summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/nand/fsmc_nand.c
blob: a1f2cbae3318bd5f25735c9b27f2f41194292a93 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
/*
 * (C) Copyright 2010
 * Vipin Kumar, ST Microelectronics, vipin.kumar@st.com.
 *
 * (C) Copyright 2012
 * Amit Virdi, ST Microelectronics, amit.virdi@st.com.
 *
 * SPDX-License-Identifier:	GPL-2.0+
 */

#include <common.h>
#include <nand.h>
#include <asm/io.h>
#include <linux/bitops.h>
#include <linux/err.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/fsmc_nand.h>
#include <asm/arch/hardware.h>

static u32 fsmc_version;
static struct fsmc_regs *const fsmc_regs_p = (struct fsmc_regs *)
	CONFIG_SYS_FSMC_BASE;

/*
 * ECC4 and ECC1 have 13 bytes and 3 bytes of ecc respectively for 512 bytes of
 * data. ECC4 can correct up to 8 bits in 512 bytes of data while ECC1 can
 * correct 1 bit in 512 bytes
 */

static struct nand_ecclayout fsmc_ecc4_lp_layout = {
	.eccbytes = 104,
	.eccpos = {  2,   3,   4,   5,   6,   7,   8,
		9,  10,  11,  12,  13,  14,
		18,  19,  20,  21,  22,  23,  24,
		25,  26,  27,  28,  29,  30,
		34,  35,  36,  37,  38,  39,  40,
		41,  42,  43,  44,  45,  46,
		50,  51,  52,  53,  54,  55,  56,
		57,  58,  59,  60,  61,  62,
		66,  67,  68,  69,  70,  71,  72,
		73,  74,  75,  76,  77,  78,
		82,  83,  84,  85,  86,  87,  88,
		89,  90,  91,  92,  93,  94,
		98,  99, 100, 101, 102, 103, 104,
		105, 106, 107, 108, 109, 110,
		114, 115, 116, 117, 118, 119, 120,
		121, 122, 123, 124, 125, 126
	},
	.oobfree = {
		{.offset = 15, .length = 3},
		{.offset = 31, .length = 3},
		{.offset = 47, .length = 3},
		{.offset = 63, .length = 3},
		{.offset = 79, .length = 3},
		{.offset = 95, .length = 3},
		{.offset = 111, .length = 3},
		{.offset = 127, .length = 1}
	}
};

/*
 * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 224 bytes. 13*8 bytes
 * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 118
 * bytes are free for use.
 */
static struct nand_ecclayout fsmc_ecc4_224_layout = {
	.eccbytes = 104,
	.eccpos = {  2,   3,   4,   5,   6,   7,   8,
		9,  10,  11,  12,  13,  14,
		18,  19,  20,  21,  22,  23,  24,
		25,  26,  27,  28,  29,  30,
		34,  35,  36,  37,  38,  39,  40,
		41,  42,  43,  44,  45,  46,
		50,  51,  52,  53,  54,  55,  56,
		57,  58,  59,  60,  61,  62,
		66,  67,  68,  69,  70,  71,  72,
		73,  74,  75,  76,  77,  78,
		82,  83,  84,  85,  86,  87,  88,
		89,  90,  91,  92,  93,  94,
		98,  99, 100, 101, 102, 103, 104,
		105, 106, 107, 108, 109, 110,
		114, 115, 116, 117, 118, 119, 120,
		121, 122, 123, 124, 125, 126
	},
	.oobfree = {
		{.offset = 15, .length = 3},
		{.offset = 31, .length = 3},
		{.offset = 47, .length = 3},
		{.offset = 63, .length = 3},
		{.offset = 79, .length = 3},
		{.offset = 95, .length = 3},
		{.offset = 111, .length = 3},
		{.offset = 127, .length = 97}
	}
};

/*
 * ECC placement definitions in oobfree type format
 * There are 13 bytes of ecc for every 512 byte block and it has to be read
 * consecutively and immediately after the 512 byte data block for hardware to
 * generate the error bit offsets in 512 byte data
 * Managing the ecc bytes in the following way makes it easier for software to
 * read ecc bytes consecutive to data bytes. This way is similar to
 * oobfree structure maintained already in u-boot nand driver
 */
static struct fsmc_eccplace fsmc_eccpl_lp = {
	.eccplace = {
		{.offset = 2, .length = 13},
		{.offset = 18, .length = 13},
		{.offset = 34, .length = 13},
		{.offset = 50, .length = 13},
		{.offset = 66, .length = 13},
		{.offset = 82, .length = 13},
		{.offset = 98, .length = 13},
		{.offset = 114, .length = 13}
	}
};

static struct nand_ecclayout fsmc_ecc4_sp_layout = {
	.eccbytes = 13,
	.eccpos = { 0,  1,  2,  3,  6,  7, 8,
		9, 10, 11, 12, 13, 14
	},
	.oobfree = {
		{.offset = 15, .length = 1},
	}
};

static struct fsmc_eccplace fsmc_eccpl_sp = {
	.eccplace = {
		{.offset = 0, .length = 4},
		{.offset = 6, .length = 9}
	}
};

static struct nand_ecclayout fsmc_ecc1_layout = {
	.eccbytes = 24,
	.eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52,
		66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116},
	.oobfree = {
		{.offset = 8, .length = 8},
		{.offset = 24, .length = 8},
		{.offset = 40, .length = 8},
		{.offset = 56, .length = 8},
		{.offset = 72, .length = 8},
		{.offset = 88, .length = 8},
		{.offset = 104, .length = 8},
		{.offset = 120, .length = 8}
	}
};

/* Count the number of 0's in buff upto a max of max_bits */
static int count_written_bits(uint8_t *buff, int size, int max_bits)
{
	int k, written_bits = 0;

	for (k = 0; k < size; k++) {
		written_bits += hweight8(~buff[k]);
		if (written_bits > max_bits)
			break;
	}

	return written_bits;
}

static void fsmc_nand_hwcontrol(struct mtd_info *mtd, int cmd, uint ctrl)
{
	struct nand_chip *this = mtd_to_nand(mtd);
	ulong IO_ADDR_W;

	if (ctrl & NAND_CTRL_CHANGE) {
		IO_ADDR_W = (ulong)this->IO_ADDR_W;

		IO_ADDR_W &= ~(CONFIG_SYS_NAND_CLE | CONFIG_SYS_NAND_ALE);
		if (ctrl & NAND_CLE)
			IO_ADDR_W |= CONFIG_SYS_NAND_CLE;
		if (ctrl & NAND_ALE)
			IO_ADDR_W |= CONFIG_SYS_NAND_ALE;

		if (ctrl & NAND_NCE) {
			writel(readl(&fsmc_regs_p->pc) |
					FSMC_ENABLE, &fsmc_regs_p->pc);
		} else {
			writel(readl(&fsmc_regs_p->pc) &
					~FSMC_ENABLE, &fsmc_regs_p->pc);
		}
		this->IO_ADDR_W = (void *)IO_ADDR_W;
	}

	if (cmd != NAND_CMD_NONE)
		writeb(cmd, this->IO_ADDR_W);
}

static int fsmc_bch8_correct_data(struct mtd_info *mtd, u_char *dat,
		u_char *read_ecc, u_char *calc_ecc)
{
	/* The calculated ecc is actually the correction index in data */
	u32 err_idx[8];
	u32 num_err, i;
	u32 ecc1, ecc2, ecc3, ecc4;

	num_err = (readl(&fsmc_regs_p->sts) >> 10) & 0xF;

	if (likely(num_err == 0))
		return 0;

	if (unlikely(num_err > 8)) {
		/*
		 * This is a temporary erase check. A newly erased page read
		 * would result in an ecc error because the oob data is also
		 * erased to FF and the calculated ecc for an FF data is not
		 * FF..FF.
		 * This is a workaround to skip performing correction in case
		 * data is FF..FF
		 *
		 * Logic:
		 * For every page, each bit written as 0 is counted until these
		 * number of bits are greater than 8 (the maximum correction
		 * capability of FSMC for each 512 + 13 bytes)
		 */

		int bits_ecc = count_written_bits(read_ecc, 13, 8);
		int bits_data = count_written_bits(dat, 512, 8);

		if ((bits_ecc + bits_data) <= 8) {
			if (bits_data)
				memset(dat, 0xff, 512);
			return bits_data + bits_ecc;
		}

		return -EBADMSG;
	}

	ecc1 = readl(&fsmc_regs_p->ecc1);
	ecc2 = readl(&fsmc_regs_p->ecc2);
	ecc3 = readl(&fsmc_regs_p->ecc3);
	ecc4 = readl(&fsmc_regs_p->sts);

	err_idx[0] = (ecc1 >> 0) & 0x1FFF;
	err_idx[1] = (ecc1 >> 13) & 0x1FFF;
	err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
	err_idx[3] = (ecc2 >> 7) & 0x1FFF;
	err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
	err_idx[5] = (ecc3 >> 1) & 0x1FFF;
	err_idx[6] = (ecc3 >> 14) & 0x1FFF;
	err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);

	i = 0;
	while (i < num_err) {
		err_idx[i] ^= 3;

		if (err_idx[i] < 512 * 8)
			__change_bit(err_idx[i], dat);

		i++;
	}

	return num_err;
}

static int fsmc_read_hwecc(struct mtd_info *mtd,
			const u_char *data, u_char *ecc)
{
	u_int ecc_tmp;
	int timeout = CONFIG_SYS_HZ;
	ulong start;

	switch (fsmc_version) {
	case FSMC_VER8:
		start = get_timer(0);
		while (get_timer(start) < timeout) {
			/*
			 * Busy waiting for ecc computation
			 * to finish for 512 bytes
			 */
			if (readl(&fsmc_regs_p->sts) & FSMC_CODE_RDY)
				break;
		}

		ecc_tmp = readl(&fsmc_regs_p->ecc1);
		ecc[0] = (u_char) (ecc_tmp >> 0);
		ecc[1] = (u_char) (ecc_tmp >> 8);
		ecc[2] = (u_char) (ecc_tmp >> 16);
		ecc[3] = (u_char) (ecc_tmp >> 24);

		ecc_tmp = readl(&fsmc_regs_p->ecc2);
		ecc[4] = (u_char) (ecc_tmp >> 0);
		ecc[5] = (u_char) (ecc_tmp >> 8);
		ecc[6] = (u_char) (ecc_tmp >> 16);
		ecc[7] = (u_char) (ecc_tmp >> 24);

		ecc_tmp = readl(&fsmc_regs_p->ecc3);
		ecc[8] = (u_char) (ecc_tmp >> 0);
		ecc[9] = (u_char) (ecc_tmp >> 8);
		ecc[10] = (u_char) (ecc_tmp >> 16);
		ecc[11] = (u_char) (ecc_tmp >> 24);

		ecc_tmp = readl(&fsmc_regs_p->sts);
		ecc[12] = (u_char) (ecc_tmp >> 16);
		break;

	default:
		ecc_tmp = readl(&fsmc_regs_p->ecc1);
		ecc[0] = (u_char) (ecc_tmp >> 0);
		ecc[1] = (u_char) (ecc_tmp >> 8);
		ecc[2] = (u_char) (ecc_tmp >> 16);
		break;
	}

	return 0;
}

void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
{
	writel(readl(&fsmc_regs_p->pc) & ~FSMC_ECCPLEN_256,
			&fsmc_regs_p->pc);
	writel(readl(&fsmc_regs_p->pc) & ~FSMC_ECCEN,
			&fsmc_regs_p->pc);
	writel(readl(&fsmc_regs_p->pc) | FSMC_ECCEN,
			&fsmc_regs_p->pc);
}

/*
 * fsmc_read_page_hwecc
 * @mtd:	mtd info structure
 * @chip:	nand chip info structure
 * @buf:	buffer to store read data
 * @oob_required:	caller expects OOB data read to chip->oob_poi
 * @page:	page number to read
 *
 * This routine is needed for fsmc verison 8 as reading from NAND chip has to be
 * performed in a strict sequence as follows:
 * data(512 byte) -> ecc(13 byte)
 * After this read, fsmc hardware generates and reports error data bits(upto a
 * max of 8 bits)
 */
static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
				 uint8_t *buf, int oob_required, int page)
{
	struct fsmc_eccplace *fsmc_eccpl;
	int i, j, s, stat, eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	uint8_t *p = buf;
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	uint8_t *ecc_code = chip->buffers->ecccode;
	int off, len, group = 0;
	uint8_t oob[13] __attribute__ ((aligned (2)));

	/* Differentiate between small and large page ecc place definitions */
	if (mtd->writesize == 512)
		fsmc_eccpl = &fsmc_eccpl_sp;
	else
		fsmc_eccpl = &fsmc_eccpl_lp;

	for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {

		chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page);
		chip->ecc.hwctl(mtd, NAND_ECC_READ);
		chip->read_buf(mtd, p, eccsize);

		for (j = 0; j < eccbytes;) {
			off = fsmc_eccpl->eccplace[group].offset;
			len = fsmc_eccpl->eccplace[group].length;
			group++;

			/*
			 * length is intentionally kept a higher multiple of 2
			 * to read at least 13 bytes even in case of 16 bit NAND
			 * devices
			 */
			if (chip->options & NAND_BUSWIDTH_16)
				len = roundup(len, 2);
			chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page);
			chip->read_buf(mtd, oob + j, len);
			j += len;
		}

		memcpy(&ecc_code[i], oob, 13);
		chip->ecc.calculate(mtd, p, &ecc_calc[i]);

		stat = chip->ecc.correct(mtd, p, &ecc_code[i],
				&ecc_calc[i]);
		if (stat < 0)
			mtd->ecc_stats.failed++;
		else
			mtd->ecc_stats.corrected += stat;
	}

	return 0;
}

#ifndef CONFIG_SPL_BUILD
/*
 * fsmc_nand_switch_ecc - switch the ECC operation between different engines
 *
 * @eccstrength		- the number of bits that could be corrected
 *			  (1 - HW, 4 - SW BCH4)
 */
int fsmc_nand_switch_ecc(uint32_t eccstrength)
{
	struct nand_chip *nand;
	struct mtd_info *mtd;
	int err;

	/*
	 * This functions is only called on SPEAr600 platforms, supporting
	 * 1 bit HW ECC. The BCH8 HW ECC (FSMC_VER8) from the ST-Ericsson
	 * Nomadik SoC is currently supporting this fsmc_nand_switch_ecc()
	 * function, as it doesn't need to switch to a different ECC layout.
	 */
	mtd = nand_info[nand_curr_device];
	nand = mtd_to_nand(mtd);

	/* Setup the ecc configurations again */
	if (eccstrength == 1) {
		nand->ecc.mode = NAND_ECC_HW;
		nand->ecc.bytes = 3;
		nand->ecc.strength = 1;
		nand->ecc.layout = &fsmc_ecc1_layout;
		nand->ecc.calculate = fsmc_read_hwecc;
		nand->ecc.correct = nand_correct_data;
	} else if (eccstrength == 4) {
		/*
		 * .calculate .correct and .bytes will be set in
		 * nand_scan_tail()
		 */
		nand->ecc.mode = NAND_ECC_SOFT_BCH;
		nand->ecc.strength = 4;
		nand->ecc.layout = NULL;
	} else {
		printf("Error: ECC strength %d not supported!\n", eccstrength);
	}

	/* Update NAND handling after ECC mode switch */
	err = nand_scan_tail(mtd);

	return err;
}
#endif /* CONFIG_SPL_BUILD */

int fsmc_nand_init(struct nand_chip *nand)
{
	static int chip_nr;
	struct mtd_info *mtd;
	u32 peripid2 = readl(&fsmc_regs_p->peripid2);

	fsmc_version = (peripid2 >> FSMC_REVISION_SHFT) &
		FSMC_REVISION_MSK;

	writel(readl(&fsmc_regs_p->ctrl) | FSMC_WP, &fsmc_regs_p->ctrl);

#if defined(CONFIG_SYS_FSMC_NAND_16BIT)
	writel(FSMC_DEVWID_16 | FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON,
			&fsmc_regs_p->pc);
#elif defined(CONFIG_SYS_FSMC_NAND_8BIT)
	writel(FSMC_DEVWID_8 | FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON,
			&fsmc_regs_p->pc);
#else
#error Please define CONFIG_SYS_FSMC_NAND_16BIT or CONFIG_SYS_FSMC_NAND_8BIT
#endif
	writel(readl(&fsmc_regs_p->pc) | FSMC_TCLR_1 | FSMC_TAR_1,
			&fsmc_regs_p->pc);
	writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0,
			&fsmc_regs_p->comm);
	writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0,
			&fsmc_regs_p->attrib);

	nand->options = 0;
#if defined(CONFIG_SYS_FSMC_NAND_16BIT)
	nand->options |= NAND_BUSWIDTH_16;
#endif
	nand->ecc.mode = NAND_ECC_HW;
	nand->ecc.size = 512;
	nand->ecc.calculate = fsmc_read_hwecc;
	nand->ecc.hwctl = fsmc_enable_hwecc;
	nand->cmd_ctrl = fsmc_nand_hwcontrol;
	nand->IO_ADDR_R = nand->IO_ADDR_W =
		(void  __iomem *)CONFIG_SYS_NAND_BASE;
	nand->badblockbits = 7;

	mtd = nand_to_mtd(nand);

	switch (fsmc_version) {
	case FSMC_VER8:
		nand->ecc.bytes = 13;
		nand->ecc.strength = 8;
		nand->ecc.correct = fsmc_bch8_correct_data;
		nand->ecc.read_page = fsmc_read_page_hwecc;
		if (mtd->writesize == 512)
			nand->ecc.layout = &fsmc_ecc4_sp_layout;
		else {
			if (mtd->oobsize == 224)
				nand->ecc.layout = &fsmc_ecc4_224_layout;
			else
				nand->ecc.layout = &fsmc_ecc4_lp_layout;
		}

		break;
	default:
		nand->ecc.bytes = 3;
		nand->ecc.strength = 1;
		nand->ecc.layout = &fsmc_ecc1_layout;
		nand->ecc.correct = nand_correct_data;
		break;
	}

	/* Detect NAND chips */
	if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL))
		return -ENXIO;

	if (nand_scan_tail(mtd))
		return -ENXIO;

	if (nand_register(chip_nr++, mtd))
		return -ENXIO;

	return 0;
}