summaryrefslogtreecommitdiffstats
path: root/libvirt-utils.c
blob: d1f6e70fdab9755f8457f5b76bd9b9c3df038185 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
/*
 * libvirt-utils.c: misc helper APIs for python binding
 *
 * Copyright (C) 2013 Red Hat, Inc.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library.  If not, see
 * <http://www.gnu.org/licenses/>.
 *
 */

#include <errno.h>
#include <stddef.h>
#include <stdlib.h>
#include <unistd.h>
#include <libvirt/libvirt.h>
#include "libvirt-utils.h"

/**
 * virAlloc:
 * @ptrptr: pointer to pointer for address of allocated memory
 * @size: number of bytes to allocate
 *
 * Allocate  'size' bytes of memory. Return the address of the
 * allocated memory in 'ptrptr'. The newly allocated memory is
 * filled with zeros.
 *
 * Returns -1 on failure to allocate, zero on success
 */
int virAlloc(void *ptrptr,
             size_t size)
{
    *(void **)ptrptr = calloc(1, size);
    if (*(void **)ptrptr == NULL) {
        return -1;
    }
    return 0;
}

/**
 * virAllocN:
 * @ptrptr: pointer to pointer for address of allocated memory
 * @size: number of bytes to allocate
 * @count: number of elements to allocate
 *
 * Allocate an array of memory 'count' elements long,
 * each with 'size' bytes. Return the address of the
 * allocated memory in 'ptrptr'.  The newly allocated
 * memory is filled with zeros.
 *
 * Returns -1 on failure to allocate, zero on success
 */
int virAllocN(void *ptrptr,
              size_t size,
              size_t count)
{
    *(void**)ptrptr = calloc(count, size);
    if (*(void**)ptrptr == NULL) {
        return -1;
    }
    return 0;
}

/**
 * virReallocN:
 * @ptrptr: pointer to pointer for address of allocated memory
 * @size: number of bytes to allocate
 * @count: number of elements in array
 *
 * Resize the block of memory in 'ptrptr' to be an array of
 * 'count' elements, each 'size' bytes in length. Update 'ptrptr'
 * with the address of the newly allocated memory. On failure,
 * 'ptrptr' is not changed and still points to the original memory
 * block. Any newly allocated memory in 'ptrptr' is uninitialized.
 *
 * Returns -1 on failure to allocate, zero on success
 */
int virReallocN(void *ptrptr,
                size_t size,
                size_t count)
{
    void *tmp;

    if (xalloc_oversized(count, size)) {
        errno = ENOMEM;
        return -1;
    }
    tmp = realloc(*(void**)ptrptr, size * count);
    if (!tmp && (size * count)) {
        return -1;
    }
    *(void**)ptrptr = tmp;
    return 0;
}


/**
 * virFree:
 * @ptrptr: pointer to pointer for address of memory to be freed
 *
 * Release the chunk of memory in the pointer pointed to by
 * the 'ptrptr' variable. After release, 'ptrptr' will be
 * updated to point to NULL.
 */
void virFree(void *ptrptr)
{
    int save_errno = errno;

    free(*(void**)ptrptr);
    *(void**)ptrptr = NULL;
    errno = save_errno;
}


int virFileClose(int *fdptr)
{
    int saved_errno = 0;
    int rc = 0;

    saved_errno = errno;

    if (*fdptr < 0)
        return 0;

    rc = close(*fdptr);
    *fdptr = -1;

    errno = saved_errno;

    return rc;
}

#if ! LIBVIR_CHECK_VERSION(1, 0, 2)
/**
 * virTypedParamsClear:
 * @params: the array of the typed parameters
 * @nparams: number of parameters in the @params array
 *
 * Frees all memory used by string parameters. The memory occupied by @params
 * is not free; use virTypedParamsFree if you want it to be freed too.
 *
 * Returns nothing.
 */
void
virTypedParamsClear(virTypedParameterPtr params,
                    int nparams)
{
    size_t i;

    if (!params)
        return;

    for (i = 0; i < nparams; i++) {
        if (params[i].type == VIR_TYPED_PARAM_STRING)
            VIR_FREE(params[i].value.s);
    }
}

/**
 * virTypedParamsFree:
 * @params: the array of the typed parameters
 * @nparams: number of parameters in the @params array
 *
 * Frees all memory used by string parameters and the memory occuiped by
 * @params.
 *
 * Returns nothing.
 */
void
virTypedParamsFree(virTypedParameterPtr params,
                   int nparams)
{
    virTypedParamsClear(params, nparams);
    VIR_FREE(params);
}
#endif /* ! LIBVIR_CHECK_VERSION(1, 0, 2) */
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
/*
 * mdadm - manage Linux "md" devices aka RAID arrays.
 *
 * Copyright (C) 2001-2004 Neil Brown <neilb@cse.unsw.edu.au>
 *
 *
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 *    Author: Neil Brown
 *    Email: <neilb@cse.unsw.edu.au>
 *    Paper: Neil Brown
 *           School of Computer Science and Engineering
 *           The University of New South Wales
 *           Sydney, 2052
 *           Australia
 */

#include "mdadm.h"
#include <endian.h>
#include "asm/byteorder.h"
/*
 * The version-1 superblock :
 * All numeric fields are little-endian.
 *
 * total size: 256 bytes plus 2 per device.
 *  1K allows 384 devices.
 */
struct mdp_superblock_1 {
	/* constant array information - 128 bytes */
	__u32	magic;		/* MD_SB_MAGIC: 0xa92b4efc - little endian */
	__u32	major_version;	/* 1 */
	__u32	feature_map;	/* 0 for now */
	__u32	pad0;		/* always set to 0 when writing */

	__u8	set_uuid[16];	/* user-space generated. */
	char	set_name[32];	/* set and interpreted by user-space */

	__u64	ctime;		/* lo 40 bits are seconds, top 24 are microseconds or 0*/
	__u32	level;		/* -4 (multipath), -1 (linear), 0,1,4,5 */
	__u32	layout;		/* only for raid5 currently */
	__u64	size;		/* used size of component devices, in 512byte sectors */

	__u32	chunksize;	/* in 512byte sectors */
	__u32	raid_disks;
	__u32	bitmap_offset;	/* sectors after start of superblock that bitmap starts
				 * NOTE: signed, so bitmap can be before superblock
				 * only meaningful of feature_map[0] is set.
				 */
	__u8	pad1[128-100];	/* set to 0 when written */

	/* constant this-device information - 64 bytes */
	__u64	data_offset;	/* sector start of data, often 0 */
	__u64	data_size;	/* sectors in this device that can be used for data */
	__u64	super_offset;	/* sector start of this superblock */
	__u64	recovery_offset;/* sectors before this offset (from data_offset) have been recovered */
	__u32	dev_number;	/* permanent identifier of this  device - not role in raid */
	__u32	cnt_corrected_read; /* number of read errors that were corrected by re-writing */
	__u8	device_uuid[16]; /* user-space setable, ignored by kernel */
        __u8    devflags;        /* per-device flags.  Only one defined...*/
#define WriteMostly1    1        /* mask for writemostly flag in above */
	__u8	pad2[64-57];	/* set to 0 when writing */

	/* array state information - 64 bytes */
	__u64	utime;		/* 40 bits second, 24 btes microseconds */
	__u64	events;		/* incremented when superblock updated */
	__u64	resync_offset;	/* data before this offset (from data_offset) known to be in sync */
	__u32	sb_csum;	/* checksum upto devs[max_dev] */
	__u32	max_dev;	/* size of devs[] array to consider */
	__u8	pad3[64-32];	/* set to 0 when writing */

	/* device state information. Indexed by dev_number.
	 * 2 bytes per device
	 * Note there are no per-device state flags. State information is rolled
	 * into the 'roles' value.  If a device is spare or faulty, then it doesn't
	 * have a meaningful role.
	 */
	__u16	dev_roles[0];	/* role in array, or 0xffff for a spare, or 0xfffe for faulty */
};

#ifndef offsetof
#define offsetof(t,f) ((int)&(((t*)0)->f))
#endif
static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
{
	unsigned int disk_csum, csum;
	unsigned long long newcsum;
	int size = sizeof(*sb) + __le32_to_cpu(sb->max_dev)*2;
	unsigned int *isuper = (unsigned int*)sb;
	int i;

/* make sure I can count... */
	if (offsetof(struct mdp_superblock_1,data_offset) != 128 ||
	    offsetof(struct mdp_superblock_1, utime) != 192 ||
	    sizeof(struct mdp_superblock_1) != 256) {
		fprintf(stderr, "WARNING - superblock isn't sized correctly\n");
	}

	disk_csum = sb->sb_csum;
	sb->sb_csum = 0;
	newcsum = 0;
	for (i=0; size>=4; size -= 4 )
		newcsum += __le32_to_cpu(*isuper++);

	if (size == 2)
		newcsum += __le16_to_cpu(*(unsigned short*) isuper);

	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
	sb->sb_csum = disk_csum;
	return csum;
}

#ifndef MDASSEMBLE
static void examine_super1(void *sbv)
{
	struct mdp_superblock_1 *sb = sbv;
	time_t atime;
	int d;
	int faulty;
	int i;
	char *c;

	printf("          Magic : %08x\n", __le32_to_cpu(sb->magic));
	printf("        Version : %02d.%02d\n", 1, __le32_to_cpu(sb->feature_map));
	printf("     Array UUID : ");
	for (i=0; i<16; i++) {
		if ((i&3)==0 && i != 0) printf(":");
		printf("%02x", sb->set_uuid[i]);
	}
	printf("\n");
	printf("           Name : %.32s\n", sb->set_name);

	atime = __le64_to_cpu(sb->ctime) & 0xFFFFFFFFFFULL;
	printf("  Creation Time : %.24s\n", ctime(&atime));
	c=map_num(pers, __le32_to_cpu(sb->level));
	printf("     Raid Level : %s\n", c?c:"-unknown-");
	printf("   Raid Devices : %d\n", __le32_to_cpu(sb->raid_disks));
	printf("\n");
	printf("    Device Size : %llu%s\n", (unsigned long long)sb->data_size, human_size(sb->data_size<<9));
	if (sb->data_offset)
		printf("    Data Offset : %llu sectors\n", (unsigned long long)__le64_to_cpu(sb->data_offset));
	if (sb->super_offset)
		printf("   Super Offset : %llu sectors\n", (unsigned long long)__le64_to_cpu(sb->super_offset));
	printf("          State : %s\n", (__le64_to_cpu(sb->resync_offset)+1)? "active":"clean");
	printf("    Device UUID : ");
	for (i=0; i<16; i++) {
		if ((i&3)==0 && i != 0) printf(":");
		printf("%02x", sb->device_uuid[i]);
	}
	printf("\n");
	if (sb->devflags) {
		printf("      Flags :");
		if (sb->devflags & WriteMostly1)
			printf(" write-mostly");
		printf("\n");
	}

	atime = __le64_to_cpu(sb->utime) & 0xFFFFFFFFFFULL;
	printf("    Update Time : %.24s\n", ctime(&atime));

	if (calc_sb_1_csum(sb) == sb->sb_csum)
		printf("       Checksum : %x - correct\n", __le32_to_cpu(sb->sb_csum));
	else
		printf("       Checksum : %x - expected %x\n", __le32_to_cpu(sb->sb_csum),
		       __le32_to_cpu(calc_sb_1_csum(sb)));
	printf("         Events : %llu\n", (unsigned long long)__le64_to_cpu(sb->events));
	printf("\n");
	if (__le32_to_cpu(sb->level) == 5) {
		c = map_num(r5layout, __le32_to_cpu(sb->layout));
		printf("         Layout : %s\n", c?c:"-unknown-");
	}
	if (__le32_to_cpu(sb->level) == 10) {
		int lo = __le32_to_cpu(sb->layout);
		printf("         Layout : near=%d, far=%d\n",
		       lo&255, (lo>>8)&255);
	}
	switch(__le32_to_cpu(sb->level)) {
	case 0:
	case 4:
	case 5:
		printf("     Chunk Size : %dK\n", __le32_to_cpu(sb->chunksize/2));
		break;
	case -1:
		printf("       Rounding : %dK\n", __le32_to_cpu(sb->chunksize/2));
		break;
	default: break;
	}
	printf("\n");
	printf("   Array State : ");
	for (d=0; d<__le32_to_cpu(sb->raid_disks); d++) {
		int cnt = 0;
		int me = 0;
		int i;
		for (i=0; i< __le32_to_cpu(sb->max_dev); i++) {
			int role = __le16_to_cpu(sb->dev_roles[i]);
			if (role == d) {
				if (i == __le32_to_cpu(sb->dev_number))
					me = 1;
				cnt++;
			}
		}
		if (cnt > 1) printf("?");
		else if (cnt == 1 && me) printf("U");
		else if (cnt == 1) printf("u");
		else printf ("_");
	}
	faulty = 0;
	for (i=0; i< __le32_to_cpu(sb->max_dev); i++) {
		int role = __le16_to_cpu(sb->dev_roles[i]);
		if (role == 0xFFFE)
			faulty++;
	}
	if (faulty) printf(" %d failed", faulty);
	printf("\n");
}


static void brief_examine_super1(void *sbv)
{
	struct mdp_superblock_1 *sb = sbv;
	int i;

	char *c=map_num(pers, __le32_to_cpu(sb->level));

	printf("ARRAY /dev/?? level=%s metadata=1 num-devices=%d UUID=",
	       c?c:"-unknown-", sb->raid_disks);
	for (i=0; i<16; i++) {
		printf("%02x", sb->set_uuid[i]);
		if ((i&3)==0 && i != 0) printf(":");
	}
	if (sb->set_name[0])
		printf(" name=%.32s", sb->set_name);
	printf("\n");
}

static void detail_super1(void *sbv)
{
	struct mdp_superblock_1 *sb = sbv;
	int i;

	printf("           Name : %.32s\n", sb->set_name);
	printf("           UUID : ");
	for (i=0; i<16; i++) {
		if ((i&3)==0 && i != 0) printf(":");
		printf("%02x", sb->set_uuid[i]);
	}
	printf("\n         Events : %llu\n\n", (unsigned long long)__le64_to_cpu(sb->events));
}

static void brief_detail_super1(void *sbv)
{
	struct mdp_superblock_1 *sb = sbv;
	int i;

	if (sb->set_name[0])
		printf(" name=%.32s", sb->set_name);
	printf(" UUID=");
	for (i=0; i<16; i++) {
		if ((i&3)==0 && i != 0) printf(":");
		printf("%02x", sb->set_uuid[i]);
	}
}

#endif

static void uuid_from_super1(int uuid[4], void * sbv)
{
	struct mdp_superblock_1 *super = sbv;
	char *cuuid = (char*)uuid;
	int i;
	for (i=0; i<16; i++)
		cuuid[i] = super->set_uuid[i];
}

static void getinfo_super1(struct mdinfo *info, mddev_ident_t ident, void *sbv)
{
	struct mdp_superblock_1 *sb = sbv;
	int working = 0;
	int i;
	int role;

	info->array.major_version = 1;
	info->array.minor_version = __le32_to_cpu(sb->feature_map);
	info->array.patch_version = 0;
	info->array.raid_disks = __le32_to_cpu(sb->raid_disks);
	info->array.level = __le32_to_cpu(sb->level);
	info->array.layout = __le32_to_cpu(sb->layout);
	info->array.md_minor = -1;
	info->array.ctime = __le64_to_cpu(sb->ctime);

	info->disk.major = 0;
	info->disk.minor = 0;
	info->disk.number = __le32_to_cpu(sb->dev_number);
	if (__le32_to_cpu(sb->dev_number) >= __le32_to_cpu(sb->max_dev) ||
	    __le32_to_cpu(sb->max_dev) > 512)
		role = 0xfffe;
	else
		role = __le16_to_cpu(sb->dev_roles[__le32_to_cpu(sb->dev_number)]);

	info->disk.raid_disk = -1;
	switch(role) {
	case 0xFFFF:
		info->disk.state = 2; /* spare: ACTIVE, not sync, not faulty */
		break;
	case 0xFFFE:
		info->disk.state = 1; /* faulty */
		break;
	default:
		info->disk.state = 6; /* active and in sync */
		info->disk.raid_disk = role;
	}
	info->events = __le64_to_cpu(sb->events);

	memcpy(info->uuid, sb->set_uuid, 16);

	strncpy(ident->name, sb->set_name, 32);
	ident->name[32] = 0;

	for (i=0; i< __le32_to_cpu(sb->max_dev); i++) {
		role = __le16_to_cpu(sb->dev_roles[i]);
		if (/*role == 0xFFFF || */role < info->array.raid_disks)
			working++;
	}

	info->array.working_disks = working;
}

static int update_super1(struct mdinfo *info, void *sbv, char *update, char *devname, int verbose)
{
	int rv = 0;
	struct mdp_superblock_1 *sb = sbv;

	if (strcmp(update, "force")==0) {
		sb->events = __cpu_to_le64(info->events);
		switch(__le32_to_cpu(sb->level)) {
		case 5: case 4: case 6:
			/* need to force clean */
			sb->resync_offset = ~0ULL;
		}
	}
	if (strcmp(update, "assemble")==0) {
		int d = info->disk.number;
		int want;
		if (info->disk.state == 6)
			want = __cpu_to_le32(info->disk.raid_disk);
		else
			want = 0xFFFF;
		if (sb->dev_roles[d] != want) {
			sb->dev_roles[d] = want;
			rv = 1;
		}
	}
#if 0
	if (strcmp(update, "newdev") == 0) {
		int d = info->disk.number;
		memset(&sb->disks[d], 0, sizeof(sb->disks[d]));
		sb->disks[d].number = d;
		sb->disks[d].major = info->disk.major;
		sb->disks[d].minor = info->disk.minor;
		sb->disks[d].raid_disk = info->disk.raid_disk;
		sb->disks[d].state = info->disk.state;
		sb->this_disk = sb->disks[d];
	}
#endif
	if (strcmp(update, "grow") == 0) {
		sb->raid_disks = __cpu_to_le32(info->array.raid_disks);
		/* FIXME */
	}
	if (strcmp(update, "resync") == 0) {
		/* make sure resync happens */
		sb->resync_offset = ~0ULL;
	}

	sb->sb_csum = calc_sb_1_csum(sb);
	return rv;
}


static __u64 event_super1(void *sbv)
{
	struct mdp_superblock_1 *sb = sbv;
	return __le64_to_cpu(sb->events);
}

static int init_super1(struct supertype *st, void **sbp, mdu_array_info_t *info, char *name)
{
	struct mdp_superblock_1 *sb = malloc(1024 + sizeof(bitmap_super_t));
	int spares;
	int rfd;
	memset(sb, 0, 1024);

	if (info->major_version == -1)
		/* zeroing superblock */
		return 0;

	spares = info->working_disks - info->active_disks;
	if (info->raid_disks + spares  > 384) {
		fprintf(stderr, Name ": too many devices requested: %d+%d > %d\n",
			info->raid_disks , spares, 384);
		return 0;
	}


	sb->magic = __cpu_to_le32(MD_SB_MAGIC);
	sb->major_version = __cpu_to_le32(1);
	sb->feature_map = 0;
	sb->pad0 = 0;

	if ((rfd = open("/dev/urandom", O_RDONLY)) < 0 ||
	    read(rfd, sb->set_uuid, 16) != 16) {
		*(__u32*)(sb->set_uuid) = random();
		*(__u32*)(sb->set_uuid+4) = random();
		*(__u32*)(sb->set_uuid+8) = random();
		*(__u32*)(sb->set_uuid+12) = random();
	}
	if (rfd >= 0) close(rfd);

	memset(sb->set_name, 0, 32);
	strcpy(sb->set_name, name);

	sb->ctime = __cpu_to_le64((unsigned long long)time(0));
	sb->level = __cpu_to_le32(info->level);
	sb->layout = __cpu_to_le32(info->layout);
	sb->size = __cpu_to_le64(info->size*2ULL);
	sb->chunksize = __cpu_to_le32(info->chunk_size>>9);
	sb->raid_disks = __cpu_to_le32(info->raid_disks);

	sb->data_offset = __cpu_to_le64(0);
	sb->data_size = __cpu_to_le64(0);
	sb->super_offset = __cpu_to_le64(0);
	sb->recovery_offset = __cpu_to_le64(0);

	sb->utime = sb->ctime;
	sb->events = __cpu_to_le64(1);
	if (info->state & (1<<MD_SB_CLEAN))
		sb->resync_offset = ~0ULL;
	else
		sb->resync_offset = 0;
	sb->max_dev = __cpu_to_le32((1024- sizeof(struct mdp_superblock_1))/
				    sizeof(sb->dev_roles[0]));
	memset(sb->pad3, 0, sizeof(sb->pad3));

	memset(sb->dev_roles, 0xff, 1024 - sizeof(struct mdp_superblock_1));

	*sbp = sb;
	return 1;
}

/* Add a device to the superblock being created */
static void add_to_super1(void *sbv, mdu_disk_info_t *dk)
{
	struct mdp_superblock_1 *sb = sbv;
	__u16 *rp = sb->dev_roles + dk->number;
	if ((dk->state & 6) == 6) /* active, sync */
		*rp = __cpu_to_le16(dk->raid_disk);
	else if ((dk->state & ~2) == 0) /* active or idle -> spare */
		*rp = 0xffff;
	else
		*rp = 0xfffe;
}

static int store_super1(struct supertype *st, int fd, void *sbv)
{
	struct mdp_superblock_1 *sb = sbv;
	unsigned long long sb_offset;
	int sbsize;
	long size;

	if (ioctl(fd, BLKGETSIZE, &size))
		return 1;


	if (size < 24)
		return 2;

	/*
	 * Calculate the position of the superblock.
	 * It is always aligned to a 4K boundary and
	 * depending on minor_version, it can be:
	 * 0: At least 8K, but less than 12K, from end of device
	 * 1: At start of device
	 * 2: 4K from start of device.
	 */
	switch(st->minor_version) {
	case 0:
		sb_offset = size;
		sb_offset -= 8*2;
		sb_offset &= ~(4*2-1);
		break;
	case 1:
		sb_offset = 0;
		break;
	case 2:
		sb_offset = 4*2;
		break;
	default:
		return -EINVAL;
	}



	if (sb_offset != __le64_to_cpu(sb->super_offset) &&
	    0 != __le64_to_cpu(sb->super_offset)
		) {
		fprintf(stderr, Name ": internal error - sb_offset is wrong\n");
		abort();
	}

	if (lseek64(fd, sb_offset << 9, 0)< 0LL)
		return 3;

	sbsize = sizeof(*sb) + 2 * __le32_to_cpu(sb->max_dev);

	if (write(fd, sb, sbsize) != sbsize)
		return 4;

	fsync(fd);
	return 0;
}

static int load_super1(struct supertype *st, int fd, void **sbp, char *devname);

static int write_init_super1(struct supertype *st, void *sbv,
			     mdu_disk_info_t *dinfo, char *devname)
{
	struct mdp_superblock_1 *sb = sbv;
	struct mdp_superblock_1 *refsb = NULL;
	int fd = open(devname, O_RDWR | O_EXCL);
	int rfd;
	int rv;

	long size;
	long long sb_offset;


	if (fd < 0) {
		fprintf(stderr, Name ": Failed to open %s to write superblock\n",
			devname);
		return -1;
	}

	sb->dev_number = __cpu_to_le32(dinfo->number);
	if (dinfo->state & (1<<MD_DISK_WRITEMOSTLY))
		sb->devflags |= WriteMostly1;

	if ((rfd = open("/dev/urandom", O_RDONLY)) < 0 ||
	    read(rfd, sb->device_uuid, 16) != 16) {
		*(__u32*)(sb->device_uuid) = random();
		*(__u32*)(sb->device_uuid+4) = random();
		*(__u32*)(sb->device_uuid+8) = random();
		*(__u32*)(sb->device_uuid+12) = random();
	}
	if (rfd >= 0) close(rfd);
	sb->events = 0;

	if (load_super1(st, fd, (void**)&refsb, NULL)==0) {
		memcpy(sb->device_uuid, refsb->device_uuid, 16);
		if (memcmp(sb->set_uuid, refsb->set_uuid, 16)==0) {
			/* same array, so preserve events and dev_number */
			sb->events = refsb->events;
			sb->dev_number = refsb->dev_number;
		}
		free(refsb);
	}

	if (ioctl(fd, BLKGETSIZE, &size)) {
		close(fd);
		return 1;
	}

	if (size < 24) {
		close(fd);
		return 2;
	}


	/*
	 * Calculate the position of the superblock.
	 * It is always aligned to a 4K boundary and
	 * depending on minor_version, it can be:
	 * 0: At least 8K, but less than 12K, from end of device
	 * 1: At start of device
	 * 2: 4K from start of device.
	 */
	switch(st->minor_version) {
	case 0:
		sb_offset = size;
		sb_offset -= 8*2;
		sb_offset &= ~(4*2-1);
		sb->super_offset = __cpu_to_le64(sb_offset);
		sb->data_offset = __cpu_to_le64(0);
		sb->data_size = __cpu_to_le64(sb_offset);
		break;
	case 1:
		sb->super_offset = __cpu_to_le64(0);
		sb->data_offset = __cpu_to_le64(4*2); /* leave 4k for super and bitmap */
		sb->data_size = __cpu_to_le64(size - 4*2);
		break;
	case 2:
		sb_offset = 4*2;
		sb->super_offset = __cpu_to_le64(sb_offset);
		sb->data_offset = __cpu_to_le64(sb_offset+4*2);
		sb->data_size = __cpu_to_le64(size - 4*2 - 4*2);
		break;
	default:
		return -EINVAL;
	}


	sb->sb_csum = calc_sb_1_csum(sb);
	rv = store_super1(st, fd, sb);
	if (rv)
		fprintf(stderr, Name ": failed to write superblock to %s\n", devname);

	if (rv == 0 && (__le32_to_cpu(sb->feature_map) & 1))
		rv = st->ss->write_bitmap(st, fd, sbv);
	close(fd);
	return rv;
}

static int compare_super1(void **firstp, void *secondv)
{
	/*
	 * return:
	 *  0 same, or first was empty, and second was copied
	 *  1 second had wrong number
	 *  2 wrong uuid
	 *  3 wrong other info
	 */
	struct mdp_superblock_1 *first = *firstp;
	struct mdp_superblock_1 *second = secondv;

	if (second->magic != __cpu_to_le32(MD_SB_MAGIC))
		return 1;
	if (second->major_version != __cpu_to_le32(1))
		return 1;

	if (!first) {
		first = malloc(1024);
		memcpy(first, second, 1024);
		*firstp = first;
		return 0;
	}
	if (memcmp(first->set_uuid, second->set_uuid, 16)!= 0)
		return 2;

	if (first->ctime      != second->ctime     ||
	    first->level      != second->level     ||
	    first->layout     != second->layout    ||
	    first->size       != second->size      ||
	    first->chunksize  != second->chunksize ||
	    first->raid_disks != second->raid_disks)
		return 3;
	return 0;
}

static int load_super1(struct supertype *st, int fd, void **sbp, char *devname)
{
	unsigned long size;
	unsigned long long sb_offset;
	struct mdp_superblock_1 *super;



	if (st->ss == NULL) {
		int bestvers = -1;
		__u64 bestctime = 0;
		/* guess... choose latest ctime */
		st->ss = &super1;
		for (st->minor_version = 0; st->minor_version <= 2 ; st->minor_version++) {
			switch(load_super1(st, fd, sbp, devname)) {
			case 0: super = *sbp;
				if (bestvers == -1 ||
				    bestctime < __le64_to_cpu(super->ctime)) {
					bestvers = st->minor_version;
					bestctime = __le64_to_cpu(super->ctime);
				}
				free(super);
				*sbp = NULL;
				break;
			case 1: st->ss = NULL; return 1; /*bad device */
			case 2: break; /* bad, try next */
			}
		}
		if (bestvers != -1) {
			int rv;
			st->minor_version = bestvers;
			st->ss = &super1;
			st->max_devs = 384;
			rv = load_super1(st, fd, sbp, devname);
			if (rv) st->ss = NULL;
			return rv;
		}
		st->ss = NULL;
		return 2;
	}
	if (ioctl(fd, BLKGETSIZE, &size)) {
		if (devname)
			fprintf(stderr, Name ": cannot find device size for %s: %s\n",
				devname, strerror(errno));
		return 1;
	}

	if (size < 24) {
		if (devname)
			fprintf(stderr, Name ": %s is too small for md: size is %lu sectors.\n",
				devname, size);
		return 1;
	}

	/*
	 * Calculate the position of the superblock.
	 * It is always aligned to a 4K boundary and
	 * depeding on minor_version, it can be:
	 * 0: At least 8K, but less than 12K, from end of device
	 * 1: At start of device
	 * 2: 4K from start of device.
	 */
	switch(st->minor_version) {
	case 0:
		sb_offset = size;
		sb_offset -= 8*2;
		sb_offset &= ~(4*2-1);
		break;
	case 1:
		sb_offset = 0;
		break;
	case 2:
		sb_offset = 4*2;
		break;
	default:
		return -EINVAL;
	}

	ioctl(fd, BLKFLSBUF, 0); /* make sure we read current data */


	if (lseek64(fd, sb_offset << 9, 0)< 0LL) {
		if (devname)
			fprintf(stderr, Name ": Cannot seek to superblock on %s: %s\n",
				devname, strerror(errno));
		return 1;
	}

	super = malloc(1024 + sizeof(bitmap_super_t));

	if (read(fd, super, 1024) != 1024) {
		if (devname)
			fprintf(stderr, Name ": Cannot read superblock on %s\n",
				devname);
		free(super);
		return 1;
	}

	if (__le32_to_cpu(super->magic) != MD_SB_MAGIC) {
		if (devname)
			fprintf(stderr, Name ": No super block found on %s (Expected magic %08x, got %08x)\n",
				devname, MD_SB_MAGIC, __le32_to_cpu(super->magic));
		free(super);
		return 2;
	}

	if (__le32_to_cpu(super->major_version) != 1) {
		if (devname)
			fprintf(stderr, Name ": Cannot interpret superblock on %s - version is %d\n",
				devname, __le32_to_cpu(super->major_version));
		free(super);
		return 2;
	}
	if (__le64_to_cpu(super->super_offset) != sb_offset) {
		if (devname)
			fprintf(stderr, Name ": No superblock found on %s (super_offset is wrong)\n",
				devname);
		free(super);
		return 2;
	}
	*sbp = super;
	return 0;
}


static struct supertype *match_metadata_desc1(char *arg)
{
	struct supertype *st = malloc(sizeof(*st));
	if (!st) return st;

	st->ss = &super1;
	st->max_devs = 384;
	if (strcmp(arg, "1") == 0 ||
	    strcmp(arg, "1.0") == 0) {
		st->minor_version = 0;
		return st;
	}
	if (strcmp(arg, "1.1") == 0) {
		st->minor_version = 1;
		return st;
	}
	if (strcmp(arg, "1.2") == 0) {
		st->minor_version = 2;
		return st;
	}

	free(st);
	return NULL;
}

/* find available size on device with this devsize, using
 * superblock type st, and reserving 'reserve' sectors for
 * a possible bitmap
 */
static __u64 avail_size1(struct supertype *st, __u64 devsize)
{
	if (devsize < 24)
		return 0;

	switch(st->minor_version) {
	case 0:
		/* at end */
		return ((devsize - 8*2 ) & ~(4*2-1));
	case 1:
		/* at start, 4K for superblock and possible bitmap */
		return devsize - 4*2;
	case 2:
		/* 4k from start, 4K for superblock and possible bitmap */
		return devsize - (4+4)*2;
	}
	return 0;
}

static int
add_internal_bitmap1(struct supertype *st, void *sbv,
		     int chunk, int delay, int write_behind, int *sizep, int may_change)
{
	/*
	 * If not may_change, then this is a 'Grow', and the bitmap
	 * must fit after the superblock.
	 * If may_change, then this is create, and we can put the bitmap
	 * before the superblock if we like, or may move the start.
	 * For now, just squeeze the bitmap into 3k and don't change anything.
	 *
	 * size is in K,  chunk is in bytes !!!
	 */

	unsigned long long size = *sizep;
	unsigned long long bits;
	unsigned long long max_bits = (3*512 - sizeof(bitmap_super_t)) * 8;
	unsigned long long min_chunk;
	struct mdp_superblock_1 *sb = sbv;
	bitmap_super_t *bms = (bitmap_super_t*)(((char*)sb) + 1024);

	if (st->minor_version && !may_change &&
	    __le64_to_cpu(sb->data_offset) - __le64_to_cpu(sb->super_offset) < 8)
		return 0; /* doesn't fit */



	min_chunk = 4096; /* sub-page chunks don't work yet.. */
	bits = (size*1024)/min_chunk +1;
	while (bits > max_bits) {
		min_chunk *= 2;
		bits = (bits+1)/2;
	}
	if (chunk == UnSet)
		chunk = min_chunk;
	else if (chunk < min_chunk)
		return 0; /* chunk size too small */

	sb->bitmap_offset = __cpu_to_le32(2);

	sb->feature_map = __cpu_to_le32(__le32_to_cpu(sb->feature_map) | 1);
	memset(bms, sizeof(*bms), 0);