int> bbridges;

    for(unsigned ia = 0; ia < a.boundary.size(); ia++) {
        for(unsigned ib = 0; ib < b.boundary.size(); ib++) {
            Point d = b[ib] - a[ia];
            Geom::Coord e = cross(d, a[ia - 1] - a[ia]), f = cross(d, a[ia + 1] - a[ia]);
            Geom::Coord g = cross(d, b[ib - 1] - a[ia]), h = cross(d, b[ib + 1] - a[ia]);
            if     (e > 0 && f > 0 && g > 0 && h > 0) abridges[ia] = ib;
            else if(e < 0 && f < 0 && g < 0 && h < 0) bbridges[ib] = ia;
        }
    }
       
    return make_pair(abridges, bbridges);
}

std::vector<Point> bridge_points(ConvexHull a, ConvexHull b) {
    vector<Point> ret;
    pair< map<int, int>, map<int, int> > indices = bridges(a, b);
    for(map<int, int>::iterator it = indices.first.begin(); it != indices.first.end(); it++) {
      ret.push_back(a[it->first]);
      ret.push_back(b[it->second]);
    }
    for(map<int, int>::iterator it = indices.second.begin(); it != indices.second.end(); it++) {
      ret.push_back(b[it->first]);
      ret.push_back(a[it->second]);
    }
    return ret;
}

unsigned find_bottom_right(ConvexHull const &a) {
    unsigned it = 1;
    while(it < a.boundary.size() && 
          a.boundary[it][Y] > a.boundary[it-1][Y])
        it++;
    return it-1;
}

/*** ConvexHull sweepline_intersection(ConvexHull a, ConvexHull b);
 * find the intersection between two convex hulls.  The intersection is also a convex hull.
 * (Proof: take any two points both in a and in b.  Any point between them is in a by convexity,
 * and in b by convexity, thus in both.  Need to prove still finite bounds.)
 * This algorithm works by sweeping a line down both convex hulls in parallel, working out the left and right edges of the new hull.
 */
ConvexHull sweepline_intersection(ConvexHull const &a, ConvexHull const &b) {
    ConvexHull ret;
    
    unsigned al = 0;
    unsigned bl = 0;
    
    while(al+1 < a.boundary.size() &&
          (a.boundary[al+1][Y] > b.boundary[bl][Y])) {
        al++;
    }
    while(bl+1 < b.boundary.size() &&
          (b.boundary[bl+1][Y] > a.boundary[al][Y])) {
        bl++;
    }
    return ret;
    // al and bl now point to the top of the first pair of edges that overlap in y value
//    double sweep_y = std::min(a.boundary[al][Y],
//                              b.boundary[bl][Y]);
}

/*** ConvexHull intersection(ConvexHull a, ConvexHull b);
 * find the intersection between two convex hulls.  The intersection is also a convex hull.
 * (Proof: take any two points both in a and in b.  Any point between them is in a by convexity,
 * and in b by convexity, thus in both.  Need to prove still finite bounds.)
 */
ConvexHull intersection(ConvexHull a, ConvexHull b) {
    ConvexHull ret;
//    int ai = 0, bi = 0;
//    unsigned aj = a.boundary.size() - 1;
//    unsigned bj = b.boundary.size() - 1;
    
    /*while (true) {
        if(a[ai]
    }*/
    return ret;
}

/*** ConvexHull merge(ConvexHull a, ConvexHull b);
 * find the smallest convex hull that surrounds a and b.
 */
ConvexHull merge(ConvexHull a, ConvexHull b) {
    ConvexHull ret;

    pair< map<int, int>, map<int, int> > bpair = bridges(a, b);
    map<int, int> ab = bpair.first;
    map<int, int> bb = bpair.second;

    ab[-1] = 0;
    bb[-1] = 0;

    int i = -1;

    if(a.boundary[0][1] > b.boundary[0][1]) goto start_b;
    while(true) {
        for(; ab.count(i) == 0; i++) {
            ret.boundary.push_back(a[i]);
            if(i >= static_cast<int>(a.boundary.size())) return ret;
        }
        if(ab[i] == 0 && i != -1) break;
        i = ab[i];
        start_b:
        
        for(; bb.count(i) == 0; i++) {
            ret.boundary.push_back(b[i]);
            if(i >= static_cast<int>(b.boundary.size())) return ret;
        }
        if(bb[i] == 0 && i != -1) break;
        i = bb[i];
    }
    return ret;
}

ConvexHull graham_merge(ConvexHull a, ConvexHull b) {
    ConvexHull result;
    
    // we can avoid the find pivot step because of top_point_first
    if(b.boundary[0] <= a.boundary[0])
        std::swap(a, b);
    
    result.boundary = a.boundary;
    result.boundary.insert(result.boundary.end(), 
                           b.boundary.begin(), b.boundary.end());
    
/** if we modified graham scan to work top to bottom as proposed in lect754.pdf we could replace the
 angle sort with a simple merge sort type algorithm. furthermore, we could do the graham scan
 online, avoiding a bunch of memory copies.  That would probably be linear. -- njh*/
    result.angle_sort();
    result.graham_scan();
    
    return result;
}
//TODO: reinstate
/*ConvexCover::ConvexCover(Path const &sp) : path(&sp) {
    cc.reserve(sp.size());
    for(Geom::Path::const_iterator it(sp.begin()), end(sp.end()); it != end; ++it) {
        cc.push_back(ConvexHull((*it).begin(), (*it).end()));
    }
}*/


};

/*
  Local Variables:
  mode:c++
  c-file-style:"stroustrup"
  c-file-offsets:((innamespace . 0)(substatement-open . 0))
  indent-tabs-mode:nil
  c-brace-offset:0
  fill-column:99
  End:
  vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4 :
*/