summaryrefslogtreecommitdiffstats
path: root/scribus/plugins/tools/2geomtools/lib2geom/path-intersection.cpp
diff options
context:
space:
mode:
authorcraig <craig@11d20701-8431-0410-a711-e3c959e3b870>2012-01-01 11:40:09 +0000
committercraig <craig@11d20701-8431-0410-a711-e3c959e3b870>2012-01-01 11:40:09 +0000
commit7ed83b6c6666eb8b6b104c211ae7e52907350372 (patch)
tree4430b556abac0ad660a0aacf1887d77f85d8be02 /scribus/plugins/tools/2geomtools/lib2geom/path-intersection.cpp
downloadscribus-7ed83b6c6666eb8b6b104c211ae7e52907350372.tar.gz
scribus-7ed83b6c6666eb8b6b104c211ae7e52907350372.tar.xz
scribus-7ed83b6c6666eb8b6b104c211ae7e52907350372.zip
Branch 1.3.5 tree to 1.4.x tree, goodbye 1.3.x
git-svn-id: svn://scribus.net/branches/Version14x/Scribus@17163 11d20701-8431-0410-a711-e3c959e3b870
Diffstat (limited to 'scribus/plugins/tools/2geomtools/lib2geom/path-intersection.cpp')
-rw-r--r--scribus/plugins/tools/2geomtools/lib2geom/path-intersection.cpp597
1 files changed, 597 insertions, 0 deletions
diff --git a/scribus/plugins/tools/2geomtools/lib2geom/path-intersection.cpp b/scribus/plugins/tools/2geomtools/lib2geom/path-intersection.cpp
new file mode 100644
index 0000000..44d7229
--- /dev/null
+++ b/scribus/plugins/tools/2geomtools/lib2geom/path-intersection.cpp
@@ -0,0 +1,597 @@
+#include "path-intersection.h"
+
+#include "ord.h"
+
+//for path_direction:
+#include "sbasis-geometric.h"
+
+namespace Geom {
+
+/* This function computes the winding of the path, given a reference point.
+ * Positive values correspond to counter-clockwise in the mathematical coordinate system,
+ * and clockwise in screen coordinates. This particular implementation casts a ray in
+ * the positive x direction. It iterates the path, checking for intersection with the
+ * bounding boxes. If an intersection is found, the initial/final Y value of the curve is
+ * used to derive a delta on the winding value. If the point is within the bounding box,
+ * the curve specific winding function is called.
+ */
+int winding(Path const &path, Point p) {
+ //start on a segment which is not a horizontal line with y = p[y]
+ Path::const_iterator start;
+ for(Path::const_iterator iter = path.begin(); ; ++iter) {
+ if(iter == path.end_closed()) { return 0; }
+ if(iter->initialPoint()[Y]!=p[Y]) { start = iter; break; }
+ if(iter->finalPoint()[Y]!=p[Y]) { start = iter; break; }
+ if(iter->boundsFast().height()!=0.){ start = iter; break; }
+ }
+ int wind = 0;
+ unsigned cnt = 0;
+ bool starting = true;
+ for (Path::const_iterator iter = start; iter != start || starting
+ ; ++iter, iter = (iter == path.end_closed()) ? path.begin() : iter )
+ {
+ cnt++;
+ if(cnt > path.size()) return wind; //some bug makes this required
+ starting = false;
+ Rect bounds = iter->boundsFast();
+ Coord x = p[X], y = p[Y];
+
+ if(x > bounds.right() || !bounds[Y].contains(y)) continue; //ray doesn't intersect box
+
+ Point final = iter->finalPoint();
+ Point initial = iter->initialPoint();
+ Cmp final_to_ray = cmp(final[Y], y);
+ Cmp initial_to_ray = cmp(initial[Y], y);
+
+ // if y is included, these will have opposite values, giving order.
+ Cmp c = cmp(final_to_ray, initial_to_ray);
+ if(x < bounds.left()) {
+ // ray goes through bbox
+ // winding delta determined by position of endpoints
+ if(final_to_ray != EQUAL_TO) {
+ wind += int(c); // GT = counter-clockwise = 1; LT = clockwise = -1; EQ = not-included = 0
+ //std::cout << int(c) << " ";
+ goto cont;
+ }
+ } else {
+ //inside bbox, use custom per-curve winding thingie
+ int delt = iter->winding(p);
+ wind += delt;
+ //std::cout << "n" << delt << " ";
+ }
+ //Handling the special case of an endpoint on the ray:
+ if(final[Y] == y) {
+ //Traverse segments until it breaks away from y
+ //99.9% of the time this will happen the first go
+ Path::const_iterator next = iter;
+ next++;
+ for(; ; next++) {
+ if(next == path.end_closed()) next = path.begin();
+ Rect bnds = next->boundsFast();
+ //TODO: X considerations
+ if(bnds.height() > 0) {
+ //It has diverged
+ if(bnds.contains(p)) {
+ const double fudge = 0.01;
+ if(cmp(y, next->valueAt(fudge, Y)) == initial_to_ray) {
+ wind += int(c);
+ // std::cout << "!!!!!" << int(c) << " ";
+ }
+ iter = next; // No increment, as the rest of the thing hasn't been counted.
+ } else {
+ Coord ny = next->initialPoint()[Y];
+ if(cmp(y, ny) == initial_to_ray) {
+ //Is a continuation through the ray, so counts windingwise
+ wind += int(c);
+ // std::cout << "!!!!!" << int(c) << " ";
+ }
+ iter = ++next;
+ }
+ goto cont;
+ }
+ if(next==start) return wind;
+ }
+ //Looks like it looped, which means everything's flat
+ return 0;
+ }
+
+ cont:(void)0;
+ }
+ return wind;
+}
+
+/* This function should only be applied to simple paths (regions), as otherwise
+ * a boolean winding direction is undefined. It returns true for fill, false for
+ * hole. Defaults to using the sign of area when it reaches funny cases.
+ */
+bool path_direction(Path const &p) {
+ if(p.empty()) return false;
+ //could probably be more efficient, but this is a quick job
+ double y = p.initialPoint()[Y];
+ double x = p.initialPoint()[X];
+ Cmp res = cmp(p[0].finalPoint()[Y], y);
+ goto doh;
+ for(unsigned i = 1; i <= p.size(); i++) {
+ Cmp final_to_ray = cmp(p[i].finalPoint()[Y], y);
+ Cmp initial_to_ray = cmp(p[i].initialPoint()[Y], y);
+ // if y is included, these will have opposite values, giving order.
+ Cmp c = cmp(final_to_ray, initial_to_ray);
+ if(c != EQUAL_TO) {
+ std::vector<double> rs = p[i].roots(y, Y);
+ for(unsigned j = 0; j < rs.size(); j++) {
+ double nx = p[i].valueAt(rs[j], X);
+ if(nx > x) {
+ x = nx;
+ res = c;
+ }
+ }
+ } else if(final_to_ray == EQUAL_TO) goto doh;
+ }
+ return res < 0;
+
+ doh:
+ //Otherwise fallback on area
+
+ Piecewise<D2<SBasis> > pw = p.toPwSb();
+ double area;
+ Point centre;
+ Geom::centroid(pw, centre, area);
+ return area > 0;
+}
+
+//pair intersect code based on njh's pair-intersect
+
+// A little sugar for appending a list to another
+template<typename T>
+void append(T &a, T const &b) {
+ a.insert(a.end(), b.begin(), b.end());
+}
+
+/* Finds the intersection between the lines defined by A0 & A1, and B0 & B1.
+ * Returns through the last 3 parameters, returning the t-values on the lines
+ * and the cross-product of the deltas (a useful byproduct). The return value
+ * indicates if the time values are within their proper range on the line segments.
+ */
+bool
+linear_intersect(Point A0, Point A1, Point B0, Point B1,
+ double &tA, double &tB, double &det) {
+ // kramers rule as cross products
+ Point Ad = A1 - A0,
+ Bd = B1 - B0,
+ d = B0 - A0;
+ det = cross(Ad, Bd);
+ if( 1.0 + det == 1.0 )
+ return false;
+ else
+ {
+ double detinv = 1.0 / det;
+ tA = cross(d, Bd) * detinv;
+ tB = cross(d, Ad) * detinv;
+ return tA >= 0. && tA <= 1. && tB >= 0. && tB <= 1.;
+ }
+}
+
+/* This uses the local bounds functions of curves to generically intersect two.
+ * It passes in the curves, time intervals, and keeps track of depth, while
+ * returning the results through the Crossings parameter.
+ */
+void pair_intersect(Curve const & A, double Al, double Ah,
+ Curve const & B, double Bl, double Bh,
+ Crossings &ret, unsigned depth=0) {
+ // std::cout << depth << "(" << Al << ", " << Ah << ")\n";
+ Rect Ar = A.boundsLocal(Interval(Al, Ah));
+ if(Ar.isEmpty()) return;
+
+ Rect Br = B.boundsLocal(Interval(Bl, Bh));
+ if(Br.isEmpty()) return;
+
+ if(!Ar.intersects(Br)) return;
+
+ //Checks the general linearity of the function
+ if((depth > 12)) { // || (A.boundsLocal(Interval(Al, Ah), 1).maxExtent() < 0.1
+ //&& B.boundsLocal(Interval(Bl, Bh), 1).maxExtent() < 0.1)) {
+ double tA, tB, c;
+ if(linear_intersect(A.pointAt(Al), A.pointAt(Ah),
+ B.pointAt(Bl), B.pointAt(Bh),
+ tA, tB, c)) {
+ tA = tA * (Ah - Al) + Al;
+ tB = tB * (Bh - Bl) + Bl;
+ if(depth % 2)
+ ret.push_back(Crossing(tB, tA, c < 0));
+ else
+ ret.push_back(Crossing(tA, tB, c > 0));
+ return;
+ }
+ }
+ if(depth > 12) return;
+ double mid = (Bl + Bh)/2;
+ pair_intersect(B, Bl, mid,
+ A, Al, Ah,
+ ret, depth+1);
+ pair_intersect(B, mid, Bh,
+ A, Al, Ah,
+ ret, depth+1);
+}
+
+// A simple wrapper around pair_intersect
+Crossings SimpleCrosser::crossings(Curve const &a, Curve const &b) {
+ Crossings ret;
+ pair_intersect(a, 0, 1, b, 0, 1, ret);
+ return ret;
+}
+
+/* Takes two paths and time ranges on them, with the invariant that the
+ * paths are monotonic on the range. Splits A when the linear intersection
+ * doesn't exist or is inaccurate. Uses the fact that it is monotonic to
+ * do very fast local bounds.
+ */
+void mono_pair(Path const &A, double Al, double Ah,
+ Path const &B, double Bl, double Bh,
+ Crossings &ret, double tol, unsigned depth = 0) {
+ if( Al >= Ah || Bl >= Bh) return;
+ // std::cout << " " << depth << "[" << Al << ", " << Ah << "]" << "[" << Bl << ", " << Bh << "]";
+
+ Point A0 = A.pointAt(Al), A1 = A.pointAt(Ah),
+ B0 = B.pointAt(Bl), B1 = B.pointAt(Bh);
+ //inline code that this implies? (without rect/interval construction)
+ if(!Rect(A0, A1).intersects(Rect(B0, B1)) || A0 == A1 || B0 == B1) return;
+
+ //Checks the general linearity of the function
+ //if((depth > 12) || (A.boundsLocal(Interval(Al, Ah), 1).maxExtent() < 0.1
+ // && B.boundsLocal(Interval(Bl, Bh), 1).maxExtent() < 0.1)) {
+ double tA, tB, c;
+ if(linear_intersect(A0, A1, B0, B1,
+ tA, tB, c)) {
+ tA = tA * (Ah - Al) + Al;
+ tB = tB * (Bh - Bl) + Bl;
+ if(depth % 2)
+ ret.push_back(Crossing(tB, tA, c < 0));
+ else
+ ret.push_back(Crossing(tA, tB, c > 0));
+ return;
+ }
+ //}
+ if(depth > 12) return;
+ double mid = (Bl + Bh)/2;
+ mono_pair(B, Bl, mid,
+ A, Al, Ah,
+ ret, depth+1);
+ mono_pair(B, mid, Bh,
+ A, Al, Ah,
+ ret, depth+1);
+}
+
+// This returns the times when the x or y derivative is 0 in the curve.
+std::vector<double> curve_mono_splits(Curve const &d) {
+ std::vector<double> rs = d.roots(0, X);
+ append(rs, d.roots(0, Y));
+ std::sort(rs.begin(), rs.end());
+ return rs;
+}
+
+// Convenience function to add a value to each entry in a vector of doubles.
+std::vector<double> offset_doubles(std::vector<double> const &x, double offs) {
+ std::vector<double> ret;
+ for(unsigned i = 0; i < x.size(); i++) {
+ ret.push_back(x[i] + offs);
+ }
+ return ret;
+}
+
+/* Finds all the monotonic splits for a path. Only includes the split between
+ * curves if they switch derivative directions at that point.
+ */
+std::vector<double> path_mono_splits(Path const &p) {
+ std::vector<double> ret;
+ if(p.empty()) return ret;
+ ret.push_back(0);
+
+ Curve* deriv = p[0].derivative();
+ append(ret, curve_mono_splits(*deriv));
+ delete deriv;
+
+ int pdx=2, pdy=2; //Previous derivative direction
+ for(unsigned i = 0; i <= p.size(); i++) {
+ deriv = p[i].derivative();
+ std::vector<double> spl = offset_doubles(curve_mono_splits(*deriv), i);
+ delete deriv;
+ int dx = p[i].initialPoint()[X] > (spl.empty()? p[i].finalPoint()[X] :
+ p.valueAt(spl.front(), X));
+ int dy = p[i].initialPoint()[Y] > (spl.empty()? p[i].finalPoint()[Y] :
+ p.valueAt(spl.front(), Y));
+ //The direction changed, include the split time
+ if(dx != pdx || dy != pdy) {
+ ret.push_back(i);
+ pdx = dx; pdy = dy;
+ }
+ append(ret, spl);
+ }
+ return ret;
+}
+
+/* Applies path_mono_splits to multiple paths, and returns the results such that
+ * time-set i corresponds to Path i.
+ */
+std::vector<std::vector<double> > paths_mono_splits(std::vector<Path> const &ps) {
+ std::vector<std::vector<double> > ret;
+ for(unsigned i = 0; i < ps.size(); i++)
+ ret.push_back(path_mono_splits(ps[i]));
+ return ret;
+}
+
+/* Processes the bounds for a list of paths and a list of splits on them, yielding a list of rects for each.
+ * Each entry i corresponds to path i of the input. The number of rects in each entry is guaranteed to be the
+ * number of splits for that path, subtracted by one.
+ */
+std::vector<std::vector<Rect> > split_bounds(std::vector<Path> const &p, std::vector<std::vector<double> > splits) {
+ std::vector<std::vector<Rect> > ret;
+ for(unsigned i = 0; i < p.size(); i++) {
+ std::vector<Rect> res;
+ for(unsigned j = 1; j < splits[i].size(); j++)
+ res.push_back(Rect(p[i].pointAt(splits[i][j-1]), p[i].pointAt(splits[i][j])));
+ ret.push_back(res);
+ }
+ return ret;
+}
+
+/* This is the main routine of "MonoCrosser", and implements a monotonic strategy on multiple curves.
+ * Finds crossings between two sets of paths, yielding a CrossingSet. [0, a.size()) of the return correspond
+ * to the sorted crossings of a with paths of b. The rest of the return, [a.size(), a.size() + b.size()],
+ * corresponds to the sorted crossings of b with paths of a.
+ *
+ * This function does two sweeps, one on the bounds of each path, and after that cull, one on the curves within.
+ * This leads to a certain amount of code complexity, however, most of that is factored into the above functions
+ */
+CrossingSet MonoCrosser::crossings(std::vector<Path> const &a, std::vector<Path> const &b) {
+ if(b.empty()) return CrossingSet(a.size(), Crossings());
+ CrossingSet results(a.size() + b.size(), Crossings());
+ if(a.empty()) return results;
+
+ std::vector<std::vector<double> > splits_a = paths_mono_splits(a), splits_b = paths_mono_splits(b);
+ std::vector<std::vector<Rect> > bounds_a = split_bounds(a, splits_a), bounds_b = split_bounds(b, splits_b);
+
+ std::vector<Rect> bounds_a_union, bounds_b_union;
+ for(unsigned i = 0; i < bounds_a.size(); i++) bounds_a_union.push_back(union_list(bounds_a[i]));
+ for(unsigned i = 0; i < bounds_b.size(); i++) bounds_b_union.push_back(union_list(bounds_b[i]));
+
+ std::vector<std::vector<unsigned> > cull = sweep_bounds(bounds_a_union, bounds_b_union);
+ Crossings n;
+ for(unsigned i = 0; i < cull.size(); i++) {
+ for(unsigned jx = 0; jx < cull[i].size(); jx++) {
+ unsigned j = cull[i][jx];
+ unsigned jc = j + a.size();
+ Crossings res;
+
+ //Sweep of the monotonic portions
+ std::vector<std::vector<unsigned> > cull2 = sweep_bounds(bounds_a[i], bounds_b[j]);
+ for(unsigned k = 0; k < cull2.size(); k++) {
+ for(unsigned lx = 0; lx < cull2[k].size(); lx++) {
+ unsigned l = cull2[k][lx];
+ mono_pair(a[i], splits_a[i][k-1], splits_a[i][k],
+ b[j], splits_b[j][l-1], splits_b[j][l],
+ res, .1);
+ }
+ }
+
+ for(unsigned k = 0; k < res.size(); k++) { res[k].a = i; res[k].b = jc; }
+
+ merge_crossings(results[i], res, i);
+ merge_crossings(results[i], res, jc);
+ }
+ }
+
+ return results;
+}
+
+/* This function is similar codewise to the MonoCrosser, the main difference is that it deals with
+ * only one set of paths and includes self intersection
+CrossingSet crossings_among(std::vector<Path> const &p) {
+ CrossingSet results(p.size(), Crossings());
+ if(p.empty()) return results;
+
+ std::vector<std::vector<double> > splits = paths_mono_splits(p);
+ std::vector<std::vector<Rect> > prs = split_bounds(p, splits);
+ std::vector<Rect> rs;
+ for(unsigned i = 0; i < prs.size(); i++) rs.push_back(union_list(prs[i]));
+
+ std::vector<std::vector<unsigned> > cull = sweep_bounds(rs);
+
+ //we actually want to do the self-intersections, so add em in:
+ for(unsigned i = 0; i < cull.size(); i++) cull[i].push_back(i);
+
+ for(unsigned i = 0; i < cull.size(); i++) {
+ for(unsigned jx = 0; jx < cull[i].size(); jx++) {
+ unsigned j = cull[i][jx];
+ Crossings res;
+
+ //Sweep of the monotonic portions
+ std::vector<std::vector<unsigned> > cull2 = sweep_bounds(prs[i], prs[j]);
+ for(unsigned k = 0; k < cull2.size(); k++) {
+ for(unsigned lx = 0; lx < cull2[k].size(); lx++) {
+ unsigned l = cull2[k][lx];
+ mono_pair(p[i], splits[i][k-1], splits[i][k],
+ p[j], splits[j][l-1], splits[j][l],
+ res, .1);
+ }
+ }
+
+ for(unsigned k = 0; k < res.size(); k++) { res[k].a = i; res[k].b = j; }
+
+ merge_crossings(results[i], res, i);
+ merge_crossings(results[j], res, j);
+ }
+ }
+
+ return results;
+}
+*/
+
+
+Crossings curve_self_crossings(Curve const &a) {
+ Crossings res;
+ std::vector<double> spl;
+ spl.push_back(0);
+ append(spl, curve_mono_splits(a));
+ spl.push_back(1);
+ for(unsigned i = 1; i < spl.size(); i++)
+ for(unsigned j = i+1; j < spl.size(); j++)
+ pair_intersect(a, spl[i-1], spl[i], a, spl[j-1], spl[j], res);
+ return res;
+}
+
+/*
+void mono_curve_intersect(Curve const & A, double Al, double Ah,
+ Curve const & B, double Bl, double Bh,
+ Crossings &ret, unsigned depth=0) {
+ // std::cout << depth << "(" << Al << ", " << Ah << ")\n";
+ Point A0 = A.pointAt(Al), A1 = A.pointAt(Ah),
+ B0 = B.pointAt(Bl), B1 = B.pointAt(Bh);
+ //inline code that this implies? (without rect/interval construction)
+ if(!Rect(A0, A1).intersects(Rect(B0, B1)) || A0 == A1 || B0 == B1) return;
+
+ //Checks the general linearity of the function
+ if((depth > 12) || (A.boundsLocal(Interval(Al, Ah), 1).maxExtent() < 0.1
+ && B.boundsLocal(Interval(Bl, Bh), 1).maxExtent() < 0.1)) {
+ double tA, tB, c;
+ if(linear_intersect(A0, A1, B0, B1, tA, tB, c)) {
+ tA = tA * (Ah - Al) + Al;
+ tB = tB * (Bh - Bl) + Bl;
+ if(depth % 2)
+ ret.push_back(Crossing(tB, tA, c < 0));
+ else
+ ret.push_back(Crossing(tA, tB, c > 0));
+ return;
+ }
+ }
+ if(depth > 12) return;
+ double mid = (Bl + Bh)/2;
+ mono_curve_intersect(B, Bl, mid,
+ A, Al, Ah,
+ ret, depth+1);
+ mono_curve_intersect(B, mid, Bh,
+ A, Al, Ah,
+ ret, depth+1);
+}
+
+std::vector<std::vector<double> > curves_mono_splits(Path const &p) {
+ std::vector<std::vector<double> > ret;
+ for(unsigned i = 0; i <= p.size(); i++) {
+ std::vector<double> spl;
+ spl.push_back(0);
+ append(spl, curve_mono_splits(p[i]));
+ spl.push_back(1);
+ ret.push_back(spl);
+ }
+}
+
+std::vector<std::vector<Rect> > curves_split_bounds(Path const &p, std::vector<std::vector<double> > splits) {
+ std::vector<std::vector<Rect> > ret;
+ for(unsigned i = 0; i < splits.size(); i++) {
+ std::vector<Rect> res;
+ for(unsigned j = 1; j < splits[i].size(); j++)
+ res.push_back(Rect(p.pointAt(splits[i][j-1]+i), p.pointAt(splits[i][j]+i)));
+ ret.push_back(res);
+ }
+ return ret;
+}
+
+Crossings path_self_crossings(Path const &p) {
+ Crossings ret;
+ std::vector<std::vector<unsigned> > cull = sweep_bounds(bounds(p));
+ std::vector<std::vector<double> > spl = curves_mono_splits(p);
+ std::vector<std::vector<Rect> > bnds = curves_split_bounds(p, spl);
+ for(unsigned i = 0; i < cull.size(); i++) {
+ Crossings res;
+ for(unsigned k = 1; k < spl[i].size(); k++)
+ for(unsigned l = k+1; l < spl[i].size(); l++)
+ mono_curve_intersect(p[i], spl[i][k-1], spl[i][k], p[i], spl[i][l-1], spl[i][l], res);
+ offset_crossings(res, i, i);
+ append(ret, res);
+ for(unsigned jx = 0; jx < cull[i].size(); jx++) {
+ unsigned j = cull[i][jx];
+ res.clear();
+
+ std::vector<std::vector<unsigned> > cull2 = sweep_bounds(bnds[i], bnds[j]);
+ for(unsigned k = 0; k < cull2.size(); k++) {
+ for(unsigned lx = 0; lx < cull2[k].size(); lx++) {
+ unsigned l = cull2[k][lx];
+ mono_curve_intersect(p[i], spl[i][k-1], spl[i][k], p[j], spl[j][l-1], spl[j][l], res);
+ }
+ }
+
+ //if(fabs(int(i)-j) == 1 || fabs(int(i)-j) == p.size()-1) {
+ Crossings res2;
+ for(unsigned k = 0; k < res.size(); k++) {
+ if(res[k].ta != 0 && res[k].ta != 1 && res[k].tb != 0 && res[k].tb != 1) {
+ res.push_back(res[k]);
+ }
+ }
+ res = res2;
+ //}
+ offset_crossings(res, i, j);
+ append(ret, res);
+ }
+ }
+ return ret;
+}
+*/
+
+Crossings self_crossings(Path const &p) {
+ Crossings ret;
+ std::vector<std::vector<unsigned> > cull = sweep_bounds(bounds(p));
+ for(unsigned i = 0; i < cull.size(); i++) {
+ Crossings res = curve_self_crossings(p[i]);
+ offset_crossings(res, i, i);
+ append(ret, res);
+ for(unsigned jx = 0; jx < cull[i].size(); jx++) {
+ unsigned j = cull[i][jx];
+ res.clear();
+ pair_intersect(p[i], 0, 1, p[j], 0, 1, res);
+
+ //if(fabs(int(i)-j) == 1 || fabs(int(i)-j) == p.size()-1) {
+ Crossings res2;
+ for(unsigned k = 0; k < res.size(); k++) {
+ if(res[k].ta != 0 && res[k].ta != 1 && res[k].tb != 0 && res[k].tb != 1) {
+ res2.push_back(res[k]);
+ }
+ }
+ res = res2;
+ //}
+ offset_crossings(res, i, j);
+ append(ret, res);
+ }
+ }
+ return ret;
+}
+
+void flip_crossings(Crossings &crs) {
+ for(unsigned i = 0; i < crs.size(); i++)
+ crs[i] = Crossing(crs[i].tb, crs[i].ta, crs[i].b, crs[i].a, !crs[i].dir);
+}
+
+CrossingSet crossings_among(std::vector<Path> const &p) {
+ CrossingSet results(p.size(), Crossings());
+ if(p.empty()) return results;
+
+ SimpleCrosser cc;
+
+ std::vector<std::vector<unsigned> > cull = sweep_bounds(bounds(p));
+ for(unsigned i = 0; i < cull.size(); i++) {
+ Crossings res = self_crossings(p[i]);
+ for(unsigned k = 0; k < res.size(); k++) { res[k].a = res[k].b = i; }
+ merge_crossings(results[i], res, i);
+ flip_crossings(res);
+ merge_crossings(results[i], res, i);
+ for(unsigned jx = 0; jx < cull[i].size(); jx++) {
+ unsigned j = cull[i][jx];
+
+ Crossings res = cc.crossings(p[i], p[j]);
+ for(unsigned k = 0; k < res.size(); k++) { res[k].a = i; res[k].b = j; }
+ merge_crossings(results[i], res, i);
+ merge_crossings(results[j], res, j);
+ }
+ }
+ return results;
+}
+
+}