1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
|
// SPDX-License-Identifier: GPL-2.0
/*
* From coreboot southbridge/intel/bd82x6x/lpc.c
*
* Copyright (C) 2008-2009 coresystems GmbH
*/
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <fdtdec.h>
#include <log.h>
#include <rtc.h>
#include <pci.h>
#include <asm/intel_regs.h>
#include <asm/interrupt.h>
#include <asm/io.h>
#include <asm/ioapic.h>
#include <asm/lpc_common.h>
#include <asm/pci.h>
#include <asm/arch/pch.h>
DECLARE_GLOBAL_DATA_PTR;
#define NMI_OFF 0
#define ENABLE_ACPI_MODE_IN_COREBOOT 0
#define TEST_SMM_FLASH_LOCKDOWN 0
static int pch_enable_apic(struct udevice *pch)
{
u32 reg32;
int i;
/* Enable ACPI I/O and power management. Set SCI IRQ to IRQ9 */
dm_pci_write_config8(pch, ACPI_CNTL, 0x80);
writel(0, IO_APIC_INDEX);
writel(1 << 25, IO_APIC_DATA);
/* affirm full set of redirection table entries ("write once") */
writel(1, IO_APIC_INDEX);
reg32 = readl(IO_APIC_DATA);
writel(1, IO_APIC_INDEX);
writel(reg32, IO_APIC_DATA);
writel(0, IO_APIC_INDEX);
reg32 = readl(IO_APIC_DATA);
debug("PCH APIC ID = %x\n", (reg32 >> 24) & 0x0f);
if (reg32 != (1 << 25)) {
printf("APIC Error - cannot write to registers\n");
return -EPERM;
}
debug("Dumping IOAPIC registers\n");
for (i = 0; i < 3; i++) {
writel(i, IO_APIC_INDEX);
debug(" reg 0x%04x:", i);
reg32 = readl(IO_APIC_DATA);
debug(" 0x%08x\n", reg32);
}
/* Select Boot Configuration register. */
writel(3, IO_APIC_INDEX);
/* Use Processor System Bus to deliver interrupts. */
writel(1, IO_APIC_DATA);
return 0;
}
static void pch_enable_serial_irqs(struct udevice *pch)
{
u32 value;
/* Set packet length and toggle silent mode bit for one frame. */
value = (1 << 7) | (1 << 6) | ((21 - 17) << 2) | (0 << 0);
#ifdef CONFIG_SERIRQ_CONTINUOUS_MODE
dm_pci_write_config8(pch, SERIRQ_CNTL, value);
#else
dm_pci_write_config8(pch, SERIRQ_CNTL, value | (1 << 6));
#endif
}
static int pch_pirq_init(struct udevice *pch)
{
uint8_t route[8], *ptr;
if (fdtdec_get_byte_array(gd->fdt_blob, dev_of_offset(pch),
"intel,pirq-routing", route, sizeof(route)))
return -EINVAL;
ptr = route;
dm_pci_write_config8(pch, PIRQA_ROUT, *ptr++);
dm_pci_write_config8(pch, PIRQB_ROUT, *ptr++);
dm_pci_write_config8(pch, PIRQC_ROUT, *ptr++);
dm_pci_write_config8(pch, PIRQD_ROUT, *ptr++);
dm_pci_write_config8(pch, PIRQE_ROUT, *ptr++);
dm_pci_write_config8(pch, PIRQF_ROUT, *ptr++);
dm_pci_write_config8(pch, PIRQG_ROUT, *ptr++);
dm_pci_write_config8(pch, PIRQH_ROUT, *ptr++);
/*
* TODO(sjg@chromium.org): U-Boot does not set up the interrupts
* here. It's unclear if it is needed
*/
return 0;
}
static int pch_gpi_routing(struct udevice *pch)
{
u8 route[16];
u32 reg;
int gpi;
if (fdtdec_get_byte_array(gd->fdt_blob, dev_of_offset(pch),
"intel,gpi-routing", route, sizeof(route)))
return -EINVAL;
for (reg = 0, gpi = 0; gpi < ARRAY_SIZE(route); gpi++)
reg |= route[gpi] << (gpi * 2);
dm_pci_write_config32(pch, 0xb8, reg);
return 0;
}
static int pch_power_options(struct udevice *pch)
{
const void *blob = gd->fdt_blob;
int node = dev_of_offset(pch);
u8 reg8;
u16 reg16, pmbase;
u32 reg32;
const char *state;
int pwr_on;
int nmi_option;
int ret;
/*
* Which state do we want to goto after g3 (power restored)?
* 0 == S0 Full On
* 1 == S5 Soft Off
*
* If the option is not existent (Laptops), use Kconfig setting.
* TODO(sjg@chromium.org): Make this configurable
*/
pwr_on = MAINBOARD_POWER_ON;
dm_pci_read_config16(pch, GEN_PMCON_3, ®16);
reg16 &= 0xfffe;
switch (pwr_on) {
case MAINBOARD_POWER_OFF:
reg16 |= 1;
state = "off";
break;
case MAINBOARD_POWER_ON:
reg16 &= ~1;
state = "on";
break;
case MAINBOARD_POWER_KEEP:
reg16 &= ~1;
state = "state keep";
break;
default:
state = "undefined";
}
reg16 &= ~(3 << 4); /* SLP_S4# Assertion Stretch 4s */
reg16 |= (1 << 3); /* SLP_S4# Assertion Stretch Enable */
reg16 &= ~(1 << 10);
reg16 |= (1 << 11); /* SLP_S3# Min Assertion Width 50ms */
reg16 |= (1 << 12); /* Disable SLP stretch after SUS well */
dm_pci_write_config16(pch, GEN_PMCON_3, reg16);
debug("Set power %s after power failure.\n", state);
/* Set up NMI on errors. */
reg8 = inb(0x61);
reg8 &= 0x0f; /* Higher Nibble must be 0 */
reg8 &= ~(1 << 3); /* IOCHK# NMI Enable */
reg8 |= (1 << 2); /* PCI SERR# Disable for now */
outb(reg8, 0x61);
reg8 = inb(0x70);
/* TODO(sjg@chromium.org): Make this configurable */
nmi_option = NMI_OFF;
if (nmi_option) {
debug("NMI sources enabled.\n");
reg8 &= ~(1 << 7); /* Set NMI. */
} else {
debug("NMI sources disabled.\n");
/* Can't mask NMI from PCI-E and NMI_NOW */
reg8 |= (1 << 7);
}
outb(reg8, 0x70);
/* Enable CPU_SLP# and Intel Speedstep, set SMI# rate down */
dm_pci_read_config16(pch, GEN_PMCON_1, ®16);
reg16 &= ~(3 << 0); /* SMI# rate 1 minute */
reg16 &= ~(1 << 10); /* Disable BIOS_PCI_EXP_EN for native PME */
#if DEBUG_PERIODIC_SMIS
/* Set DEBUG_PERIODIC_SMIS in pch.h to debug using periodic SMIs */
reg16 |= (3 << 0); /* Periodic SMI every 8s */
#endif
dm_pci_write_config16(pch, GEN_PMCON_1, reg16);
/* Set the board's GPI routing. */
ret = pch_gpi_routing(pch);
if (ret)
return ret;
dm_pci_read_config16(pch, 0x40, &pmbase);
pmbase &= 0xfffe;
writel(fdtdec_get_int(blob, node, "intel,gpe0-enable", 0),
(ulong)pmbase + GPE0_EN);
writew(fdtdec_get_int(blob, node, "intel,alt-gp-smi-enable", 0),
(ulong)pmbase + ALT_GP_SMI_EN);
/* Set up power management block and determine sleep mode */
reg32 = inl(pmbase + 0x04); /* PM1_CNT */
reg32 &= ~(7 << 10); /* SLP_TYP */
reg32 |= (1 << 0); /* SCI_EN */
outl(reg32, pmbase + 0x04);
/* Clear magic status bits to prevent unexpected wake */
setbits_le32(RCB_REG(0x3310), (1 << 4) | (1 << 5) | (1 << 0));
clrbits_le32(RCB_REG(0x3f02), 0xf);
return 0;
}
static void pch_rtc_init(struct udevice *pch)
{
int rtc_failed;
u8 reg8;
dm_pci_read_config8(pch, GEN_PMCON_3, ®8);
rtc_failed = reg8 & RTC_BATTERY_DEAD;
if (rtc_failed) {
reg8 &= ~RTC_BATTERY_DEAD;
dm_pci_write_config8(pch, GEN_PMCON_3, reg8);
}
debug("rtc_failed = 0x%x\n", rtc_failed);
/* TODO: Handle power failure */
if (rtc_failed)
printf("RTC power failed\n");
}
/* CougarPoint PCH Power Management init */
static void cpt_pm_init(struct udevice *pch)
{
debug("CougarPoint PM init\n");
dm_pci_write_config8(pch, 0xa9, 0x47);
setbits_le32(RCB_REG(0x2238), (1 << 6) | (1 << 0));
setbits_le32(RCB_REG(0x228c), 1 << 0);
setbits_le32(RCB_REG(0x1100), (1 << 13) | (1 << 14));
setbits_le32(RCB_REG(0x0900), 1 << 14);
writel(0xc0388400, RCB_REG(0x2304));
setbits_le32(RCB_REG(0x2314), (1 << 5) | (1 << 18));
setbits_le32(RCB_REG(0x2320), (1 << 15) | (1 << 1));
clrsetbits_le32(RCB_REG(0x3314), ~0x1f, 0xf);
writel(0x050f0000, RCB_REG(0x3318));
writel(0x04000000, RCB_REG(0x3324));
setbits_le32(RCB_REG(0x3340), 0xfffff);
setbits_le32(RCB_REG(0x3344), 1 << 1);
writel(0x0001c000, RCB_REG(0x3360));
writel(0x00061100, RCB_REG(0x3368));
writel(0x7f8fdfff, RCB_REG(0x3378));
writel(0x000003fc, RCB_REG(0x337c));
writel(0x00001000, RCB_REG(0x3388));
writel(0x0001c000, RCB_REG(0x3390));
writel(0x00000800, RCB_REG(0x33a0));
writel(0x00001000, RCB_REG(0x33b0));
writel(0x00093900, RCB_REG(0x33c0));
writel(0x24653002, RCB_REG(0x33cc));
writel(0x062108fe, RCB_REG(0x33d0));
clrsetbits_le32(RCB_REG(0x33d4), 0x0fff0fff, 0x00670060);
writel(0x01010000, RCB_REG(0x3a28));
writel(0x01010404, RCB_REG(0x3a2c));
writel(0x01041041, RCB_REG(0x3a80));
clrsetbits_le32(RCB_REG(0x3a84), 0x0000ffff, 0x00001001);
setbits_le32(RCB_REG(0x3a84), 1 << 24); /* SATA 2/3 disabled */
setbits_le32(RCB_REG(0x3a88), 1 << 0); /* SATA 4/5 disabled */
writel(0x00000001, RCB_REG(0x3a6c));
clrsetbits_le32(RCB_REG(0x2344), ~0x00ffff00, 0xff00000c);
clrsetbits_le32(RCB_REG(0x80c), 0xff << 20, 0x11 << 20);
writel(0, RCB_REG(0x33c8));
setbits_le32(RCB_REG(0x21b0), 0xf);
}
/* PantherPoint PCH Power Management init */
static void ppt_pm_init(struct udevice *pch)
{
debug("PantherPoint PM init\n");
dm_pci_write_config8(pch, 0xa9, 0x47);
setbits_le32(RCB_REG(0x2238), 1 << 0);
setbits_le32(RCB_REG(0x228c), 1 << 0);
setbits_le16(RCB_REG(0x1100), (1 << 13) | (1 << 14));
setbits_le16(RCB_REG(0x0900), 1 << 14);
writel(0xc03b8400, RCB_REG(0x2304));
setbits_le32(RCB_REG(0x2314), (1 << 5) | (1 << 18));
setbits_le32(RCB_REG(0x2320), (1 << 15) | (1 << 1));
clrsetbits_le32(RCB_REG(0x3314), 0x1f, 0xf);
writel(0x054f0000, RCB_REG(0x3318));
writel(0x04000000, RCB_REG(0x3324));
setbits_le32(RCB_REG(0x3340), 0xfffff);
setbits_le32(RCB_REG(0x3344), (1 << 1) | (1 << 0));
writel(0x0001c000, RCB_REG(0x3360));
writel(0x00061100, RCB_REG(0x3368));
writel(0x7f8fdfff, RCB_REG(0x3378));
writel(0x000003fd, RCB_REG(0x337c));
writel(0x00001000, RCB_REG(0x3388));
writel(0x0001c000, RCB_REG(0x3390));
writel(0x00000800, RCB_REG(0x33a0));
writel(0x00001000, RCB_REG(0x33b0));
writel(0x00093900, RCB_REG(0x33c0));
writel(0x24653002, RCB_REG(0x33cc));
writel(0x067388fe, RCB_REG(0x33d0));
clrsetbits_le32(RCB_REG(0x33d4), 0x0fff0fff, 0x00670060);
writel(0x01010000, RCB_REG(0x3a28));
writel(0x01010404, RCB_REG(0x3a2c));
writel(0x01040000, RCB_REG(0x3a80));
clrsetbits_le32(RCB_REG(0x3a84), 0x0000ffff, 0x00001001);
/* SATA 2/3 disabled */
setbits_le32(RCB_REG(0x3a84), 1 << 24);
/* SATA 4/5 disabled */
setbits_le32(RCB_REG(0x3a88), 1 << 0);
writel(0x00000001, RCB_REG(0x3a6c));
clrsetbits_le32(RCB_REG(0x2344), 0xff0000ff, 0xff00000c);
clrsetbits_le32(RCB_REG(0x80c), 0xff << 20, 0x11 << 20);
setbits_le32(RCB_REG(0x33a4), (1 << 0));
writel(0, RCB_REG(0x33c8));
setbits_le32(RCB_REG(0x21b0), 0xf);
}
static void enable_hpet(void)
{
/* Move HPET to default address 0xfed00000 and enable it */
clrsetbits_le32(RCB_REG(HPTC), 3 << 0, 1 << 7);
}
static void enable_clock_gating(struct udevice *pch)
{
u32 reg32;
u16 reg16;
setbits_le32(RCB_REG(0x2234), 0xf);
dm_pci_read_config16(pch, GEN_PMCON_1, ®16);
reg16 |= (1 << 2) | (1 << 11);
dm_pci_write_config16(pch, GEN_PMCON_1, reg16);
pch_iobp_update(pch, 0xeb007f07, ~0U, 1 << 31);
pch_iobp_update(pch, 0xeb004000, ~0U, 1 << 7);
pch_iobp_update(pch, 0xec007f07, ~0U, 1 << 31);
pch_iobp_update(pch, 0xec004000, ~0U, 1 << 7);
reg32 = readl(RCB_REG(CG));
reg32 |= (1 << 31);
reg32 |= (1 << 29) | (1 << 28);
reg32 |= (1 << 27) | (1 << 26) | (1 << 25) | (1 << 24);
reg32 |= (1 << 16);
reg32 |= (1 << 17);
reg32 |= (1 << 18);
reg32 |= (1 << 22);
reg32 |= (1 << 23);
reg32 &= ~(1 << 20);
reg32 |= (1 << 19);
reg32 |= (1 << 0);
reg32 |= (0xf << 1);
writel(reg32, RCB_REG(CG));
setbits_le32(RCB_REG(0x38c0), 0x7);
setbits_le32(RCB_REG(0x36d4), 0x6680c004);
setbits_le32(RCB_REG(0x3564), 0x3);
}
static void pch_disable_smm_only_flashing(struct udevice *pch)
{
u8 reg8;
debug("Enabling BIOS updates outside of SMM... ");
dm_pci_read_config8(pch, 0xdc, ®8); /* BIOS_CNTL */
reg8 &= ~(1 << 5);
dm_pci_write_config8(pch, 0xdc, reg8);
}
static void pch_fixups(struct udevice *pch)
{
u8 gen_pmcon_2;
/* Indicate DRAM init done for MRC S3 to know it can resume */
dm_pci_read_config8(pch, GEN_PMCON_2, &gen_pmcon_2);
gen_pmcon_2 |= (1 << 7);
dm_pci_write_config8(pch, GEN_PMCON_2, gen_pmcon_2);
/* Enable DMI ASPM in the PCH */
clrbits_le32(RCB_REG(0x2304), 1 << 10);
setbits_le32(RCB_REG(0x21a4), (1 << 11) | (1 << 10));
setbits_le32(RCB_REG(0x21a8), 0x3);
}
static void set_spi_speed(void)
{
u32 fdod;
/* Observe SPI Descriptor Component Section 0 */
writel(0x1000, RCB_REG(SPI_DESC_COMP0));
/* Extract the1 Write/Erase SPI Frequency from descriptor */
fdod = readl(RCB_REG(SPI_FREQ_WR_ERA));
fdod >>= 24;
fdod &= 7;
/* Set Software Sequence frequency to match */
clrsetbits_8(RCB_REG(SPI_FREQ_SWSEQ), 7, fdod);
}
static int lpc_init_extra(struct udevice *dev)
{
struct udevice *pch = dev->parent;
debug("pch: lpc_init\n");
dm_pci_write_bar32(pch, 0, 0);
dm_pci_write_bar32(pch, 1, 0xff800000);
dm_pci_write_bar32(pch, 2, 0xfec00000);
dm_pci_write_bar32(pch, 3, 0x800);
dm_pci_write_bar32(pch, 4, 0x900);
/* Set the value for PCI command register. */
dm_pci_write_config16(pch, PCI_COMMAND, 0x000f);
/* IO APIC initialization. */
pch_enable_apic(pch);
pch_enable_serial_irqs(pch);
/* Setup the PIRQ. */
pch_pirq_init(pch);
/* Setup power options. */
pch_power_options(pch);
/* Initialize power management */
switch (pch_silicon_type(pch)) {
case PCH_TYPE_CPT: /* CougarPoint */
cpt_pm_init(pch);
break;
case PCH_TYPE_PPT: /* PantherPoint */
ppt_pm_init(pch);
break;
default:
printf("Unknown Chipset: %s\n", pch->name);
return -ENOSYS;
}
/* Initialize the real time clock. */
pch_rtc_init(pch);
/* Initialize the High Precision Event Timers, if present. */
enable_hpet();
/* Initialize Clock Gating */
enable_clock_gating(pch);
pch_disable_smm_only_flashing(pch);
pch_fixups(pch);
return 0;
}
static int bd82x6x_lpc_early_init(struct udevice *dev)
{
set_spi_speed();
/* Setting up Southbridge. In the northbridge code. */
debug("Setting up static southbridge registers\n");
dm_pci_write_config32(dev->parent, PCH_RCBA_BASE,
RCB_BASE_ADDRESS | 1);
dm_pci_write_config32(dev->parent, PMBASE, DEFAULT_PMBASE | 1);
/* Enable ACPI BAR */
dm_pci_write_config8(dev->parent, ACPI_CNTL, 0x80);
debug("Disabling watchdog reboot\n");
setbits_le32(RCB_REG(GCS), 1 >> 5); /* No reset */
outw(1 << 11, DEFAULT_PMBASE | 0x60 | 0x08); /* halt timer */
dm_pci_write_config32(dev->parent, GPIO_BASE, DEFAULT_GPIOBASE | 1);
dm_pci_write_config32(dev->parent, GPIO_CNTL, 0x10);
return 0;
}
static int bd82x6x_lpc_probe(struct udevice *dev)
{
int ret;
if (!(gd->flags & GD_FLG_RELOC)) {
ret = lpc_common_early_init(dev);
if (ret) {
debug("%s: lpc_early_init() failed\n", __func__);
return ret;
}
return bd82x6x_lpc_early_init(dev);
}
return lpc_init_extra(dev);
}
static const struct udevice_id bd82x6x_lpc_ids[] = {
{ .compatible = "intel,bd82x6x-lpc" },
{ }
};
U_BOOT_DRIVER(bd82x6x_lpc_drv) = {
.name = "lpc",
.id = UCLASS_LPC,
.of_match = bd82x6x_lpc_ids,
.probe = bd82x6x_lpc_probe,
};
|