summaryrefslogtreecommitdiffstats
path: root/arch/arm/mach-tegra/tegra20/emc.c
blob: ed2462ab0fa6d94286f216f03a38f8281a938c6e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
/*
 * Copyright (c) 2011 The Chromium OS Authors.
 *
 * SPDX-License-Identifier:	GPL-2.0+
 */

#include <common.h>
#include <fdtdec.h>
#include <asm/io.h>
#include <asm/arch-tegra/ap.h>
#include <asm/arch-tegra/apb_misc.h>
#include <asm/arch/clock.h>
#include <asm/arch/emc.h>
#include <asm/arch/tegra.h>

/*
 * The EMC registers have shadow registers.  When the EMC clock is updated
 * in the clock controller, the shadow registers are copied to the active
 * registers, allowing glitchless memory bus frequency changes.
 * This function updates the shadow registers for a new clock frequency,
 * and relies on the clock lock on the emc clock to avoid races between
 * multiple frequency changes
 */

/*
 * This table defines the ordering of the registers provided to
 * tegra_set_mmc()
 * TODO: Convert to fdt version once available
 */
static const unsigned long emc_reg_addr[TEGRA_EMC_NUM_REGS] = {
	0x2c,	/* RC */
	0x30,	/* RFC */
	0x34,	/* RAS */
	0x38,	/* RP */
	0x3c,	/* R2W */
	0x40,	/* W2R */
	0x44,	/* R2P */
	0x48,	/* W2P */
	0x4c,	/* RD_RCD */
	0x50,	/* WR_RCD */
	0x54,	/* RRD */
	0x58,	/* REXT */
	0x5c,	/* WDV */
	0x60,	/* QUSE */
	0x64,	/* QRST */
	0x68,	/* QSAFE */
	0x6c,	/* RDV */
	0x70,	/* REFRESH */
	0x74,	/* BURST_REFRESH_NUM */
	0x78,	/* PDEX2WR */
	0x7c,	/* PDEX2RD */
	0x80,	/* PCHG2PDEN */
	0x84,	/* ACT2PDEN */
	0x88,	/* AR2PDEN */
	0x8c,	/* RW2PDEN */
	0x90,	/* TXSR */
	0x94,	/* TCKE */
	0x98,	/* TFAW */
	0x9c,	/* TRPAB */
	0xa0,	/* TCLKSTABLE */
	0xa4,	/* TCLKSTOP */
	0xa8,	/* TREFBW */
	0xac,	/* QUSE_EXTRA */
	0x114,	/* FBIO_CFG6 */
	0xb0,	/* ODT_WRITE */
	0xb4,	/* ODT_READ */
	0x104,	/* FBIO_CFG5 */
	0x2bc,	/* CFG_DIG_DLL */
	0x2c0,	/* DLL_XFORM_DQS */
	0x2c4,	/* DLL_XFORM_QUSE */
	0x2e0,	/* ZCAL_REF_CNT */
	0x2e4,	/* ZCAL_WAIT_CNT */
	0x2a8,	/* AUTO_CAL_INTERVAL */
	0x2d0,	/* CFG_CLKTRIM_0 */
	0x2d4,	/* CFG_CLKTRIM_1 */
	0x2d8,	/* CFG_CLKTRIM_2 */
};

struct emc_ctlr *emc_get_controller(const void *blob)
{
	fdt_addr_t addr;
	int node;

	node = fdtdec_next_compatible(blob, 0, COMPAT_NVIDIA_TEGRA20_EMC);
	if (node > 0) {
		addr = fdtdec_get_addr(blob, node, "reg");
		if (addr != FDT_ADDR_T_NONE)
			return (struct emc_ctlr *)addr;
	}
	return NULL;
}

/* Error codes we use */
enum {
	ERR_NO_EMC_NODE = -10,
	ERR_NO_EMC_REG,
	ERR_NO_FREQ,
	ERR_FREQ_NOT_FOUND,
	ERR_BAD_REGS,
	ERR_NO_RAM_CODE,
	ERR_RAM_CODE_NOT_FOUND,
};

/**
 * Find EMC tables for the given ram code.
 *
 * The tegra EMC binding has two options, one using the ram code and one not.
 * We detect which is in use by looking for the nvidia,use-ram-code property.
 * If this is not present, then the EMC tables are directly below 'node',
 * otherwise we select the correct emc-tables subnode based on the 'ram_code'
 * value.
 *
 * @param blob		Device tree blob
 * @param node		EMC node (nvidia,tegra20-emc compatible string)
 * @param ram_code	RAM code to select (0-3, or -1 if unknown)
 * @return 0 if ok, otherwise a -ve ERR_ code (see enum above)
 */
static int find_emc_tables(const void *blob, int node, int ram_code)
{
	int need_ram_code;
	int depth;
	int offset;

	/* If we are using RAM codes, scan through the tables for our code */
	need_ram_code = fdtdec_get_bool(blob, node, "nvidia,use-ram-code");
	if (!need_ram_code)
		return node;
	if (ram_code == -1) {
		debug("%s: RAM code required but not supplied\n", __func__);
		return ERR_NO_RAM_CODE;
	}

	offset = node;
	depth = 0;
	do {
		/*
		 * Sadly there is no compatible string so we cannot use
		 * fdtdec_next_compatible_subnode().
		 */
		offset = fdt_next_node(blob, offset, &depth);
		if (depth <= 0)
			break;

		/* Make sure this is a direct subnode */
		if (depth != 1)
			continue;
		if (strcmp("emc-tables", fdt_get_name(blob, offset, NULL)))
			continue;

		if (fdtdec_get_int(blob, offset, "nvidia,ram-code", -1)
				== ram_code)
			return offset;
	} while (1);

	debug("%s: Could not find tables for RAM code %d\n", __func__,
	      ram_code);
	return ERR_RAM_CODE_NOT_FOUND;
}

/**
 * Decode the EMC node of the device tree, returning a pointer to the emc
 * controller and the table to be used for the given rate.
 *
 * @param blob	Device tree blob
 * @param rate	Clock speed of memory controller in Hz (=2x memory bus rate)
 * @param emcp	Returns address of EMC controller registers
 * @param tablep Returns pointer to table to program into EMC. There are
 *		TEGRA_EMC_NUM_REGS entries, destined for offsets as per the
 *		emc_reg_addr array.
 * @return 0 if ok, otherwise a -ve error code which will allow someone to
 * figure out roughly what went wrong by looking at this code.
 */
static int decode_emc(const void *blob, unsigned rate, struct emc_ctlr **emcp,
		      const u32 **tablep)
{
	struct apb_misc_pp_ctlr *pp =
		(struct apb_misc_pp_ctlr *)NV_PA_APB_MISC_BASE;
	int ram_code;
	int depth;
	int node;

	ram_code = (readl(&pp->strapping_opt_a) & RAM_CODE_MASK)
			>> RAM_CODE_SHIFT;
	/*
	 * The EMC clock rate is twice the bus rate, and the bus rate is
	 * measured in kHz
	 */
	rate = rate / 2 / 1000;

	node = fdtdec_next_compatible(blob, 0, COMPAT_NVIDIA_TEGRA20_EMC);
	if (node < 0) {
		debug("%s: No EMC node found in FDT\n", __func__);
		return ERR_NO_EMC_NODE;
	}
	*emcp = (struct emc_ctlr *)fdtdec_get_addr(blob, node, "reg");
	if (*emcp == (struct emc_ctlr *)FDT_ADDR_T_NONE) {
		debug("%s: No EMC node reg property\n", __func__);
		return ERR_NO_EMC_REG;
	}

	/* Work out the parent node which contains our EMC tables */
	node = find_emc_tables(blob, node, ram_code & 3);
	if (node < 0)
		return node;

	depth = 0;
	for (;;) {
		int node_rate;

		node = fdtdec_next_compatible_subnode(blob, node,
				COMPAT_NVIDIA_TEGRA20_EMC_TABLE, &depth);
		if (node < 0)
			break;
		node_rate = fdtdec_get_int(blob, node, "clock-frequency", -1);
		if (node_rate == -1) {
			debug("%s: Missing clock-frequency\n", __func__);
			return ERR_NO_FREQ; /* we expect this property */
		}

		if (node_rate == rate)
			break;
	}
	if (node < 0) {
		debug("%s: No node found for clock frequency %d\n", __func__,
		      rate);
		return ERR_FREQ_NOT_FOUND;
	}

	*tablep = fdtdec_locate_array(blob, node, "nvidia,emc-registers",
				      TEGRA_EMC_NUM_REGS);
	if (!*tablep) {
		debug("%s: node '%s' array missing / wrong size\n", __func__,
		      fdt_get_name(blob, node, NULL));
		return ERR_BAD_REGS;
	}

	/* All seems well */
	return 0;
}

int tegra_set_emc(const void *blob, unsigned rate)
{
	struct emc_ctlr *emc;
	const u32 *table = NULL;
	int err, i;

	err = decode_emc(blob, rate, &emc, &table);
	if (err) {
		debug("Warning: no valid EMC (%d), memory timings unset\n",
		       err);
		return err;
	}

	debug("%s: Table found, setting EMC values as follows:\n", __func__);
	for (i = 0; i < TEGRA_EMC_NUM_REGS; i++) {
		u32 value = fdt32_to_cpu(table[i]);
		u32 addr = (uintptr_t)emc + emc_reg_addr[i];

		debug("   %#x: %#x\n", addr, value);
		writel(value, addr);
	}

	/* trigger emc with new settings */
	clock_adjust_periph_pll_div(PERIPH_ID_EMC, CLOCK_ID_MEMORY,
				clock_get_rate(CLOCK_ID_MEMORY), NULL);
	debug("EMC clock set to %lu\n",
	      clock_get_periph_rate(PERIPH_ID_EMC, CLOCK_ID_MEMORY));

	return 0;
}