summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/nand/raw/atmel_nand.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mtd/nand/raw/atmel_nand.c')
-rw-r--r--drivers/mtd/nand/raw/atmel_nand.c1511
1 files changed, 1511 insertions, 0 deletions
diff --git a/drivers/mtd/nand/raw/atmel_nand.c b/drivers/mtd/nand/raw/atmel_nand.c
new file mode 100644
index 0000000000..a5b76e1aa0
--- /dev/null
+++ b/drivers/mtd/nand/raw/atmel_nand.c
@@ -0,0 +1,1511 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * (C) Copyright 2007-2008
+ * Stelian Pop <stelian@popies.net>
+ * Lead Tech Design <www.leadtechdesign.com>
+ *
+ * (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
+ *
+ * Add Programmable Multibit ECC support for various AT91 SoC
+ * (C) Copyright 2012 ATMEL, Hong Xu
+ */
+
+#include <common.h>
+#include <asm/gpio.h>
+#include <asm/arch/gpio.h>
+
+#include <malloc.h>
+#include <nand.h>
+#include <watchdog.h>
+#include <linux/mtd/nand_ecc.h>
+
+#ifdef CONFIG_ATMEL_NAND_HWECC
+
+/* Register access macros */
+#define ecc_readl(add, reg) \
+ readl(add + ATMEL_ECC_##reg)
+#define ecc_writel(add, reg, value) \
+ writel((value), add + ATMEL_ECC_##reg)
+
+#include "atmel_nand_ecc.h" /* Hardware ECC registers */
+
+#ifdef CONFIG_ATMEL_NAND_HW_PMECC
+
+#ifdef CONFIG_SPL_BUILD
+#undef CONFIG_SYS_NAND_ONFI_DETECTION
+#endif
+
+struct atmel_nand_host {
+ struct pmecc_regs __iomem *pmecc;
+ struct pmecc_errloc_regs __iomem *pmerrloc;
+ void __iomem *pmecc_rom_base;
+
+ u8 pmecc_corr_cap;
+ u16 pmecc_sector_size;
+ u32 pmecc_index_table_offset;
+ u32 pmecc_version;
+
+ int pmecc_bytes_per_sector;
+ int pmecc_sector_number;
+ int pmecc_degree; /* Degree of remainders */
+ int pmecc_cw_len; /* Length of codeword */
+
+ /* lookup table for alpha_to and index_of */
+ void __iomem *pmecc_alpha_to;
+ void __iomem *pmecc_index_of;
+
+ /* data for pmecc computation */
+ int16_t *pmecc_smu;
+ int16_t *pmecc_partial_syn;
+ int16_t *pmecc_si;
+ int16_t *pmecc_lmu; /* polynomal order */
+ int *pmecc_mu;
+ int *pmecc_dmu;
+ int *pmecc_delta;
+};
+
+static struct atmel_nand_host pmecc_host;
+static struct nand_ecclayout atmel_pmecc_oobinfo;
+
+/*
+ * Return number of ecc bytes per sector according to sector size and
+ * correction capability
+ *
+ * Following table shows what at91 PMECC supported:
+ * Correction Capability Sector_512_bytes Sector_1024_bytes
+ * ===================== ================ =================
+ * 2-bits 4-bytes 4-bytes
+ * 4-bits 7-bytes 7-bytes
+ * 8-bits 13-bytes 14-bytes
+ * 12-bits 20-bytes 21-bytes
+ * 24-bits 39-bytes 42-bytes
+ * 32-bits 52-bytes 56-bytes
+ */
+static int pmecc_get_ecc_bytes(int cap, int sector_size)
+{
+ int m = 12 + sector_size / 512;
+ return (m * cap + 7) / 8;
+}
+
+static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
+ int oobsize, int ecc_len)
+{
+ int i;
+
+ layout->eccbytes = ecc_len;
+
+ /* ECC will occupy the last ecc_len bytes continuously */
+ for (i = 0; i < ecc_len; i++)
+ layout->eccpos[i] = oobsize - ecc_len + i;
+
+ layout->oobfree[0].offset = 2;
+ layout->oobfree[0].length =
+ oobsize - ecc_len - layout->oobfree[0].offset;
+}
+
+static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
+{
+ int table_size;
+
+ table_size = host->pmecc_sector_size == 512 ?
+ PMECC_INDEX_TABLE_SIZE_512 : PMECC_INDEX_TABLE_SIZE_1024;
+
+ /* the ALPHA lookup table is right behind the INDEX lookup table. */
+ return host->pmecc_rom_base + host->pmecc_index_table_offset +
+ table_size * sizeof(int16_t);
+}
+
+static void pmecc_data_free(struct atmel_nand_host *host)
+{
+ free(host->pmecc_partial_syn);
+ free(host->pmecc_si);
+ free(host->pmecc_lmu);
+ free(host->pmecc_smu);
+ free(host->pmecc_mu);
+ free(host->pmecc_dmu);
+ free(host->pmecc_delta);
+}
+
+static int pmecc_data_alloc(struct atmel_nand_host *host)
+{
+ const int cap = host->pmecc_corr_cap;
+ int size;
+
+ size = (2 * cap + 1) * sizeof(int16_t);
+ host->pmecc_partial_syn = malloc(size);
+ host->pmecc_si = malloc(size);
+ host->pmecc_lmu = malloc((cap + 1) * sizeof(int16_t));
+ host->pmecc_smu = malloc((cap + 2) * size);
+
+ size = (cap + 1) * sizeof(int);
+ host->pmecc_mu = malloc(size);
+ host->pmecc_dmu = malloc(size);
+ host->pmecc_delta = malloc(size);
+
+ if (host->pmecc_partial_syn &&
+ host->pmecc_si &&
+ host->pmecc_lmu &&
+ host->pmecc_smu &&
+ host->pmecc_mu &&
+ host->pmecc_dmu &&
+ host->pmecc_delta)
+ return 0;
+
+ /* error happened */
+ pmecc_data_free(host);
+ return -ENOMEM;
+
+}
+
+static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
+{
+ struct nand_chip *nand_chip = mtd_to_nand(mtd);
+ struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
+ int i;
+ uint32_t value;
+
+ /* Fill odd syndromes */
+ for (i = 0; i < host->pmecc_corr_cap; i++) {
+ value = pmecc_readl(host->pmecc, rem_port[sector].rem[i / 2]);
+ if (i & 1)
+ value >>= 16;
+ value &= 0xffff;
+ host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
+ }
+}
+
+static void pmecc_substitute(struct mtd_info *mtd)
+{
+ struct nand_chip *nand_chip = mtd_to_nand(mtd);
+ struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
+ int16_t __iomem *alpha_to = host->pmecc_alpha_to;
+ int16_t __iomem *index_of = host->pmecc_index_of;
+ int16_t *partial_syn = host->pmecc_partial_syn;
+ const int cap = host->pmecc_corr_cap;
+ int16_t *si;
+ int i, j;
+
+ /* si[] is a table that holds the current syndrome value,
+ * an element of that table belongs to the field
+ */
+ si = host->pmecc_si;
+
+ memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
+
+ /* Computation 2t syndromes based on S(x) */
+ /* Odd syndromes */
+ for (i = 1; i < 2 * cap; i += 2) {
+ for (j = 0; j < host->pmecc_degree; j++) {
+ if (partial_syn[i] & (0x1 << j))
+ si[i] = readw(alpha_to + i * j) ^ si[i];
+ }
+ }
+ /* Even syndrome = (Odd syndrome) ** 2 */
+ for (i = 2, j = 1; j <= cap; i = ++j << 1) {
+ if (si[j] == 0) {
+ si[i] = 0;
+ } else {
+ int16_t tmp;
+
+ tmp = readw(index_of + si[j]);
+ tmp = (tmp * 2) % host->pmecc_cw_len;
+ si[i] = readw(alpha_to + tmp);
+ }
+ }
+}
+
+/*
+ * This function defines a Berlekamp iterative procedure for
+ * finding the value of the error location polynomial.
+ * The input is si[], initialize by pmecc_substitute().
+ * The output is smu[][].
+ *
+ * This function is written according to chip datasheet Chapter:
+ * Find the Error Location Polynomial Sigma(x) of Section:
+ * Programmable Multibit ECC Control (PMECC).
+ */
+static void pmecc_get_sigma(struct mtd_info *mtd)
+{
+ struct nand_chip *nand_chip = mtd_to_nand(mtd);
+ struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
+
+ int16_t *lmu = host->pmecc_lmu;
+ int16_t *si = host->pmecc_si;
+ int *mu = host->pmecc_mu;
+ int *dmu = host->pmecc_dmu; /* Discrepancy */
+ int *delta = host->pmecc_delta; /* Delta order */
+ int cw_len = host->pmecc_cw_len;
+ const int16_t cap = host->pmecc_corr_cap;
+ const int num = 2 * cap + 1;
+ int16_t __iomem *index_of = host->pmecc_index_of;
+ int16_t __iomem *alpha_to = host->pmecc_alpha_to;
+ int i, j, k;
+ uint32_t dmu_0_count, tmp;
+ int16_t *smu = host->pmecc_smu;
+
+ /* index of largest delta */
+ int ro;
+ int largest;
+ int diff;
+
+ /* Init the Sigma(x) */
+ memset(smu, 0, sizeof(int16_t) * ARRAY_SIZE(smu));
+
+ dmu_0_count = 0;
+
+ /* First Row */
+
+ /* Mu */
+ mu[0] = -1;
+
+ smu[0] = 1;
+
+ /* discrepancy set to 1 */
+ dmu[0] = 1;
+ /* polynom order set to 0 */
+ lmu[0] = 0;
+ /* delta[0] = (mu[0] * 2 - lmu[0]) >> 1; */
+ delta[0] = -1;
+
+ /* Second Row */
+
+ /* Mu */
+ mu[1] = 0;
+ /* Sigma(x) set to 1 */
+ smu[num] = 1;
+
+ /* discrepancy set to S1 */
+ dmu[1] = si[1];
+
+ /* polynom order set to 0 */
+ lmu[1] = 0;
+
+ /* delta[1] = (mu[1] * 2 - lmu[1]) >> 1; */
+ delta[1] = 0;
+
+ for (i = 1; i <= cap; i++) {
+ mu[i + 1] = i << 1;
+ /* Begin Computing Sigma (Mu+1) and L(mu) */
+ /* check if discrepancy is set to 0 */
+ if (dmu[i] == 0) {
+ dmu_0_count++;
+
+ tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
+ if ((cap - (lmu[i] >> 1) - 1) & 0x1)
+ tmp += 2;
+ else
+ tmp += 1;
+
+ if (dmu_0_count == tmp) {
+ for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
+ smu[(cap + 1) * num + j] =
+ smu[i * num + j];
+
+ lmu[cap + 1] = lmu[i];
+ return;
+ }
+
+ /* copy polynom */
+ for (j = 0; j <= lmu[i] >> 1; j++)
+ smu[(i + 1) * num + j] = smu[i * num + j];
+
+ /* copy previous polynom order to the next */
+ lmu[i + 1] = lmu[i];
+ } else {
+ ro = 0;
+ largest = -1;
+ /* find largest delta with dmu != 0 */
+ for (j = 0; j < i; j++) {
+ if ((dmu[j]) && (delta[j] > largest)) {
+ largest = delta[j];
+ ro = j;
+ }
+ }
+
+ /* compute difference */
+ diff = (mu[i] - mu[ro]);
+
+ /* Compute degree of the new smu polynomial */
+ if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
+ lmu[i + 1] = lmu[i];
+ else
+ lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
+
+ /* Init smu[i+1] with 0 */
+ for (k = 0; k < num; k++)
+ smu[(i + 1) * num + k] = 0;
+
+ /* Compute smu[i+1] */
+ for (k = 0; k <= lmu[ro] >> 1; k++) {
+ int16_t a, b, c;
+
+ if (!(smu[ro * num + k] && dmu[i]))
+ continue;
+ a = readw(index_of + dmu[i]);
+ b = readw(index_of + dmu[ro]);
+ c = readw(index_of + smu[ro * num + k]);
+ tmp = a + (cw_len - b) + c;
+ a = readw(alpha_to + tmp % cw_len);
+ smu[(i + 1) * num + (k + diff)] = a;
+ }
+
+ for (k = 0; k <= lmu[i] >> 1; k++)
+ smu[(i + 1) * num + k] ^= smu[i * num + k];
+ }
+
+ /* End Computing Sigma (Mu+1) and L(mu) */
+ /* In either case compute delta */
+ delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
+
+ /* Do not compute discrepancy for the last iteration */
+ if (i >= cap)
+ continue;
+
+ for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
+ tmp = 2 * (i - 1);
+ if (k == 0) {
+ dmu[i + 1] = si[tmp + 3];
+ } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
+ int16_t a, b, c;
+ a = readw(index_of +
+ smu[(i + 1) * num + k]);
+ b = si[2 * (i - 1) + 3 - k];
+ c = readw(index_of + b);
+ tmp = a + c;
+ tmp %= cw_len;
+ dmu[i + 1] = readw(alpha_to + tmp) ^
+ dmu[i + 1];
+ }
+ }
+ }
+}
+
+static int pmecc_err_location(struct mtd_info *mtd)
+{
+ struct nand_chip *nand_chip = mtd_to_nand(mtd);
+ struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
+ const int cap = host->pmecc_corr_cap;
+ const int num = 2 * cap + 1;
+ int sector_size = host->pmecc_sector_size;
+ int err_nbr = 0; /* number of error */
+ int roots_nbr; /* number of roots */
+ int i;
+ uint32_t val;
+ int16_t *smu = host->pmecc_smu;
+ int timeout = PMECC_MAX_TIMEOUT_US;
+
+ pmecc_writel(host->pmerrloc, eldis, PMERRLOC_DISABLE);
+
+ for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
+ pmecc_writel(host->pmerrloc, sigma[i],
+ smu[(cap + 1) * num + i]);
+ err_nbr++;
+ }
+
+ val = PMERRLOC_ELCFG_NUM_ERRORS(err_nbr - 1);
+ if (sector_size == 1024)
+ val |= PMERRLOC_ELCFG_SECTOR_1024;
+
+ pmecc_writel(host->pmerrloc, elcfg, val);
+ pmecc_writel(host->pmerrloc, elen,
+ sector_size * 8 + host->pmecc_degree * cap);
+
+ while (--timeout) {
+ if (pmecc_readl(host->pmerrloc, elisr) & PMERRLOC_CALC_DONE)
+ break;
+ WATCHDOG_RESET();
+ udelay(1);
+ }
+
+ if (!timeout) {
+ dev_err(host->dev, "atmel_nand : Timeout to calculate PMECC error location\n");
+ return -1;
+ }
+
+ roots_nbr = (pmecc_readl(host->pmerrloc, elisr) & PMERRLOC_ERR_NUM_MASK)
+ >> 8;
+ /* Number of roots == degree of smu hence <= cap */
+ if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
+ return err_nbr - 1;
+
+ /* Number of roots does not match the degree of smu
+ * unable to correct error */
+ return -1;
+}
+
+static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
+ int sector_num, int extra_bytes, int err_nbr)
+{
+ struct nand_chip *nand_chip = mtd_to_nand(mtd);
+ struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
+ int i = 0;
+ int byte_pos, bit_pos, sector_size, pos;
+ uint32_t tmp;
+ uint8_t err_byte;
+
+ sector_size = host->pmecc_sector_size;
+
+ while (err_nbr) {
+ tmp = pmecc_readl(host->pmerrloc, el[i]) - 1;
+ byte_pos = tmp / 8;
+ bit_pos = tmp % 8;
+
+ if (byte_pos >= (sector_size + extra_bytes))
+ BUG(); /* should never happen */
+
+ if (byte_pos < sector_size) {
+ err_byte = *(buf + byte_pos);
+ *(buf + byte_pos) ^= (1 << bit_pos);
+
+ pos = sector_num * host->pmecc_sector_size + byte_pos;
+ dev_dbg(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
+ pos, bit_pos, err_byte, *(buf + byte_pos));
+ } else {
+ /* Bit flip in OOB area */
+ tmp = sector_num * host->pmecc_bytes_per_sector
+ + (byte_pos - sector_size);
+ err_byte = ecc[tmp];
+ ecc[tmp] ^= (1 << bit_pos);
+
+ pos = tmp + nand_chip->ecc.layout->eccpos[0];
+ dev_dbg(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
+ pos, bit_pos, err_byte, ecc[tmp]);
+ }
+
+ i++;
+ err_nbr--;
+ }
+
+ return;
+}
+
+static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
+ u8 *ecc)
+{
+ struct nand_chip *nand_chip = mtd_to_nand(mtd);
+ struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
+ int i, err_nbr, eccbytes;
+ uint8_t *buf_pos;
+
+ /* SAMA5D4 PMECC IP can correct errors for all 0xff page */
+ if (host->pmecc_version >= PMECC_VERSION_SAMA5D4)
+ goto normal_check;
+
+ eccbytes = nand_chip->ecc.bytes;
+ for (i = 0; i < eccbytes; i++)
+ if (ecc[i] != 0xff)
+ goto normal_check;
+ /* Erased page, return OK */
+ return 0;
+
+normal_check:
+ for (i = 0; i < host->pmecc_sector_number; i++) {
+ err_nbr = 0;
+ if (pmecc_stat & 0x1) {
+ buf_pos = buf + i * host->pmecc_sector_size;
+
+ pmecc_gen_syndrome(mtd, i);
+ pmecc_substitute(mtd);
+ pmecc_get_sigma(mtd);
+
+ err_nbr = pmecc_err_location(mtd);
+ if (err_nbr == -1) {
+ dev_err(host->dev, "PMECC: Too many errors\n");
+ mtd->ecc_stats.failed++;
+ return -EBADMSG;
+ } else {
+ pmecc_correct_data(mtd, buf_pos, ecc, i,
+ host->pmecc_bytes_per_sector, err_nbr);
+ mtd->ecc_stats.corrected += err_nbr;
+ }
+ }
+ pmecc_stat >>= 1;
+ }
+
+ return 0;
+}
+
+static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
+ struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
+{
+ struct atmel_nand_host *host = nand_get_controller_data(chip);
+ int eccsize = chip->ecc.size;
+ uint8_t *oob = chip->oob_poi;
+ uint32_t *eccpos = chip->ecc.layout->eccpos;
+ uint32_t stat;
+ int timeout = PMECC_MAX_TIMEOUT_US;
+
+ pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
+ pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
+ pmecc_writel(host->pmecc, cfg, ((pmecc_readl(host->pmecc, cfg))
+ & ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE);
+
+ pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
+ pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
+
+ chip->read_buf(mtd, buf, eccsize);
+ chip->read_buf(mtd, oob, mtd->oobsize);
+
+ while (--timeout) {
+ if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
+ break;
+ WATCHDOG_RESET();
+ udelay(1);
+ }
+
+ if (!timeout) {
+ dev_err(host->dev, "atmel_nand : Timeout to read PMECC page\n");
+ return -1;
+ }
+
+ stat = pmecc_readl(host->pmecc, isr);
+ if (stat != 0)
+ if (pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]) != 0)
+ return -EBADMSG;
+
+ return 0;
+}
+
+static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
+ struct nand_chip *chip, const uint8_t *buf,
+ int oob_required, int page)
+{
+ struct atmel_nand_host *host = nand_get_controller_data(chip);
+ uint32_t *eccpos = chip->ecc.layout->eccpos;
+ int i, j;
+ int timeout = PMECC_MAX_TIMEOUT_US;
+
+ pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
+ pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
+
+ pmecc_writel(host->pmecc, cfg, (pmecc_readl(host->pmecc, cfg) |
+ PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE);
+
+ pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
+ pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
+
+ chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
+
+ while (--timeout) {
+ if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
+ break;
+ WATCHDOG_RESET();
+ udelay(1);
+ }
+
+ if (!timeout) {
+ dev_err(host->dev, "atmel_nand : Timeout to read PMECC status, fail to write PMECC in oob\n");
+ goto out;
+ }
+
+ for (i = 0; i < host->pmecc_sector_number; i++) {
+ for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
+ int pos;
+
+ pos = i * host->pmecc_bytes_per_sector + j;
+ chip->oob_poi[eccpos[pos]] =
+ pmecc_readb(host->pmecc, ecc_port[i].ecc[j]);
+ }
+ }
+ chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+out:
+ return 0;
+}
+
+static void atmel_pmecc_core_init(struct mtd_info *mtd)
+{
+ struct nand_chip *nand_chip = mtd_to_nand(mtd);
+ struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
+ uint32_t val = 0;
+ struct nand_ecclayout *ecc_layout;
+
+ pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
+ pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
+
+ switch (host->pmecc_corr_cap) {
+ case 2:
+ val = PMECC_CFG_BCH_ERR2;
+ break;
+ case 4:
+ val = PMECC_CFG_BCH_ERR4;
+ break;
+ case 8:
+ val = PMECC_CFG_BCH_ERR8;
+ break;
+ case 12:
+ val = PMECC_CFG_BCH_ERR12;
+ break;
+ case 24:
+ val = PMECC_CFG_BCH_ERR24;
+ break;
+ case 32:
+ val = PMECC_CFG_BCH_ERR32;
+ break;
+ }
+
+ if (host->pmecc_sector_size == 512)
+ val |= PMECC_CFG_SECTOR512;
+ else if (host->pmecc_sector_size == 1024)
+ val |= PMECC_CFG_SECTOR1024;
+
+ switch (host->pmecc_sector_number) {
+ case 1:
+ val |= PMECC_CFG_PAGE_1SECTOR;
+ break;
+ case 2:
+ val |= PMECC_CFG_PAGE_2SECTORS;
+ break;
+ case 4:
+ val |= PMECC_CFG_PAGE_4SECTORS;
+ break;
+ case 8:
+ val |= PMECC_CFG_PAGE_8SECTORS;
+ break;
+ }
+
+ val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
+ | PMECC_CFG_AUTO_DISABLE);
+ pmecc_writel(host->pmecc, cfg, val);
+
+ ecc_layout = nand_chip->ecc.layout;
+ pmecc_writel(host->pmecc, sarea, mtd->oobsize - 1);
+ pmecc_writel(host->pmecc, saddr, ecc_layout->eccpos[0]);
+ pmecc_writel(host->pmecc, eaddr,
+ ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
+ /* See datasheet about PMECC Clock Control Register */
+ pmecc_writel(host->pmecc, clk, PMECC_CLK_133MHZ);
+ pmecc_writel(host->pmecc, idr, 0xff);
+ pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
+}
+
+#ifdef CONFIG_SYS_NAND_ONFI_DETECTION
+/*
+ * pmecc_choose_ecc - Get ecc requirement from ONFI parameters. If
+ * pmecc_corr_cap or pmecc_sector_size is 0, then set it as
+ * ONFI ECC parameters.
+ * @host: point to an atmel_nand_host structure.
+ * if host->pmecc_corr_cap is 0 then set it as the ONFI ecc_bits.
+ * if host->pmecc_sector_size is 0 then set it as the ONFI sector_size.
+ * @chip: point to an nand_chip structure.
+ * @cap: store the ONFI ECC correct bits capbility
+ * @sector_size: in how many bytes that ONFI require to correct @ecc_bits
+ *
+ * Return 0 if success. otherwise return the error code.
+ */
+static int pmecc_choose_ecc(struct atmel_nand_host *host,
+ struct nand_chip *chip,
+ int *cap, int *sector_size)
+{
+ /* Get ECC requirement from ONFI parameters */
+ *cap = *sector_size = 0;
+ if (chip->onfi_version) {
+ *cap = chip->ecc_strength_ds;
+ *sector_size = chip->ecc_step_ds;
+ pr_debug("ONFI params, minimum required ECC: %d bits in %d bytes\n",
+ *cap, *sector_size);
+ }
+
+ if (*cap == 0 && *sector_size == 0) {
+ /* Non-ONFI compliant */
+ dev_info(host->dev, "NAND chip is not ONFI compliant, assume ecc_bits is 2 in 512 bytes\n");
+ *cap = 2;
+ *sector_size = 512;
+ }
+
+ /* If head file doesn't specify then use the one in ONFI parameters */
+ if (host->pmecc_corr_cap == 0) {
+ /* use the most fitable ecc bits (the near bigger one ) */
+ if (*cap <= 2)
+ host->pmecc_corr_cap = 2;
+ else if (*cap <= 4)
+ host->pmecc_corr_cap = 4;
+ else if (*cap <= 8)
+ host->pmecc_corr_cap = 8;
+ else if (*cap <= 12)
+ host->pmecc_corr_cap = 12;
+ else if (*cap <= 24)
+ host->pmecc_corr_cap = 24;
+ else
+#ifdef CONFIG_SAMA5D2
+ host->pmecc_corr_cap = 32;
+#else
+ host->pmecc_corr_cap = 24;
+#endif
+ }
+ if (host->pmecc_sector_size == 0) {
+ /* use the most fitable sector size (the near smaller one ) */
+ if (*sector_size >= 1024)
+ host->pmecc_sector_size = 1024;
+ else if (*sector_size >= 512)
+ host->pmecc_sector_size = 512;
+ else
+ return -EINVAL;
+ }
+ return 0;
+}
+#endif
+
+#if defined(NO_GALOIS_TABLE_IN_ROM)
+static uint16_t *pmecc_galois_table;
+static inline int deg(unsigned int poly)
+{
+ /* polynomial degree is the most-significant bit index */
+ return fls(poly) - 1;
+}
+
+static int build_gf_tables(int mm, unsigned int poly,
+ int16_t *index_of, int16_t *alpha_to)
+{
+ unsigned int i, x = 1;
+ const unsigned int k = 1 << deg(poly);
+ unsigned int nn = (1 << mm) - 1;
+
+ /* primitive polynomial must be of degree m */
+ if (k != (1u << mm))
+ return -EINVAL;
+
+ for (i = 0; i < nn; i++) {
+ alpha_to[i] = x;
+ index_of[x] = i;
+ if (i && (x == 1))
+ /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
+ return -EINVAL;
+ x <<= 1;
+ if (x & k)
+ x ^= poly;
+ }
+
+ alpha_to[nn] = 1;
+ index_of[0] = 0;
+
+ return 0;
+}
+
+static uint16_t *create_lookup_table(int sector_size)
+{
+ int degree = (sector_size == 512) ?
+ PMECC_GF_DIMENSION_13 :
+ PMECC_GF_DIMENSION_14;
+ unsigned int poly = (sector_size == 512) ?
+ PMECC_GF_13_PRIMITIVE_POLY :
+ PMECC_GF_14_PRIMITIVE_POLY;
+ int table_size = (sector_size == 512) ?
+ PMECC_INDEX_TABLE_SIZE_512 :
+ PMECC_INDEX_TABLE_SIZE_1024;
+
+ int16_t *addr = kzalloc(2 * table_size * sizeof(uint16_t), GFP_KERNEL);
+ if (addr && build_gf_tables(degree, poly, addr, addr + table_size))
+ return NULL;
+
+ return (uint16_t *)addr;
+}
+#endif
+
+static int atmel_pmecc_nand_init_params(struct nand_chip *nand,
+ struct mtd_info *mtd)
+{
+ struct atmel_nand_host *host;
+ int cap, sector_size;
+
+ host = &pmecc_host;
+ nand_set_controller_data(nand, host);
+
+ nand->ecc.mode = NAND_ECC_HW;
+ nand->ecc.calculate = NULL;
+ nand->ecc.correct = NULL;
+ nand->ecc.hwctl = NULL;
+
+#ifdef CONFIG_SYS_NAND_ONFI_DETECTION
+ host->pmecc_corr_cap = host->pmecc_sector_size = 0;
+
+#ifdef CONFIG_PMECC_CAP
+ host->pmecc_corr_cap = CONFIG_PMECC_CAP;
+#endif
+#ifdef CONFIG_PMECC_SECTOR_SIZE
+ host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
+#endif
+ /* Get ECC requirement of ONFI parameters. And if CONFIG_PMECC_CAP or
+ * CONFIG_PMECC_SECTOR_SIZE not defined, then use ecc_bits, sector_size
+ * from ONFI.
+ */
+ if (pmecc_choose_ecc(host, nand, &cap, &sector_size)) {
+ dev_err(host->dev, "Required ECC %d bits in %d bytes not supported!\n",
+ cap, sector_size);
+ return -EINVAL;
+ }
+
+ if (cap > host->pmecc_corr_cap)
+ dev_info(host->dev, "WARNING: Using different ecc correct bits(%d bit) from Nand ONFI ECC reqirement (%d bit).\n",
+ host->pmecc_corr_cap, cap);
+ if (sector_size < host->pmecc_sector_size)
+ dev_info(host->dev, "WARNING: Using different ecc correct sector size (%d bytes) from Nand ONFI ECC reqirement (%d bytes).\n",
+ host->pmecc_sector_size, sector_size);
+#else /* CONFIG_SYS_NAND_ONFI_DETECTION */
+ host->pmecc_corr_cap = CONFIG_PMECC_CAP;
+ host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
+#endif
+
+ cap = host->pmecc_corr_cap;
+ sector_size = host->pmecc_sector_size;
+
+ /* TODO: need check whether cap & sector_size is validate */
+#if defined(NO_GALOIS_TABLE_IN_ROM)
+ /*
+ * As pmecc_rom_base is the begin of the gallois field table, So the
+ * index offset just set as 0.
+ */
+ host->pmecc_index_table_offset = 0;
+#else
+ if (host->pmecc_sector_size == 512)
+ host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_512;
+ else
+ host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_1024;
+#endif
+
+ pr_debug("Initialize PMECC params, cap: %d, sector: %d\n",
+ cap, sector_size);
+
+ host->pmecc = (struct pmecc_regs __iomem *) ATMEL_BASE_PMECC;
+ host->pmerrloc = (struct pmecc_errloc_regs __iomem *)
+ ATMEL_BASE_PMERRLOC;
+#if defined(NO_GALOIS_TABLE_IN_ROM)
+ pmecc_galois_table = create_lookup_table(host->pmecc_sector_size);
+ if (!pmecc_galois_table) {
+ dev_err(host->dev, "out of memory\n");
+ return -ENOMEM;
+ }
+
+ host->pmecc_rom_base = (void __iomem *)pmecc_galois_table;
+#else
+ host->pmecc_rom_base = (void __iomem *) ATMEL_BASE_ROM;
+#endif
+
+ /* ECC is calculated for the whole page (1 step) */
+ nand->ecc.size = mtd->writesize;
+
+ /* set ECC page size and oob layout */
+ switch (mtd->writesize) {
+ case 2048:
+ case 4096:
+ case 8192:
+ host->pmecc_degree = (sector_size == 512) ?
+ PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
+ host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
+ host->pmecc_sector_number = mtd->writesize / sector_size;
+ host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
+ cap, sector_size);
+ host->pmecc_alpha_to = pmecc_get_alpha_to(host);
+ host->pmecc_index_of = host->pmecc_rom_base +
+ host->pmecc_index_table_offset;
+
+ nand->ecc.steps = 1;
+ nand->ecc.bytes = host->pmecc_bytes_per_sector *
+ host->pmecc_sector_number;
+
+ if (nand->ecc.bytes > MTD_MAX_ECCPOS_ENTRIES_LARGE) {
+ dev_err(host->dev, "too large eccpos entries. max support ecc.bytes is %d\n",
+ MTD_MAX_ECCPOS_ENTRIES_LARGE);
+ return -EINVAL;
+ }
+
+ if (nand->ecc.bytes > mtd->oobsize - PMECC_OOB_RESERVED_BYTES) {
+ dev_err(host->dev, "No room for ECC bytes\n");
+ return -EINVAL;
+ }
+ pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
+ mtd->oobsize,
+ nand->ecc.bytes);
+ nand->ecc.layout = &atmel_pmecc_oobinfo;
+ break;
+ case 512:
+ case 1024:
+ /* TODO */
+ dev_err(host->dev, "Unsupported page size for PMECC, use Software ECC\n");
+ default:
+ /* page size not handled by HW ECC */
+ /* switching back to soft ECC */
+ nand->ecc.mode = NAND_ECC_SOFT;
+ nand->ecc.read_page = NULL;
+ nand->ecc.postpad = 0;
+ nand->ecc.prepad = 0;
+ nand->ecc.bytes = 0;
+ return 0;
+ }
+
+ /* Allocate data for PMECC computation */
+ if (pmecc_data_alloc(host)) {
+ dev_err(host->dev, "Cannot allocate memory for PMECC computation!\n");
+ return -ENOMEM;
+ }
+
+ nand->options |= NAND_NO_SUBPAGE_WRITE;
+ nand->ecc.read_page = atmel_nand_pmecc_read_page;
+ nand->ecc.write_page = atmel_nand_pmecc_write_page;
+ nand->ecc.strength = cap;
+
+ /* Check the PMECC ip version */
+ host->pmecc_version = pmecc_readl(host->pmerrloc, version);
+ dev_dbg(host->dev, "PMECC IP version is: %x\n", host->pmecc_version);
+
+ atmel_pmecc_core_init(mtd);
+
+ return 0;
+}
+
+#else
+
+/* oob layout for large page size
+ * bad block info is on bytes 0 and 1
+ * the bytes have to be consecutives to avoid
+ * several NAND_CMD_RNDOUT during read
+ */
+static struct nand_ecclayout atmel_oobinfo_large = {
+ .eccbytes = 4,
+ .eccpos = {60, 61, 62, 63},
+ .oobfree = {
+ {2, 58}
+ },
+};
+
+/* oob layout for small page size
+ * bad block info is on bytes 4 and 5
+ * the bytes have to be consecutives to avoid
+ * several NAND_CMD_RNDOUT during read
+ */
+static struct nand_ecclayout atmel_oobinfo_small = {
+ .eccbytes = 4,
+ .eccpos = {0, 1, 2, 3},
+ .oobfree = {
+ {6, 10}
+ },
+};
+
+/*
+ * Calculate HW ECC
+ *
+ * function called after a write
+ *
+ * mtd: MTD block structure
+ * dat: raw data (unused)
+ * ecc_code: buffer for ECC
+ */
+static int atmel_nand_calculate(struct mtd_info *mtd,
+ const u_char *dat, unsigned char *ecc_code)
+{
+ unsigned int ecc_value;
+
+ /* get the first 2 ECC bytes */
+ ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR);
+
+ ecc_code[0] = ecc_value & 0xFF;
+ ecc_code[1] = (ecc_value >> 8) & 0xFF;
+
+ /* get the last 2 ECC bytes */
+ ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, NPR) & ATMEL_ECC_NPARITY;
+
+ ecc_code[2] = ecc_value & 0xFF;
+ ecc_code[3] = (ecc_value >> 8) & 0xFF;
+
+ return 0;
+}
+
+/*
+ * HW ECC read page function
+ *
+ * mtd: mtd info structure
+ * chip: nand chip info structure
+ * buf: buffer to store read data
+ * oob_required: caller expects OOB data read to chip->oob_poi
+ */
+static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+ uint8_t *buf, int oob_required, int page)
+{
+ int eccsize = chip->ecc.size;
+ int eccbytes = chip->ecc.bytes;
+ uint32_t *eccpos = chip->ecc.layout->eccpos;
+ uint8_t *p = buf;
+ uint8_t *oob = chip->oob_poi;
+ uint8_t *ecc_pos;
+ int stat;
+
+ /* read the page */
+ chip->read_buf(mtd, p, eccsize);
+
+ /* move to ECC position if needed */
+ if (eccpos[0] != 0) {
+ /* This only works on large pages
+ * because the ECC controller waits for
+ * NAND_CMD_RNDOUTSTART after the
+ * NAND_CMD_RNDOUT.
+ * anyway, for small pages, the eccpos[0] == 0
+ */
+ chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
+ mtd->writesize + eccpos[0], -1);
+ }
+
+ /* the ECC controller needs to read the ECC just after the data */
+ ecc_pos = oob + eccpos[0];
+ chip->read_buf(mtd, ecc_pos, eccbytes);
+
+ /* check if there's an error */
+ stat = chip->ecc.correct(mtd, p, oob, NULL);
+
+ if (stat < 0)
+ mtd->ecc_stats.failed++;
+ else
+ mtd->ecc_stats.corrected += stat;
+
+ /* get back to oob start (end of page) */
+ chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
+
+ /* read the oob */
+ chip->read_buf(mtd, oob, mtd->oobsize);
+
+ return 0;
+}
+
+/*
+ * HW ECC Correction
+ *
+ * function called after a read
+ *
+ * mtd: MTD block structure
+ * dat: raw data read from the chip
+ * read_ecc: ECC from the chip (unused)
+ * isnull: unused
+ *
+ * Detect and correct a 1 bit error for a page
+ */
+static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
+ u_char *read_ecc, u_char *isnull)
+{
+ struct nand_chip *nand_chip = mtd_to_nand(mtd);
+ unsigned int ecc_status;
+ unsigned int ecc_word, ecc_bit;
+
+ /* get the status from the Status Register */
+ ecc_status = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, SR);
+
+ /* if there's no error */
+ if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
+ return 0;
+
+ /* get error bit offset (4 bits) */
+ ecc_bit = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_BITADDR;
+ /* get word address (12 bits) */
+ ecc_word = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_WORDADDR;
+ ecc_word >>= 4;
+
+ /* if there are multiple errors */
+ if (ecc_status & ATMEL_ECC_MULERR) {
+ /* check if it is a freshly erased block
+ * (filled with 0xff) */
+ if ((ecc_bit == ATMEL_ECC_BITADDR)
+ && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
+ /* the block has just been erased, return OK */
+ return 0;
+ }
+ /* it doesn't seems to be a freshly
+ * erased block.
+ * We can't correct so many errors */
+ dev_warn(host->dev, "atmel_nand : multiple errors detected."
+ " Unable to correct.\n");
+ return -EBADMSG;
+ }
+
+ /* if there's a single bit error : we can correct it */
+ if (ecc_status & ATMEL_ECC_ECCERR) {
+ /* there's nothing much to do here.
+ * the bit error is on the ECC itself.
+ */
+ dev_warn(host->dev, "atmel_nand : one bit error on ECC code."
+ " Nothing to correct\n");
+ return 0;
+ }
+
+ dev_warn(host->dev, "atmel_nand : one bit error on data."
+ " (word offset in the page :"
+ " 0x%x bit offset : 0x%x)\n",
+ ecc_word, ecc_bit);
+ /* correct the error */
+ if (nand_chip->options & NAND_BUSWIDTH_16) {
+ /* 16 bits words */
+ ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
+ } else {
+ /* 8 bits words */
+ dat[ecc_word] ^= (1 << ecc_bit);
+ }
+ dev_warn(host->dev, "atmel_nand : error corrected\n");
+ return 1;
+}
+
+/*
+ * Enable HW ECC : unused on most chips
+ */
+static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
+{
+}
+
+int atmel_hwecc_nand_init_param(struct nand_chip *nand, struct mtd_info *mtd)
+{
+ nand->ecc.mode = NAND_ECC_HW;
+ nand->ecc.calculate = atmel_nand_calculate;
+ nand->ecc.correct = atmel_nand_correct;
+ nand->ecc.hwctl = atmel_nand_hwctl;
+ nand->ecc.read_page = atmel_nand_read_page;
+ nand->ecc.bytes = 4;
+ nand->ecc.strength = 4;
+
+ if (nand->ecc.mode == NAND_ECC_HW) {
+ /* ECC is calculated for the whole page (1 step) */
+ nand->ecc.size = mtd->writesize;
+
+ /* set ECC page size and oob layout */
+ switch (mtd->writesize) {
+ case 512:
+ nand->ecc.layout = &atmel_oobinfo_small;
+ ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
+ ATMEL_ECC_PAGESIZE_528);
+ break;
+ case 1024:
+ nand->ecc.layout = &atmel_oobinfo_large;
+ ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
+ ATMEL_ECC_PAGESIZE_1056);
+ break;
+ case 2048:
+ nand->ecc.layout = &atmel_oobinfo_large;
+ ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
+ ATMEL_ECC_PAGESIZE_2112);
+ break;
+ case 4096:
+ nand->ecc.layout = &atmel_oobinfo_large;
+ ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
+ ATMEL_ECC_PAGESIZE_4224);
+ break;
+ default:
+ /* page size not handled by HW ECC */
+ /* switching back to soft ECC */
+ nand->ecc.mode = NAND_ECC_SOFT;
+ nand->ecc.calculate = NULL;
+ nand->ecc.correct = NULL;
+ nand->ecc.hwctl = NULL;
+ nand->ecc.read_page = NULL;
+ nand->ecc.postpad = 0;
+ nand->ecc.prepad = 0;
+ nand->ecc.bytes = 0;
+ break;
+ }
+ }
+
+ return 0;
+}
+
+#endif /* CONFIG_ATMEL_NAND_HW_PMECC */
+
+#endif /* CONFIG_ATMEL_NAND_HWECC */
+
+static void at91_nand_hwcontrol(struct mtd_info *mtd,
+ int cmd, unsigned int ctrl)
+{
+ struct nand_chip *this = mtd_to_nand(mtd);
+
+ if (ctrl & NAND_CTRL_CHANGE) {
+ ulong IO_ADDR_W = (ulong) this->IO_ADDR_W;
+ IO_ADDR_W &= ~(CONFIG_SYS_NAND_MASK_ALE
+ | CONFIG_SYS_NAND_MASK_CLE);
+
+ if (ctrl & NAND_CLE)
+ IO_ADDR_W |= CONFIG_SYS_NAND_MASK_CLE;
+ if (ctrl & NAND_ALE)
+ IO_ADDR_W |= CONFIG_SYS_NAND_MASK_ALE;
+
+#ifdef CONFIG_SYS_NAND_ENABLE_PIN
+ at91_set_gpio_value(CONFIG_SYS_NAND_ENABLE_PIN,
+ !(ctrl & NAND_NCE));
+#endif
+ this->IO_ADDR_W = (void *) IO_ADDR_W;
+ }
+
+ if (cmd != NAND_CMD_NONE)
+ writeb(cmd, this->IO_ADDR_W);
+}
+
+#ifdef CONFIG_SYS_NAND_READY_PIN
+static int at91_nand_ready(struct mtd_info *mtd)
+{
+ return at91_get_gpio_value(CONFIG_SYS_NAND_READY_PIN);
+}
+#endif
+
+#ifdef CONFIG_SPL_BUILD
+/* The following code is for SPL */
+static struct mtd_info *mtd;
+static struct nand_chip nand_chip;
+
+static int nand_command(int block, int page, uint32_t offs, u8 cmd)
+{
+ struct nand_chip *this = mtd_to_nand(mtd);
+ int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
+ void (*hwctrl)(struct mtd_info *mtd, int cmd,
+ unsigned int ctrl) = this->cmd_ctrl;
+
+ while (!this->dev_ready(mtd))
+ ;
+
+ if (cmd == NAND_CMD_READOOB) {
+ offs += CONFIG_SYS_NAND_PAGE_SIZE;
+ cmd = NAND_CMD_READ0;
+ }
+
+ hwctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
+
+ if ((this->options & NAND_BUSWIDTH_16) && !nand_opcode_8bits(cmd))
+ offs >>= 1;
+
+ hwctrl(mtd, offs & 0xff, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
+ hwctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE);
+ hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE);
+ hwctrl(mtd, ((page_addr >> 8) & 0xff), NAND_CTRL_ALE);
+#ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
+ hwctrl(mtd, (page_addr >> 16) & 0x0f, NAND_CTRL_ALE);
+#endif
+ hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
+
+ hwctrl(mtd, NAND_CMD_READSTART, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
+ hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
+
+ while (!this->dev_ready(mtd))
+ ;
+
+ return 0;
+}
+
+static int nand_is_bad_block(int block)
+{
+ struct nand_chip *this = mtd_to_nand(mtd);
+
+ nand_command(block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
+
+ if (this->options & NAND_BUSWIDTH_16) {
+ if (readw(this->IO_ADDR_R) != 0xffff)
+ return 1;
+ } else {
+ if (readb(this->IO_ADDR_R) != 0xff)
+ return 1;
+ }
+
+ return 0;
+}
+
+#ifdef CONFIG_SPL_NAND_ECC
+static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
+#define ECCSTEPS (CONFIG_SYS_NAND_PAGE_SIZE / \
+ CONFIG_SYS_NAND_ECCSIZE)
+#define ECCTOTAL (ECCSTEPS * CONFIG_SYS_NAND_ECCBYTES)
+
+static int nand_read_page(int block, int page, void *dst)
+{
+ struct nand_chip *this = mtd_to_nand(mtd);
+ u_char ecc_calc[ECCTOTAL];
+ u_char ecc_code[ECCTOTAL];
+ u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
+ int eccsize = CONFIG_SYS_NAND_ECCSIZE;
+ int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
+ int eccsteps = ECCSTEPS;
+ int i;
+ uint8_t *p = dst;
+ nand_command(block, page, 0, NAND_CMD_READ0);
+
+ for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+ if (this->ecc.mode != NAND_ECC_SOFT)
+ this->ecc.hwctl(mtd, NAND_ECC_READ);
+ this->read_buf(mtd, p, eccsize);
+ this->ecc.calculate(mtd, p, &ecc_calc[i]);
+ }
+ this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
+
+ for (i = 0; i < ECCTOTAL; i++)
+ ecc_code[i] = oob_data[nand_ecc_pos[i]];
+
+ eccsteps = ECCSTEPS;
+ p = dst;
+
+ for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
+ this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
+
+ return 0;
+}
+
+int spl_nand_erase_one(int block, int page)
+{
+ struct nand_chip *this = mtd_to_nand(mtd);
+ void (*hwctrl)(struct mtd_info *mtd, int cmd,
+ unsigned int ctrl) = this->cmd_ctrl;
+ int page_addr;
+
+ if (nand_chip.select_chip)
+ nand_chip.select_chip(mtd, 0);
+
+ page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
+ hwctrl(mtd, NAND_CMD_ERASE1, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
+ /* Row address */
+ hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE | NAND_CTRL_CHANGE);
+ hwctrl(mtd, ((page_addr >> 8) & 0xff),
+ NAND_CTRL_ALE | NAND_CTRL_CHANGE);
+#ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
+ /* One more address cycle for devices > 128MiB */
+ hwctrl(mtd, (page_addr >> 16) & 0x0f,
+ NAND_CTRL_ALE | NAND_CTRL_CHANGE);
+#endif
+ hwctrl(mtd, NAND_CMD_ERASE2, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
+
+ while (!this->dev_ready(mtd))
+ ;
+
+ nand_deselect();
+
+ return 0;
+}
+#else
+static int nand_read_page(int block, int page, void *dst)
+{
+ struct nand_chip *this = mtd_to_nand(mtd);
+
+ nand_command(block, page, 0, NAND_CMD_READ0);
+ atmel_nand_pmecc_read_page(mtd, this, dst, 0, page);
+
+ return 0;
+}
+#endif /* CONFIG_SPL_NAND_ECC */
+
+int at91_nand_wait_ready(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd_to_nand(mtd);
+
+ udelay(this->chip_delay);
+
+ return 1;
+}
+
+int board_nand_init(struct nand_chip *nand)
+{
+ int ret = 0;
+
+ nand->ecc.mode = NAND_ECC_SOFT;
+#ifdef CONFIG_SYS_NAND_DBW_16
+ nand->options = NAND_BUSWIDTH_16;
+ nand->read_buf = nand_read_buf16;
+#else
+ nand->read_buf = nand_read_buf;
+#endif
+ nand->cmd_ctrl = at91_nand_hwcontrol;
+#ifdef CONFIG_SYS_NAND_READY_PIN
+ nand->dev_ready = at91_nand_ready;
+#else
+ nand->dev_ready = at91_nand_wait_ready;
+#endif
+ nand->chip_delay = 20;
+#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
+ nand->bbt_options |= NAND_BBT_USE_FLASH;
+#endif
+
+#ifdef CONFIG_ATMEL_NAND_HWECC
+#ifdef CONFIG_ATMEL_NAND_HW_PMECC
+ ret = atmel_pmecc_nand_init_params(nand, mtd);
+#endif
+#endif
+
+ return ret;
+}
+
+void nand_init(void)
+{
+ mtd = nand_to_mtd(&nand_chip);
+ mtd->writesize = CONFIG_SYS_NAND_PAGE_SIZE;
+ mtd->oobsize = CONFIG_SYS_NAND_OOBSIZE;
+ nand_chip.IO_ADDR_R = (void __iomem *)CONFIG_SYS_NAND_BASE;
+ nand_chip.IO_ADDR_W = (void __iomem *)CONFIG_SYS_NAND_BASE;
+ board_nand_init(&nand_chip);
+
+#ifdef CONFIG_SPL_NAND_ECC
+ if (nand_chip.ecc.mode == NAND_ECC_SOFT) {
+ nand_chip.ecc.calculate = nand_calculate_ecc;
+ nand_chip.ecc.correct = nand_correct_data;
+ }
+#endif
+
+ if (nand_chip.select_chip)
+ nand_chip.select_chip(mtd, 0);
+}
+
+void nand_deselect(void)
+{
+ if (nand_chip.select_chip)
+ nand_chip.select_chip(mtd, -1);
+}
+
+#include "nand_spl_loaders.c"
+
+#else
+
+#ifndef CONFIG_SYS_NAND_BASE_LIST
+#define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE }
+#endif
+static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE];
+static ulong base_addr[CONFIG_SYS_MAX_NAND_DEVICE] = CONFIG_SYS_NAND_BASE_LIST;
+
+int atmel_nand_chip_init(int devnum, ulong base_addr)
+{
+ int ret;
+ struct nand_chip *nand = &nand_chip[devnum];
+ struct mtd_info *mtd = nand_to_mtd(nand);
+
+ nand->IO_ADDR_R = nand->IO_ADDR_W = (void __iomem *)base_addr;
+
+#ifdef CONFIG_NAND_ECC_BCH
+ nand->ecc.mode = NAND_ECC_SOFT_BCH;
+#else
+ nand->ecc.mode = NAND_ECC_SOFT;
+#endif
+#ifdef CONFIG_SYS_NAND_DBW_16
+ nand->options = NAND_BUSWIDTH_16;
+#endif
+ nand->cmd_ctrl = at91_nand_hwcontrol;
+#ifdef CONFIG_SYS_NAND_READY_PIN
+ nand->dev_ready = at91_nand_ready;
+#endif
+ nand->chip_delay = 75;
+#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
+ nand->bbt_options |= NAND_BBT_USE_FLASH;
+#endif
+
+ ret = nand_scan_ident(mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL);
+ if (ret)
+ return ret;
+
+#ifdef CONFIG_ATMEL_NAND_HWECC
+#ifdef CONFIG_ATMEL_NAND_HW_PMECC
+ ret = atmel_pmecc_nand_init_params(nand, mtd);
+#else
+ ret = atmel_hwecc_nand_init_param(nand, mtd);
+#endif
+ if (ret)
+ return ret;
+#endif
+
+ ret = nand_scan_tail(mtd);
+ if (!ret)
+ nand_register(devnum, mtd);
+
+ return ret;
+}
+
+void board_nand_init(void)
+{
+ int i;
+ for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++)
+ if (atmel_nand_chip_init(i, base_addr[i]))
+ dev_err(host->dev, "atmel_nand: Fail to initialize #%d chip",
+ i);
+}
+#endif /* CONFIG_SPL_BUILD */