summaryrefslogtreecommitdiffstats
path: root/scribus/plugins/tools/2geomtools/lib2geom/sbasis.h
diff options
context:
space:
mode:
authorcraig <craig@11d20701-8431-0410-a711-e3c959e3b870>2012-01-01 11:40:09 +0000
committercraig <craig@11d20701-8431-0410-a711-e3c959e3b870>2012-01-01 11:40:09 +0000
commit7ed83b6c6666eb8b6b104c211ae7e52907350372 (patch)
tree4430b556abac0ad660a0aacf1887d77f85d8be02 /scribus/plugins/tools/2geomtools/lib2geom/sbasis.h
downloadscribus-7ed83b6c6666eb8b6b104c211ae7e52907350372.tar.gz
scribus-7ed83b6c6666eb8b6b104c211ae7e52907350372.tar.xz
scribus-7ed83b6c6666eb8b6b104c211ae7e52907350372.zip
Branch 1.3.5 tree to 1.4.x tree, goodbye 1.3.x
git-svn-id: svn://scribus.net/branches/Version14x/Scribus@17163 11d20701-8431-0410-a711-e3c959e3b870
Diffstat (limited to 'scribus/plugins/tools/2geomtools/lib2geom/sbasis.h')
-rw-r--r--scribus/plugins/tools/2geomtools/lib2geom/sbasis.h331
1 files changed, 331 insertions, 0 deletions
diff --git a/scribus/plugins/tools/2geomtools/lib2geom/sbasis.h b/scribus/plugins/tools/2geomtools/lib2geom/sbasis.h
new file mode 100644
index 0000000..3585456
--- /dev/null
+++ b/scribus/plugins/tools/2geomtools/lib2geom/sbasis.h
@@ -0,0 +1,331 @@
+/*
+ * sbasis.h - S-power basis function class
+ *
+ * Authors:
+ * Nathan Hurst <njh@mail.csse.monash.edu.au>
+ * Michael Sloan <mgsloan@gmail.com>
+ *
+ * Copyright (C) 2006-2007 authors
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it either under the terms of the GNU Lesser General Public
+ * License version 2.1 as published by the Free Software Foundation
+ * (the "LGPL") or, at your option, under the terms of the Mozilla
+ * Public License Version 1.1 (the "MPL"). If you do not alter this
+ * notice, a recipient may use your version of this file under either
+ * the MPL or the LGPL.
+ *
+ * You should have received a copy of the LGPL along with this library
+ * in the file COPYING-LGPL-2.1; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ * You should have received a copy of the MPL along with this library
+ * in the file COPYING-MPL-1.1
+ *
+ * The contents of this file are subject to the Mozilla Public License
+ * Version 1.1 (the "License"); you may not use this file except in
+ * compliance with the License. You may obtain a copy of the License at
+ * http://www.mozilla.org/MPL/
+ *
+ * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
+ * OF ANY KIND, either express or implied. See the LGPL or the MPL for
+ * the specific language governing rights and limitations.
+ */
+
+#ifndef SEEN_SBASIS_H
+#define SEEN_SBASIS_H
+#include <vector>
+#include <cassert>
+#include <iostream>
+
+#include "linear.h"
+#include "interval.h"
+#include "utils.h"
+#include "exception.h"
+
+namespace Geom {
+
+/*** An empty SBasis is identically 0. */
+class SBasis : public std::vector<Linear>{
+public:
+ SBasis() {}
+ explicit SBasis(double a) {
+ push_back(Linear(a,a));
+ }
+ SBasis(SBasis const & a) :
+ std::vector<Linear>(a)
+ {}
+ SBasis(Linear const & bo) {
+ push_back(bo);
+ }
+
+ //IMPL: FragmentConcept
+ typedef double output_type;
+ inline bool isZero() const {
+ if(empty()) return true;
+ for(unsigned i = 0; i < size(); i++) {
+ if(!(*this)[i].isZero()) return false;
+ }
+ return true;
+ }
+ inline bool isConstant() const {
+ if (empty()) return true;
+ for (unsigned i = 0; i < size(); i++) {
+ if(!(*this)[i].isConstant()) return false;
+ }
+ return true;
+ }
+
+ bool isFinite() const;
+ inline double at0() const {
+ if(empty()) return 0; else return (*this)[0][0];
+ }
+ inline double at1() const{
+ if(empty()) return 0; else return (*this)[0][1];
+ }
+
+ double valueAt(double t) const {
+ double s = t*(1-t);
+ double p0 = 0, p1 = 0;
+ double sk = 1;
+//TODO: rewrite as horner
+ for(unsigned k = 0; k < size(); k++) {
+ p0 += sk*(*this)[k][0];
+ p1 += sk*(*this)[k][1];
+ sk *= s;
+ }
+ return (1-t)*p0 + t*p1;
+ }
+ double valueAndDerivative(double t, double &der) const {
+ double s = t*(1-t);
+ double p0 = 0, p1 = 0;
+ double sk = 1;
+//TODO: rewrite as horner
+ for(unsigned k = 0; k < size(); k++) {
+ p0 += sk*(*this)[k][0];
+ p1 += sk*(*this)[k][1];
+ sk *= s;
+ }
+ // p0 and p1 at this point form a linear approximation at t
+ der = p1 - p0;
+ return (1-t)*p0 + t*p1;
+ }
+ double operator()(double t) const {
+ return valueAt(t);
+ }
+
+ std::vector<double> valueAndDerivatives(double /*t*/, unsigned /*n*/) const {
+ //TODO
+ throwNotImplemented(0);
+ }
+
+ SBasis toSBasis() const { return SBasis(*this); }
+
+ double tailError(unsigned tail) const;
+
+// compute f(g)
+ SBasis operator()(SBasis const & g) const;
+
+ Linear operator[](unsigned i) const {
+ assert(i < size());
+ return std::vector<Linear>::operator[](i);
+ }
+
+//MUTATOR PRISON
+ Linear& operator[](unsigned i) { return this->at(i); }
+
+ //remove extra zeros
+ void normalize() {
+ while(!empty() && 0 == back()[0] && 0 == back()[1])
+ pop_back();
+ }
+ void truncate(unsigned k) { if(k < size()) resize(k); }
+};
+
+//TODO: figure out how to stick this in linear, while not adding an sbasis dep
+inline SBasis Linear::toSBasis() const { return SBasis(*this); }
+
+//implemented in sbasis-roots.cpp
+Interval bounds_exact(SBasis const &a);
+Interval bounds_fast(SBasis const &a, int order = 0);
+Interval bounds_local(SBasis const &a, const Interval &t, int order = 0);
+
+inline SBasis reverse(SBasis const &a) {
+ SBasis result;
+ result.reserve(a.size());
+ for(unsigned k = 0; k < a.size(); k++)
+ result.push_back(reverse(a[k]));
+ return result;
+}
+
+//IMPL: ScalableConcept
+inline SBasis operator-(const SBasis& p) {
+ if(p.isZero()) return SBasis();
+ SBasis result;
+ result.reserve(p.size());
+
+ for(unsigned i = 0; i < p.size(); i++) {
+ result.push_back(-p[i]);
+ }
+ return result;
+}
+SBasis operator*(SBasis const &a, double k);
+inline SBasis operator*(double k, SBasis const &a) { return a*k; }
+inline SBasis operator/(SBasis const &a, double k) { return a*(1./k); }
+SBasis& operator*=(SBasis& a, double b);
+inline SBasis& operator/=(SBasis& a, double b) { return (a*=(1./b)); }
+
+//IMPL: AddableConcept
+SBasis operator+(const SBasis& a, const SBasis& b);
+SBasis operator-(const SBasis& a, const SBasis& b);
+SBasis& operator+=(SBasis& a, const SBasis& b);
+SBasis& operator-=(SBasis& a, const SBasis& b);
+
+//TODO: remove?
+inline SBasis operator+(const SBasis & a, Linear const & b) {
+ if(b.isZero()) return a;
+ if(a.isZero()) return b;
+ SBasis result(a);
+ result[0] += b;
+ return result;
+}
+inline SBasis operator-(const SBasis & a, Linear const & b) {
+ if(b.isZero()) return a;
+ SBasis result(a);
+ result[0] -= b;
+ return result;
+}
+inline SBasis& operator+=(SBasis& a, const Linear& b) {
+ if(a.isZero())
+ a.push_back(b);
+ else
+ a[0] += b;
+ return a;
+}
+inline SBasis& operator-=(SBasis& a, const Linear& b) {
+ if(a.isZero())
+ a.push_back(-b);
+ else
+ a[0] -= b;
+ return a;
+}
+
+//IMPL: OffsetableConcept
+inline SBasis operator+(const SBasis & a, double b) {
+ if(a.isZero()) return Linear(b, b);
+ SBasis result(a);
+ result[0] += b;
+ return result;
+}
+inline SBasis operator-(const SBasis & a, double b) {
+ if(a.isZero()) return Linear(-b, -b);
+ SBasis result(a);
+ result[0] -= b;
+ return result;
+}
+inline SBasis& operator+=(SBasis& a, double b) {
+ if(a.isZero())
+ a.push_back(Linear(b,b));
+ else
+ a[0] += b;
+ return a;
+}
+inline SBasis& operator-=(SBasis& a, double b) {
+ if(a.isZero())
+ a.push_back(Linear(-b,-b));
+ else
+ a[0] -= b;
+ return a;
+}
+
+SBasis shift(SBasis const &a, int sh);
+SBasis shift(Linear const &a, int sh);
+
+inline SBasis truncate(SBasis const &a, unsigned terms) {
+ SBasis c;
+ c.insert(c.begin(), a.begin(), a.begin() + std::min(terms, (unsigned)a.size()));
+ return c;
+}
+
+SBasis multiply(SBasis const &a, SBasis const &b);
+
+SBasis integral(SBasis const &c);
+SBasis derivative(SBasis const &a);
+
+SBasis sqrt(SBasis const &a, int k);
+
+// return a kth order approx to 1/a)
+SBasis reciprocal(Linear const &a, int k);
+SBasis divide(SBasis const &a, SBasis const &b, int k);
+
+inline SBasis operator*(SBasis const & a, SBasis const & b) {
+ return multiply(a, b);
+}
+
+inline SBasis& operator*=(SBasis& a, SBasis const & b) {
+ a = multiply(a, b);
+ return a;
+}
+
+//valuation: degree of the first non zero coefficient.
+inline unsigned
+valuation(SBasis const &a, double tol=0){
+ unsigned val=0;
+ while( val<a.size() &&
+ fabs(a[val][0])<tol &&
+ fabs(a[val][1])<tol )
+ val++;
+ return val;
+}
+
+// a(b(t))
+SBasis compose(SBasis const &a, SBasis const &b);
+SBasis compose(SBasis const &a, SBasis const &b, unsigned k);
+SBasis inverse(SBasis a, int k);
+//compose_inverse(f,g)=compose(f,inverse(g)), but is numerically more stable in some good cases...
+//TODO: requires g(0)=0 & g(1)=1 atm. generalization should be obvious.
+SBasis compose_inverse(SBasis const &f, SBasis const &g, unsigned order=2, double tol=1e-3);
+
+inline SBasis portion(const SBasis &t, double from, double to) { return compose(t, Linear(from, to)); }
+
+// compute f(g)
+inline SBasis
+SBasis::operator()(SBasis const & g) const {
+ return compose(*this, g);
+}
+
+inline std::ostream &operator<< (std::ostream &out_file, const Linear &bo) {
+ out_file << "{" << bo[0] << ", " << bo[1] << "}";
+ return out_file;
+}
+
+inline std::ostream &operator<< (std::ostream &out_file, const SBasis & p) {
+ for(unsigned i = 0; i < p.size(); i++) {
+ out_file << p[i] << "s^" << i << " + ";
+ }
+ return out_file;
+}
+
+SBasis sin(Linear bo, int k);
+SBasis cos(Linear bo, int k);
+
+std::vector<double> roots(SBasis const & s);
+std::vector<std::vector<double> > multi_roots(SBasis const &f,
+ std::vector<double> const &levels,
+ double htol=1e-7,
+ double vtol=1e-7,
+ double a=0,
+ double b=1);
+
+}
+
+/*
+ Local Variables:
+ mode:c++
+ c-file-style:"stroustrup"
+ c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
+ indent-tabs-mode:nil
+ fill-column:99
+ End:
+*/
+// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:encoding=utf-8:textwidth=99 :
+#endif