summaryrefslogtreecommitdiffstats
path: root/drivers/mmc/matsushita-common.c
blob: e552a09ea11e5bd093c86b2964bb0f4055b64f65 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
/*
 * Copyright (C) 2016 Socionext Inc.
 *   Author: Masahiro Yamada <yamada.masahiro@socionext.com>
 *
 * SPDX-License-Identifier:	GPL-2.0+
 */

#include <common.h>
#include <clk.h>
#include <fdtdec.h>
#include <mmc.h>
#include <dm.h>
#include <dm/pinctrl.h>
#include <linux/compat.h>
#include <linux/dma-direction.h>
#include <linux/io.h>
#include <linux/sizes.h>
#include <power/regulator.h>
#include <asm/unaligned.h>

#include "matsushita-common.h"

DECLARE_GLOBAL_DATA_PTR;

static u64 matsu_sd_readq(struct matsu_sd_priv *priv, unsigned int reg)
{
	return readq(priv->regbase + (reg << 1));
}

static void matsu_sd_writeq(struct matsu_sd_priv *priv,
			       u64 val, unsigned int reg)
{
	writeq(val, priv->regbase + (reg << 1));
}

static u16 matsu_sd_readw(struct matsu_sd_priv *priv, unsigned int reg)
{
	return readw(priv->regbase + (reg >> 1));
}

static void matsu_sd_writew(struct matsu_sd_priv *priv,
			       u16 val, unsigned int reg)
{
	writew(val, priv->regbase + (reg >> 1));
}

u32 matsu_sd_readl(struct matsu_sd_priv *priv, unsigned int reg)
{
	u32 val;

	if (priv->caps & MATSU_SD_CAP_64BIT)
		return readl(priv->regbase + (reg << 1));
	else if (priv->caps & MATSU_SD_CAP_16BIT) {
		val = readw(priv->regbase + (reg >> 1)) & 0xffff;
		if ((reg == MATSU_SD_RSP10) || (reg == MATSU_SD_RSP32) ||
		    (reg == MATSU_SD_RSP54) || (reg == MATSU_SD_RSP76)) {
			val |= readw(priv->regbase + (reg >> 1) + 2) << 16;
		}
		return val;
	} else
		return readl(priv->regbase + reg);
}

void matsu_sd_writel(struct matsu_sd_priv *priv,
			       u32 val, unsigned int reg)
{
	if (priv->caps & MATSU_SD_CAP_64BIT)
		writel(val, priv->regbase + (reg << 1));
	if (priv->caps & MATSU_SD_CAP_16BIT) {
		writew(val & 0xffff, priv->regbase + (reg >> 1));
		if (reg == MATSU_SD_INFO1 || reg == MATSU_SD_INFO1_MASK ||
		    reg == MATSU_SD_INFO2 || reg == MATSU_SD_INFO2_MASK ||
		    reg == MATSU_SD_ARG)
			writew(val >> 16, priv->regbase + (reg >> 1) + 2);
	} else
		writel(val, priv->regbase + reg);
}

static dma_addr_t __dma_map_single(void *ptr, size_t size,
				   enum dma_data_direction dir)
{
	unsigned long addr = (unsigned long)ptr;

	if (dir == DMA_FROM_DEVICE)
		invalidate_dcache_range(addr, addr + size);
	else
		flush_dcache_range(addr, addr + size);

	return addr;
}

static void __dma_unmap_single(dma_addr_t addr, size_t size,
			       enum dma_data_direction dir)
{
	if (dir != DMA_TO_DEVICE)
		invalidate_dcache_range(addr, addr + size);
}

static int matsu_sd_check_error(struct udevice *dev)
{
	struct matsu_sd_priv *priv = dev_get_priv(dev);
	u32 info2 = matsu_sd_readl(priv, MATSU_SD_INFO2);

	if (info2 & MATSU_SD_INFO2_ERR_RTO) {
		/*
		 * TIMEOUT must be returned for unsupported command.  Do not
		 * display error log since this might be a part of sequence to
		 * distinguish between SD and MMC.
		 */
		return -ETIMEDOUT;
	}

	if (info2 & MATSU_SD_INFO2_ERR_TO) {
		dev_err(dev, "timeout error\n");
		return -ETIMEDOUT;
	}

	if (info2 & (MATSU_SD_INFO2_ERR_END | MATSU_SD_INFO2_ERR_CRC |
		     MATSU_SD_INFO2_ERR_IDX)) {
		dev_err(dev, "communication out of sync\n");
		return -EILSEQ;
	}

	if (info2 & (MATSU_SD_INFO2_ERR_ILA | MATSU_SD_INFO2_ERR_ILR |
		     MATSU_SD_INFO2_ERR_ILW)) {
		dev_err(dev, "illegal access\n");
		return -EIO;
	}

	return 0;
}

static int matsu_sd_wait_for_irq(struct udevice *dev, unsigned int reg,
				    u32 flag)
{
	struct matsu_sd_priv *priv = dev_get_priv(dev);
	long wait = 1000000;
	int ret;

	while (!(matsu_sd_readl(priv, reg) & flag)) {
		if (wait-- < 0) {
			dev_err(dev, "timeout\n");
			return -ETIMEDOUT;
		}

		ret = matsu_sd_check_error(dev);
		if (ret)
			return ret;

		udelay(1);
	}

	return 0;
}

#define matsu_pio_read_fifo(__width, __suffix)				\
static void matsu_pio_read_fifo_##__width(struct matsu_sd_priv *priv,	\
					  char *pbuf, uint blksz)	\
{									\
	u##__width *buf = (u##__width *)pbuf;				\
	int i;								\
									\
	if (likely(IS_ALIGNED((uintptr_t)buf, ((__width) / 8)))) {	\
		for (i = 0; i < blksz / ((__width) / 8); i++) {		\
			*buf++ = matsu_sd_read##__suffix(priv,		\
							 MATSU_SD_BUF);	\
		}							\
	} else {							\
		for (i = 0; i < blksz / ((__width) / 8); i++) {		\
			u##__width data;				\
			data = matsu_sd_read##__suffix(priv,		\
						       MATSU_SD_BUF);	\
			put_unaligned(data, buf++);			\
		}							\
	}								\
}

matsu_pio_read_fifo(64, q)
matsu_pio_read_fifo(32, l)
matsu_pio_read_fifo(16, w)

static int matsu_sd_pio_read_one_block(struct udevice *dev, char *pbuf,
					  uint blocksize)
{
	struct matsu_sd_priv *priv = dev_get_priv(dev);
	int ret;

	/* wait until the buffer is filled with data */
	ret = matsu_sd_wait_for_irq(dev, MATSU_SD_INFO2,
				       MATSU_SD_INFO2_BRE);
	if (ret)
		return ret;

	/*
	 * Clear the status flag _before_ read the buffer out because
	 * MATSU_SD_INFO2_BRE is edge-triggered, not level-triggered.
	 */
	matsu_sd_writel(priv, 0, MATSU_SD_INFO2);

	if (priv->caps & MATSU_SD_CAP_64BIT)
		matsu_pio_read_fifo_64(priv, pbuf, blocksize);
	else if (priv->caps & MATSU_SD_CAP_16BIT)
		matsu_pio_read_fifo_16(priv, pbuf, blocksize);
	else
		matsu_pio_read_fifo_32(priv, pbuf, blocksize);

	return 0;
}

#define matsu_pio_write_fifo(__width, __suffix)				\
static void matsu_pio_write_fifo_##__width(struct matsu_sd_priv *priv,	\
					   const char *pbuf, uint blksz)\
{									\
	const u##__width *buf = (const u##__width *)pbuf;		\
	int i;								\
									\
	if (likely(IS_ALIGNED((uintptr_t)buf, ((__width) / 8)))) {	\
		for (i = 0; i < blksz / ((__width) / 8); i++) {		\
			matsu_sd_write##__suffix(priv, *buf++,		\
						 MATSU_SD_BUF);		\
		}							\
	} else {							\
		for (i = 0; i < blksz / ((__width) / 8); i++) {		\
			u##__width data = get_unaligned(buf++);		\
			matsu_sd_write##__suffix(priv, data,		\
						 MATSU_SD_BUF);		\
		}							\
	}								\
}

matsu_pio_write_fifo(64, q)
matsu_pio_write_fifo(32, l)
matsu_pio_write_fifo(16, w)

static int matsu_sd_pio_write_one_block(struct udevice *dev,
					   const char *pbuf, uint blocksize)
{
	struct matsu_sd_priv *priv = dev_get_priv(dev);
	int ret;

	/* wait until the buffer becomes empty */
	ret = matsu_sd_wait_for_irq(dev, MATSU_SD_INFO2,
				    MATSU_SD_INFO2_BWE);
	if (ret)
		return ret;

	matsu_sd_writel(priv, 0, MATSU_SD_INFO2);

	if (priv->caps & MATSU_SD_CAP_64BIT)
		matsu_pio_write_fifo_64(priv, pbuf, blocksize);
	else if (priv->caps & MATSU_SD_CAP_16BIT)
		matsu_pio_write_fifo_16(priv, pbuf, blocksize);
	else
		matsu_pio_write_fifo_32(priv, pbuf, blocksize);

	return 0;
}

static int matsu_sd_pio_xfer(struct udevice *dev, struct mmc_data *data)
{
	const char *src = data->src;
	char *dest = data->dest;
	int i, ret;

	for (i = 0; i < data->blocks; i++) {
		if (data->flags & MMC_DATA_READ)
			ret = matsu_sd_pio_read_one_block(dev, dest,
							     data->blocksize);
		else
			ret = matsu_sd_pio_write_one_block(dev, src,
							      data->blocksize);
		if (ret)
			return ret;

		if (data->flags & MMC_DATA_READ)
			dest += data->blocksize;
		else
			src += data->blocksize;
	}

	return 0;
}

static void matsu_sd_dma_start(struct matsu_sd_priv *priv,
				  dma_addr_t dma_addr)
{
	u32 tmp;

	matsu_sd_writel(priv, 0, MATSU_SD_DMA_INFO1);
	matsu_sd_writel(priv, 0, MATSU_SD_DMA_INFO2);

	/* enable DMA */
	tmp = matsu_sd_readl(priv, MATSU_SD_EXTMODE);
	tmp |= MATSU_SD_EXTMODE_DMA_EN;
	matsu_sd_writel(priv, tmp, MATSU_SD_EXTMODE);

	matsu_sd_writel(priv, dma_addr & U32_MAX, MATSU_SD_DMA_ADDR_L);

	/* suppress the warning "right shift count >= width of type" */
	dma_addr >>= min_t(int, 32, 8 * sizeof(dma_addr));

	matsu_sd_writel(priv, dma_addr & U32_MAX, MATSU_SD_DMA_ADDR_H);

	matsu_sd_writel(priv, MATSU_SD_DMA_CTL_START, MATSU_SD_DMA_CTL);
}

static int matsu_sd_dma_wait_for_irq(struct udevice *dev, u32 flag,
					unsigned int blocks)
{
	struct matsu_sd_priv *priv = dev_get_priv(dev);
	long wait = 1000000 + 10 * blocks;

	while (!(matsu_sd_readl(priv, MATSU_SD_DMA_INFO1) & flag)) {
		if (wait-- < 0) {
			dev_err(dev, "timeout during DMA\n");
			return -ETIMEDOUT;
		}

		udelay(10);
	}

	if (matsu_sd_readl(priv, MATSU_SD_DMA_INFO2)) {
		dev_err(dev, "error during DMA\n");
		return -EIO;
	}

	return 0;
}

static int matsu_sd_dma_xfer(struct udevice *dev, struct mmc_data *data)
{
	struct matsu_sd_priv *priv = dev_get_priv(dev);
	size_t len = data->blocks * data->blocksize;
	void *buf;
	enum dma_data_direction dir;
	dma_addr_t dma_addr;
	u32 poll_flag, tmp;
	int ret;

	tmp = matsu_sd_readl(priv, MATSU_SD_DMA_MODE);

	if (data->flags & MMC_DATA_READ) {
		buf = data->dest;
		dir = DMA_FROM_DEVICE;
		/*
		 * The DMA READ completion flag position differs on Socionext
		 * and Renesas SoCs. It is bit 20 on Socionext SoCs and using
		 * bit 17 is a hardware bug and forbidden. It is bit 17 on
		 * Renesas SoCs and bit 20 does not work on them.
		 */
		poll_flag = (priv->caps & MATSU_SD_CAP_RCAR) ?
			    MATSU_SD_DMA_INFO1_END_RD :
			    MATSU_SD_DMA_INFO1_END_RD2;
		tmp |= MATSU_SD_DMA_MODE_DIR_RD;
	} else {
		buf = (void *)data->src;
		dir = DMA_TO_DEVICE;
		poll_flag = MATSU_SD_DMA_INFO1_END_WR;
		tmp &= ~MATSU_SD_DMA_MODE_DIR_RD;
	}

	matsu_sd_writel(priv, tmp, MATSU_SD_DMA_MODE);

	dma_addr = __dma_map_single(buf, len, dir);

	matsu_sd_dma_start(priv, dma_addr);

	ret = matsu_sd_dma_wait_for_irq(dev, poll_flag, data->blocks);

	__dma_unmap_single(dma_addr, len, dir);

	return ret;
}

/* check if the address is DMA'able */
static bool matsu_sd_addr_is_dmaable(unsigned long addr)
{
	if (!IS_ALIGNED(addr, MATSU_SD_DMA_MINALIGN))
		return false;

#if defined(CONFIG_ARCH_UNIPHIER) && !defined(CONFIG_ARM64) && \
	defined(CONFIG_SPL_BUILD)
	/*
	 * For UniPhier ARMv7 SoCs, the stack is allocated in the locked ways
	 * of L2, which is unreachable from the DMA engine.
	 */
	if (addr < CONFIG_SPL_STACK)
		return false;
#endif

	return true;
}

int matsu_sd_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
		      struct mmc_data *data)
{
	struct matsu_sd_priv *priv = dev_get_priv(dev);
	int ret;
	u32 tmp;

	if (matsu_sd_readl(priv, MATSU_SD_INFO2) & MATSU_SD_INFO2_CBSY) {
		dev_err(dev, "command busy\n");
		return -EBUSY;
	}

	/* clear all status flags */
	matsu_sd_writel(priv, 0, MATSU_SD_INFO1);
	matsu_sd_writel(priv, 0, MATSU_SD_INFO2);

	/* disable DMA once */
	tmp = matsu_sd_readl(priv, MATSU_SD_EXTMODE);
	tmp &= ~MATSU_SD_EXTMODE_DMA_EN;
	matsu_sd_writel(priv, tmp, MATSU_SD_EXTMODE);

	matsu_sd_writel(priv, cmd->cmdarg, MATSU_SD_ARG);

	tmp = cmd->cmdidx;

	if (data) {
		matsu_sd_writel(priv, data->blocksize, MATSU_SD_SIZE);
		matsu_sd_writel(priv, data->blocks, MATSU_SD_SECCNT);

		/* Do not send CMD12 automatically */
		tmp |= MATSU_SD_CMD_NOSTOP | MATSU_SD_CMD_DATA;

		if (data->blocks > 1)
			tmp |= MATSU_SD_CMD_MULTI;

		if (data->flags & MMC_DATA_READ)
			tmp |= MATSU_SD_CMD_RD;
	}

	/*
	 * Do not use the response type auto-detection on this hardware.
	 * CMD8, for example, has different response types on SD and eMMC,
	 * while this controller always assumes the response type for SD.
	 * Set the response type manually.
	 */
	switch (cmd->resp_type) {
	case MMC_RSP_NONE:
		tmp |= MATSU_SD_CMD_RSP_NONE;
		break;
	case MMC_RSP_R1:
		tmp |= MATSU_SD_CMD_RSP_R1;
		break;
	case MMC_RSP_R1b:
		tmp |= MATSU_SD_CMD_RSP_R1B;
		break;
	case MMC_RSP_R2:
		tmp |= MATSU_SD_CMD_RSP_R2;
		break;
	case MMC_RSP_R3:
		tmp |= MATSU_SD_CMD_RSP_R3;
		break;
	default:
		dev_err(dev, "unknown response type\n");
		return -EINVAL;
	}

	dev_dbg(dev, "sending CMD%d (SD_CMD=%08x, SD_ARG=%08x)\n",
		cmd->cmdidx, tmp, cmd->cmdarg);
	matsu_sd_writel(priv, tmp, MATSU_SD_CMD);

	ret = matsu_sd_wait_for_irq(dev, MATSU_SD_INFO1,
				       MATSU_SD_INFO1_RSP);
	if (ret)
		return ret;

	if (cmd->resp_type & MMC_RSP_136) {
		u32 rsp_127_104 = matsu_sd_readl(priv, MATSU_SD_RSP76);
		u32 rsp_103_72 = matsu_sd_readl(priv, MATSU_SD_RSP54);
		u32 rsp_71_40 = matsu_sd_readl(priv, MATSU_SD_RSP32);
		u32 rsp_39_8 = matsu_sd_readl(priv, MATSU_SD_RSP10);

		cmd->response[0] = ((rsp_127_104 & 0x00ffffff) << 8) |
				   ((rsp_103_72  & 0xff000000) >> 24);
		cmd->response[1] = ((rsp_103_72  & 0x00ffffff) << 8) |
				   ((rsp_71_40   & 0xff000000) >> 24);
		cmd->response[2] = ((rsp_71_40   & 0x00ffffff) << 8) |
				   ((rsp_39_8    & 0xff000000) >> 24);
		cmd->response[3] = (rsp_39_8     & 0xffffff)   << 8;
	} else {
		/* bit 39-8 */
		cmd->response[0] = matsu_sd_readl(priv, MATSU_SD_RSP10);
	}

	if (data) {
		/* use DMA if the HW supports it and the buffer is aligned */
		if (priv->caps & MATSU_SD_CAP_DMA_INTERNAL &&
		    matsu_sd_addr_is_dmaable((long)data->src))
			ret = matsu_sd_dma_xfer(dev, data);
		else
			ret = matsu_sd_pio_xfer(dev, data);

		ret = matsu_sd_wait_for_irq(dev, MATSU_SD_INFO1,
					       MATSU_SD_INFO1_CMP);
		if (ret)
			return ret;
	}

	return ret;
}

static int matsu_sd_set_bus_width(struct matsu_sd_priv *priv,
				     struct mmc *mmc)
{
	u32 val, tmp;

	switch (mmc->bus_width) {
	case 0:
	case 1:
		val = MATSU_SD_OPTION_WIDTH_1;
		break;
	case 4:
		val = MATSU_SD_OPTION_WIDTH_4;
		break;
	case 8:
		val = MATSU_SD_OPTION_WIDTH_8;
		break;
	default:
		return -EINVAL;
	}

	tmp = matsu_sd_readl(priv, MATSU_SD_OPTION);
	tmp &= ~MATSU_SD_OPTION_WIDTH_MASK;
	tmp |= val;
	matsu_sd_writel(priv, tmp, MATSU_SD_OPTION);

	return 0;
}

static void matsu_sd_set_ddr_mode(struct matsu_sd_priv *priv,
				     struct mmc *mmc)
{
	u32 tmp;

	tmp = matsu_sd_readl(priv, MATSU_SD_IF_MODE);
	if (mmc->ddr_mode)
		tmp |= MATSU_SD_IF_MODE_DDR;
	else
		tmp &= ~MATSU_SD_IF_MODE_DDR;
	matsu_sd_writel(priv, tmp, MATSU_SD_IF_MODE);
}

static void matsu_sd_set_clk_rate(struct matsu_sd_priv *priv,
				     struct mmc *mmc)
{
	unsigned int divisor;
	u32 val, tmp;

	if (!mmc->clock)
		return;

	divisor = DIV_ROUND_UP(priv->mclk, mmc->clock);

	if (divisor <= 1)
		val = (priv->caps & MATSU_SD_CAP_RCAR) ?
		      MATSU_SD_CLKCTL_RCAR_DIV1 : MATSU_SD_CLKCTL_DIV1;
	else if (divisor <= 2)
		val = MATSU_SD_CLKCTL_DIV2;
	else if (divisor <= 4)
		val = MATSU_SD_CLKCTL_DIV4;
	else if (divisor <= 8)
		val = MATSU_SD_CLKCTL_DIV8;
	else if (divisor <= 16)
		val = MATSU_SD_CLKCTL_DIV16;
	else if (divisor <= 32)
		val = MATSU_SD_CLKCTL_DIV32;
	else if (divisor <= 64)
		val = MATSU_SD_CLKCTL_DIV64;
	else if (divisor <= 128)
		val = MATSU_SD_CLKCTL_DIV128;
	else if (divisor <= 256)
		val = MATSU_SD_CLKCTL_DIV256;
	else if (divisor <= 512 || !(priv->caps & MATSU_SD_CAP_DIV1024))
		val = MATSU_SD_CLKCTL_DIV512;
	else
		val = MATSU_SD_CLKCTL_DIV1024;

	tmp = matsu_sd_readl(priv, MATSU_SD_CLKCTL);
	if (tmp & MATSU_SD_CLKCTL_SCLKEN &&
	    (tmp & MATSU_SD_CLKCTL_DIV_MASK) == val)
		return;

	/* stop the clock before changing its rate to avoid a glitch signal */
	tmp &= ~MATSU_SD_CLKCTL_SCLKEN;
	matsu_sd_writel(priv, tmp, MATSU_SD_CLKCTL);

	tmp &= ~MATSU_SD_CLKCTL_DIV_MASK;
	tmp |= val | MATSU_SD_CLKCTL_OFFEN;
	matsu_sd_writel(priv, tmp, MATSU_SD_CLKCTL);

	tmp |= MATSU_SD_CLKCTL_SCLKEN;
	matsu_sd_writel(priv, tmp, MATSU_SD_CLKCTL);

	udelay(1000);
}

static void matsu_sd_set_pins(struct udevice *dev)
{
	__maybe_unused struct mmc *mmc = mmc_get_mmc_dev(dev);

#ifdef CONFIG_DM_REGULATOR
	struct matsu_sd_priv *priv = dev_get_priv(dev);

	if (priv->vqmmc_dev) {
		if (mmc->signal_voltage == MMC_SIGNAL_VOLTAGE_180)
			regulator_set_value(priv->vqmmc_dev, 1800000);
		else
			regulator_set_value(priv->vqmmc_dev, 3300000);
		regulator_set_enable(priv->vqmmc_dev, true);
	}
#endif

#ifdef CONFIG_PINCTRL
	switch (mmc->selected_mode) {
	case MMC_LEGACY:
	case SD_LEGACY:
	case MMC_HS:
	case SD_HS:
	case MMC_HS_52:
	case MMC_DDR_52:
		pinctrl_select_state(dev, "default");
		break;
	case UHS_SDR12:
	case UHS_SDR25:
	case UHS_SDR50:
	case UHS_DDR50:
	case UHS_SDR104:
	case MMC_HS_200:
		pinctrl_select_state(dev, "state_uhs");
		break;
	default:
		break;
	}
#endif
}

int matsu_sd_set_ios(struct udevice *dev)
{
	struct matsu_sd_priv *priv = dev_get_priv(dev);
	struct mmc *mmc = mmc_get_mmc_dev(dev);
	int ret;

	dev_dbg(dev, "clock %uHz, DDRmode %d, width %u\n",
		mmc->clock, mmc->ddr_mode, mmc->bus_width);

	ret = matsu_sd_set_bus_width(priv, mmc);
	if (ret)
		return ret;
	matsu_sd_set_ddr_mode(priv, mmc);
	matsu_sd_set_clk_rate(priv, mmc);
	matsu_sd_set_pins(dev);

	return 0;
}

int matsu_sd_get_cd(struct udevice *dev)
{
	struct matsu_sd_priv *priv = dev_get_priv(dev);

	if (priv->caps & MATSU_SD_CAP_NONREMOVABLE)
		return 1;

	return !!(matsu_sd_readl(priv, MATSU_SD_INFO1) &
		  MATSU_SD_INFO1_CD);
}

static void matsu_sd_host_init(struct matsu_sd_priv *priv)
{
	u32 tmp;

	/* soft reset of the host */
	tmp = matsu_sd_readl(priv, MATSU_SD_SOFT_RST);
	tmp &= ~MATSU_SD_SOFT_RST_RSTX;
	matsu_sd_writel(priv, tmp, MATSU_SD_SOFT_RST);
	tmp |= MATSU_SD_SOFT_RST_RSTX;
	matsu_sd_writel(priv, tmp, MATSU_SD_SOFT_RST);

	/* FIXME: implement eMMC hw_reset */

	matsu_sd_writel(priv, MATSU_SD_STOP_SEC, MATSU_SD_STOP);

	/*
	 * Connected to 32bit AXI.
	 * This register dropped backward compatibility at version 0x10.
	 * Write an appropriate value depending on the IP version.
	 */
	if (priv->version >= 0x10)
		matsu_sd_writel(priv, 0x101, MATSU_SD_HOST_MODE);
	else
		matsu_sd_writel(priv, 0x0, MATSU_SD_HOST_MODE);

	if (priv->caps & MATSU_SD_CAP_DMA_INTERNAL) {
		tmp = matsu_sd_readl(priv, MATSU_SD_DMA_MODE);
		tmp |= MATSU_SD_DMA_MODE_ADDR_INC;
		matsu_sd_writel(priv, tmp, MATSU_SD_DMA_MODE);
	}
}

int matsu_sd_bind(struct udevice *dev)
{
	struct matsu_sd_plat *plat = dev_get_platdata(dev);

	return mmc_bind(dev, &plat->mmc, &plat->cfg);
}

int matsu_sd_probe(struct udevice *dev, u32 quirks)
{
	struct matsu_sd_plat *plat = dev_get_platdata(dev);
	struct matsu_sd_priv *priv = dev_get_priv(dev);
	struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
	fdt_addr_t base;
	struct clk clk;
	int ret;

	base = devfdt_get_addr(dev);
	if (base == FDT_ADDR_T_NONE)
		return -EINVAL;

	priv->regbase = devm_ioremap(dev, base, SZ_2K);
	if (!priv->regbase)
		return -ENOMEM;

#ifdef CONFIG_DM_REGULATOR
	device_get_supply_regulator(dev, "vqmmc-supply", &priv->vqmmc_dev);
#endif

	ret = clk_get_by_index(dev, 0, &clk);
	if (ret < 0) {
		dev_err(dev, "failed to get host clock\n");
		return ret;
	}

	/* set to max rate */
	priv->mclk = clk_set_rate(&clk, ULONG_MAX);
	if (IS_ERR_VALUE(priv->mclk)) {
		dev_err(dev, "failed to set rate for host clock\n");
		clk_free(&clk);
		return priv->mclk;
	}

	ret = clk_enable(&clk);
	clk_free(&clk);
	if (ret) {
		dev_err(dev, "failed to enable host clock\n");
		return ret;
	}

	ret = mmc_of_parse(dev, &plat->cfg);
	if (ret < 0) {
		dev_err(dev, "failed to parse host caps\n");
		return ret;
	}

	plat->cfg.name = dev->name;
	plat->cfg.host_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;

	if (quirks)
		priv->caps = quirks;

	priv->version = matsu_sd_readl(priv, MATSU_SD_VERSION) &
						MATSU_SD_VERSION_IP;
	dev_dbg(dev, "version %x\n", priv->version);
	if (priv->version >= 0x10) {
		priv->caps |= MATSU_SD_CAP_DMA_INTERNAL;
		priv->caps |= MATSU_SD_CAP_DIV1024;
	}

	if (fdt_get_property(gd->fdt_blob, dev_of_offset(dev), "non-removable",
			     NULL))
		priv->caps |= MATSU_SD_CAP_NONREMOVABLE;

	matsu_sd_host_init(priv);

	plat->cfg.voltages = MMC_VDD_165_195 | MMC_VDD_32_33 | MMC_VDD_33_34;
	plat->cfg.f_min = priv->mclk /
			(priv->caps & MATSU_SD_CAP_DIV1024 ? 1024 : 512);
	plat->cfg.f_max = priv->mclk;
	plat->cfg.b_max = U32_MAX; /* max value of MATSU_SD_SECCNT */

	upriv->mmc = &plat->mmc;

	return 0;
}