summaryrefslogtreecommitdiffstats
path: root/base/common/python/pki/cryptoutil.py
blob: e4a01e323a4d75036baf3d521b84c7582c43f1b4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#!/usr/bin/python
# Authors:
#     Ade Lee <alee@redhat.com>
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; version 2 of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
# Copyright (C) 2013 Red Hat, Inc.
# All rights reserved.
#
'''
Module containing crypto classes.
'''
import abc
import base64
import nss.nss as nss


class CryptoUtil(object):
    '''
    Abstract class containing methods to do cryptographic operations.
    '''
    __metaclass__ = abc.ABCMeta

    def __init__(self):
        ''' Constructor '''
        pass

    @abc.abstractmethod
    def generate_symmetric_key(self, mechanism=None):
        ''' Generate and return a symmetric key '''
        pass

    @abc.abstractmethod
    def symmetric_wrap(self, data, wrapping_key, mechanism=None, nonce_iv=None):
        ''' encrypt data using a symmetric key (wrapping key)'''
        pass

    @abc.abstractmethod
    def symmetric_unwrap(self, data, wrapping_key, mechanism=None, nonce_iv=None):
        ''' decrypt data originally encrypted with symmetric key (wrapping key)

        We expect the data and nonce_iv values to be base64 encoded.
        The mechanism is the type of key used to do the wrapping.  It defaults
        to a 56 bit DES3 key.
        '''
        pass

    @abc.abstractmethod
    def asymmetric_wrap(self, data, wrapping_cert, mechanism=None):
        ''' encrypt a symmetric key with the public key of a transport cert.

        The mechanism is the type of symmetric key, which defaults to a 56 bit
        DES3 key.
        '''
        pass

    #abc.abstractmethod
    def get_cert(self, cert_nick):
        ''' Get the certificate for the specified cert_nick. '''
        pass

class NSSCryptoUtil(CryptoUtil):
    '''
    Class that defines NSS implementation of CryptoUtil.
    Requires an NSS database to have been set up and initialized.
    '''

    def __init__(self, certdb_dir, certdb_password):
        ''' Initialize nss and nss related parameters

            This method expects a NSS database to have already been created at
            certdb_dir with password certdb_password.
        '''
        CryptoUtil.__init__(self)
        self.certdb_dir = certdb_dir
        self.certdb_password = certdb_password
        nss.nss_init(certdb_dir)
        self.nonce_iv = "e4:bb:3b:d3:c3:71:2e:58"

    @staticmethod
    def setup_contexts(mechanism, sym_key, nonce_iv):
        ''' Set up contexts to do wrapping/unwrapping by symmetric keys. '''
        # Get a PK11 slot based on the cipher
        slot = nss.get_best_slot(mechanism)

        if sym_key == None:
            sym_key = slot.key_gen(mechanism, None, slot.get_best_key_length(mechanism))

        # If initialization vector was supplied use it, otherwise set it to None
        if nonce_iv:
            iv_data = nss.read_hex(nonce_iv)
            iv_si = nss.SecItem(iv_data)
            iv_param = nss.param_from_iv(mechanism, iv_si)
        else:
            iv_length = nss.get_iv_length(mechanism)
            if iv_length > 0:
                iv_data = nss.generate_random(iv_length)
                iv_si = nss.SecItem(iv_data)
                iv_param = nss.param_from_iv(mechanism, iv_si)
            else:
                iv_param = None

        # Create an encoding context
        encoding_ctx = nss.create_context_by_sym_key(mechanism, nss.CKA_ENCRYPT,
                                                     sym_key, iv_param)

        # Create a decoding context
        decoding_ctx = nss.create_context_by_sym_key(mechanism, nss.CKA_DECRYPT,
                                                     sym_key, iv_param)

        return encoding_ctx, decoding_ctx

    def generate_symmetric_key(self, mechanism=nss.CKM_DES3_CBC_PAD):
        ''' Returns a symmetric key.'''
        slot = nss.get_best_slot(mechanism)
        return slot.key_gen(mechanism, None, slot.get_best_key_length(mechanism))

    def symmetric_wrap(self, data, wrapping_key, mechanism=nss.CKM_DES3_CBC_PAD, nonce_iv=None):
        '''
        :param data:           Data to be wrapped
        :param wrapping_key    Symmetric key to wrap data

        Wrap (encrypt) data using the supplied symmetric key
        '''
        encoding_ctx, _decoding_ctx = self.setup_contexts(mechanism, wrapping_key, nonce_iv)
        wrapped_data = encoding_ctx.cipher_op(data) + encoding_ctx.digest_final()
        return wrapped_data

    def symmetric_unwrap(self, data, wrapping_key, mechanism=nss.CKM_DES3_CBC_PAD, nonce_iv=None):
        '''
        :param data:           Data to be unwrapped (base 64 encoded)
        :param wrapping_key    Symmetric key to unwrap data
        :param nonce_iv              Base 64 encoded iv data

        Unwrap (decrypt) data using the supplied symmetric key
        '''
        if nonce_iv == None:
            nonce_iv = self.nonce_iv
        else:
            nonce_iv = nss.data_to_hex(base64.decodestring(nonce_iv))

        _encoding_ctx, decoding_ctx = self.setup_contexts(mechanism, wrapping_key, nonce_iv)
        unwrapped_data = decoding_ctx.cipher_op(base64.decodestring(data)) \
            + decoding_ctx.digest_final()
        return unwrapped_data

    def asymmetric_wrap(self, data, wrapping_cert, mechanism=nss.CKM_DES3_CBC_PAD):
        '''
        :param data:            Data to be wrapped
        :param wrapping_cert    Public key to wrap data
        :param mechanism        algorithm of symmetric key to be wrapped

        Wrap (encrypt) data using the supplied asymmetric key
        '''
        public_key = wrapping_cert.subject_public_key_info.public_key
        return base64.b64encode(nss.pub_wrap_sym_key(mechanism, public_key, data))

    def get_cert(self, cert_nick):
        '''
        :param cert_nick       Nickname for the certificate to be returned

        Searches NSS database and returns SecItem object for this certificate.
        '''
        return nss.find_cert_from_nickname(cert_nick)