summaryrefslogtreecommitdiffstats
path: root/drivers/misc/qfw.c
blob: ea00be88a8d5151926ed2058a818968a067dba4a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
// SPDX-License-Identifier: GPL-2.0+
/*
 * (C) Copyright 2015 Miao Yan <yanmiaobest@gmail.com>
 * (C) Copyright 2021 Asherah Connor <ashe@kivikakk.ee>
 */

#define LOG_CATEGORY UCLASS_QFW

#include <common.h>
#include <command.h>
#include <errno.h>
#include <log.h>
#include <malloc.h>
#include <qfw.h>
#include <dm.h>
#include <misc.h>
#ifdef CONFIG_GENERATE_ACPI_TABLE
#include <asm/tables.h>
#endif

#ifdef CONFIG_GENERATE_ACPI_TABLE
/*
 * This function allocates memory for ACPI tables
 *
 * @entry : BIOS linker command entry which tells where to allocate memory
 *          (either high memory or low memory)
 * @addr  : The address that should be used for low memory allcation. If the
 *          memory allocation request is 'ZONE_HIGH' then this parameter will
 *          be ignored.
 * @return: 0 on success, or negative value on failure
 */
static int bios_linker_allocate(struct udevice *dev,
				struct bios_linker_entry *entry, ulong *addr)
{
	uint32_t size, align;
	struct fw_file *file;
	unsigned long aligned_addr;

	align = le32_to_cpu(entry->alloc.align);
	/* align must be power of 2 */
	if (align & (align - 1)) {
		printf("error: wrong alignment %u\n", align);
		return -EINVAL;
	}

	file = qfw_find_file(dev, entry->alloc.file);
	if (!file) {
		printf("error: can't find file %s\n", entry->alloc.file);
		return -ENOENT;
	}

	size = be32_to_cpu(file->cfg.size);

	/*
	 * ZONE_HIGH means we need to allocate from high memory, since
	 * malloc space is already at the end of RAM, so we directly use it.
	 * If allocation zone is ZONE_FSEG, then we use the 'addr' passed
	 * in which is low memory
	 */
	if (entry->alloc.zone == BIOS_LINKER_LOADER_ALLOC_ZONE_HIGH) {
		aligned_addr = (unsigned long)memalign(align, size);
		if (!aligned_addr) {
			printf("error: allocating resource\n");
			return -ENOMEM;
		}
	} else if (entry->alloc.zone == BIOS_LINKER_LOADER_ALLOC_ZONE_FSEG) {
		aligned_addr = ALIGN(*addr, align);
	} else {
		printf("error: invalid allocation zone\n");
		return -EINVAL;
	}

	debug("bios_linker_allocate: allocate file %s, size %u, zone %d, align %u, addr 0x%lx\n",
	      file->cfg.name, size, entry->alloc.zone, align, aligned_addr);

	qfw_read_entry(dev, be16_to_cpu(file->cfg.select), size,
		       (void *)aligned_addr);
	file->addr = aligned_addr;

	/* adjust address for low memory allocation */
	if (entry->alloc.zone == BIOS_LINKER_LOADER_ALLOC_ZONE_FSEG)
		*addr = (aligned_addr + size);

	return 0;
}

/*
 * This function patches ACPI tables previously loaded
 * by bios_linker_allocate()
 *
 * @entry : BIOS linker command entry which tells how to patch
 *          ACPI tables
 * @return: 0 on success, or negative value on failure
 */
static int bios_linker_add_pointer(struct udevice *dev,
				   struct bios_linker_entry *entry)
{
	struct fw_file *dest, *src;
	uint32_t offset = le32_to_cpu(entry->pointer.offset);
	uint64_t pointer = 0;

	dest = qfw_find_file(dev, entry->pointer.dest_file);
	if (!dest || !dest->addr)
		return -ENOENT;
	src = qfw_find_file(dev, entry->pointer.src_file);
	if (!src || !src->addr)
		return -ENOENT;

	debug("bios_linker_add_pointer: dest->addr 0x%lx, src->addr 0x%lx, offset 0x%x size %u, 0x%llx\n",
	      dest->addr, src->addr, offset, entry->pointer.size, pointer);

	memcpy(&pointer, (char *)dest->addr + offset, entry->pointer.size);
	pointer	= le64_to_cpu(pointer);
	pointer += (unsigned long)src->addr;
	pointer	= cpu_to_le64(pointer);
	memcpy((char *)dest->addr + offset, &pointer, entry->pointer.size);

	return 0;
}

/*
 * This function updates checksum fields of ACPI tables previously loaded
 * by bios_linker_allocate()
 *
 * @entry : BIOS linker command entry which tells where to update ACPI table
 *          checksums
 * @return: 0 on success, or negative value on failure
 */
static int bios_linker_add_checksum(struct udevice *dev,
				    struct bios_linker_entry *entry)
{
	struct fw_file *file;
	uint8_t *data, cksum = 0;
	uint8_t *cksum_start;

	file = qfw_find_file(dev, entry->cksum.file);
	if (!file || !file->addr)
		return -ENOENT;

	data = (uint8_t *)(file->addr + le32_to_cpu(entry->cksum.offset));
	cksum_start = (uint8_t *)(file->addr + le32_to_cpu(entry->cksum.start));
	cksum = table_compute_checksum(cksum_start,
				       le32_to_cpu(entry->cksum.length));
	*data = cksum;

	return 0;
}

/* This function loads and patches ACPI tables provided by QEMU */
ulong write_acpi_tables(ulong addr)
{
	int i, ret;
	struct fw_file *file;
	struct bios_linker_entry *table_loader;
	struct bios_linker_entry *entry;
	uint32_t size;
	struct udevice *dev;

	ret = qfw_get_dev(&dev);
	if (ret) {
		printf("error: no qfw\n");
		return addr;
	}

	/* make sure fw_list is loaded */
	ret = qfw_read_firmware_list(dev);
	if (ret) {
		printf("error: can't read firmware file list\n");
		return addr;
	}

	file = qfw_find_file(dev, "etc/table-loader");
	if (!file) {
		printf("error: can't find etc/table-loader\n");
		return addr;
	}

	size = be32_to_cpu(file->cfg.size);
	if ((size % sizeof(*entry)) != 0) {
		printf("error: table-loader maybe corrupted\n");
		return addr;
	}

	table_loader = malloc(size);
	if (!table_loader) {
		printf("error: no memory for table-loader\n");
		return addr;
	}

	qfw_read_entry(dev, be16_to_cpu(file->cfg.select), size, table_loader);

	for (i = 0; i < (size / sizeof(*entry)); i++) {
		entry = table_loader + i;
		switch (le32_to_cpu(entry->command)) {
		case BIOS_LINKER_LOADER_COMMAND_ALLOCATE:
			ret = bios_linker_allocate(dev, entry, &addr);
			if (ret)
				goto out;
			break;
		case BIOS_LINKER_LOADER_COMMAND_ADD_POINTER:
			ret = bios_linker_add_pointer(dev, entry);
			if (ret)
				goto out;
			break;
		case BIOS_LINKER_LOADER_COMMAND_ADD_CHECKSUM:
			ret = bios_linker_add_checksum(dev, entry);
			if (ret)
				goto out;
			break;
		default:
			break;
		}
	}

out:
	if (ret) {
		struct fw_cfg_file_iter iter;
		for (file = qfw_file_iter_init(dev, &iter);
		     !qfw_file_iter_end(&iter);
		     file = qfw_file_iter_next(&iter)) {
			if (file->addr) {
				free((void *)file->addr);
				file->addr = 0;
			}
		}
	}

	free(table_loader);
	return addr;
}

ulong acpi_get_rsdp_addr(void)
{
	int ret;
	struct fw_file *file;
	struct udevice *dev;

	ret = qfw_get_dev(&dev);
	if (ret) {
		printf("error: no qfw\n");
		return 0;
	}

	file = qfw_find_file(dev, "etc/acpi/rsdp");
	return file->addr;
}
#endif

static void qfw_read_entry_io(struct qfw_dev *qdev, u16 entry, u32 size,
			      void *address)
{
	struct dm_qfw_ops *ops = dm_qfw_get_ops(qdev->dev);

	debug("%s: entry 0x%x, size %u address %p\n", __func__, entry, size,
	      address);

	ops->read_entry_io(qdev->dev, entry, size, address);
}

static void qfw_read_entry_dma(struct qfw_dev *qdev, u16 entry, u32 size,
			       void *address)
{
	struct dm_qfw_ops *ops = dm_qfw_get_ops(qdev->dev);

	struct qfw_dma dma = {
		.length = cpu_to_be32(size),
		.address = cpu_to_be64((uintptr_t)address),
		.control = cpu_to_be32(FW_CFG_DMA_READ),
	};

	/*
	 * writing FW_CFG_INVALID will cause read operation to resume at last
	 * offset, otherwise read will start at offset 0
	 */
	if (entry != FW_CFG_INVALID)
		dma.control |= cpu_to_be32(FW_CFG_DMA_SELECT | (entry << 16));

	debug("%s: entry 0x%x, size %u address %p, control 0x%x\n", __func__,
	      entry, size, address, be32_to_cpu(dma.control));

	barrier();

	ops->read_entry_dma(qdev->dev, &dma);
}

void qfw_read_entry(struct udevice *dev, u16 entry, u32 size, void *address)
{
	struct qfw_dev *qdev = dev_get_uclass_priv(dev);

	if (qdev->dma_present)
		qfw_read_entry_dma(qdev, entry, size, address);
	else
		qfw_read_entry_io(qdev, entry, size, address);
}

int qfw_register(struct udevice *dev)
{
	struct qfw_dev *qdev = dev_get_uclass_priv(dev);
	u32 qemu, dma_enabled;

	qdev->dev = dev;
	INIT_LIST_HEAD(&qdev->fw_list);

	qfw_read_entry_io(qdev, FW_CFG_SIGNATURE, 4, &qemu);
	if (be32_to_cpu(qemu) != QEMU_FW_CFG_SIGNATURE)
		return -ENODEV;

	qfw_read_entry_io(qdev, FW_CFG_ID, 1, &dma_enabled);
	if (dma_enabled & FW_CFG_DMA_ENABLED)
		qdev->dma_present = true;

	return 0;
}

UCLASS_DRIVER(qfw) = {
	.id		= UCLASS_QFW,
	.name		= "qfw",
	.per_device_auto	= sizeof(struct qfw_dev),
};