summaryrefslogtreecommitdiffstats
path: root/gptsync/gptsync.c
blob: 3ad26bfd53b7430b3e79b258539ee26d91521804 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
/*
 * gptsync/gptsync.c
 * Platform-independent code for syncing GPT and MBR
 *
 * Copyright (c) 2006-2007 Christoph Pfisterer
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the
 *    distribution.
 *
 *  * Neither the name of Christoph Pfisterer nor the names of the
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "gptsync.h"

#include "syslinux_mbr.h"

//
// MBR functions
//

static UINTN check_mbr(VOID)
{
    UINTN       i, k;
    
    // check each entry
    for (i = 0; i < mbr_part_count; i++) {
        // check for overlap
        for (k = 0; k < mbr_part_count; k++) {
            if (k != i && !(mbr_parts[i].start_lba > mbr_parts[k].end_lba || mbr_parts[k].start_lba > mbr_parts[i].end_lba)) {
                Print(L"Status: MBR partition table is invalid, partitions overlap.\n");
                return 1;
            }
        }
        
        // check for extended partitions
        if (mbr_parts[i].mbr_type == 0x05 || mbr_parts[i].mbr_type == 0x0f || mbr_parts[i].mbr_type == 0x85) {
            Print(L"Status: Extended partition found in MBR table, will not touch this disk.\n",
                  gpt_parts[i].gpt_parttype->name);
            return 1;
        }
    }
    
    return 0;
}

static UINTN write_mbr(VOID)
{
    UINTN               status;
    UINTN               i, k;
    UINT8               active;
    UINT64              lba;
    MBR_PARTITION_INFO  *table;
    BOOLEAN             have_bootcode;
    
    Print(L"\nWriting new MBR...\n");
    
    // read MBR data
    status = read_sector(0, sector);
    if (status != 0)
        return status;
    
    // write partition table
    *((UINT16 *)(sector + 510)) = 0xaa55;
    
    table = (MBR_PARTITION_INFO *)(sector + 446);
    active = 0x80;
    for (i = 0; i < 4; i++) {
        for (k = 0; k < new_mbr_part_count; k++) {
            if (new_mbr_parts[k].index == i)
                break;
        }
        if (k >= new_mbr_part_count) {
            // unused entry
            table[i].flags        = 0;
            table[i].start_chs[0] = 0;
            table[i].start_chs[1] = 0;
            table[i].start_chs[2] = 0;
            table[i].type         = 0;
            table[i].end_chs[0]   = 0;
            table[i].end_chs[1]   = 0;
            table[i].end_chs[2]   = 0;
            table[i].start_lba    = 0;
            table[i].size         = 0;
        } else {
            if (new_mbr_parts[k].active) {
                table[i].flags        = active;
                active = 0x00;
            } else
                table[i].flags        = 0x00;
            table[i].start_chs[0] = 0xfe;
            table[i].start_chs[1] = 0xff;
            table[i].start_chs[2] = 0xff;
            table[i].type         = new_mbr_parts[k].mbr_type;
            table[i].end_chs[0]   = 0xfe;
            table[i].end_chs[1]   = 0xff;
            table[i].end_chs[2]   = 0xff;
            
            lba = new_mbr_parts[k].start_lba;
            if (lba > 0xffffffffULL) {
                Print(L"Warning: Partition %d starts beyond 2 TiB limit\n", i+1);
                lba = 0xffffffffULL;
            }
            table[i].start_lba    = (UINT32)lba;
            
            lba = new_mbr_parts[k].end_lba + 1 - new_mbr_parts[k].start_lba;
            if (lba > 0xffffffffULL) {
                Print(L"Warning: Partition %d extends beyond 2 TiB limit\n", i+1);
                lba = 0xffffffffULL;
            }
            table[i].size         = (UINT32)lba;
        }
    }
    
    // add boot code if necessary
    have_bootcode = FALSE;
    for (i = 0; i < MBR_BOOTCODE_SIZE; i++) {
        if (sector[i] != 0) {
            have_bootcode = TRUE;
            break;
        }
    }
    if (!have_bootcode) {
        // no boot code found in the MBR, add the syslinux MBR code
        SetMem(sector, 0, MBR_BOOTCODE_SIZE);
        CopyMem(sector, syslinux_mbr, SYSLINUX_MBR_SIZE);
    }
    
    // write MBR data
    status = write_sector(0, sector);
    if (status != 0)
        return status;
    
    Print(L"MBR updated successfully!\n");
    
    return 0;
}

//
// GPT functions
//

static UINTN check_gpt(VOID)
{
    UINTN       i, k;
    BOOLEAN     found_data_parts;
    
    if (gpt_part_count == 0) {
        Print(L"Status: No GPT partition table, no need to sync.\n");
        return 1;
    }
    
    // check each entry
    found_data_parts = FALSE;
    for (i = 0; i < gpt_part_count; i++) {
        // check sanity
        if (gpt_parts[i].end_lba < gpt_parts[i].start_lba) {
            Print(L"Status: GPT partition table is invalid.\n");
            return 1;
        }
        // check for overlap
        for (k = 0; k < gpt_part_count; k++) {
            if (k != i && !(gpt_parts[i].start_lba > gpt_parts[k].end_lba || gpt_parts[k].start_lba > gpt_parts[i].end_lba)) {
                Print(L"Status: GPT partition table is invalid, partitions overlap.\n");
                return 1;
            }
        }
        
        // check for partitions kind
        if (gpt_parts[i].gpt_parttype->kind == GPT_KIND_FATAL) {
            Print(L"Status: GPT partition of type '%s' found, will not touch this disk.\n",
                  gpt_parts[i].gpt_parttype->name);
            return 1;
        }
        if (gpt_parts[i].gpt_parttype->kind == GPT_KIND_DATA ||
            gpt_parts[i].gpt_parttype->kind == GPT_KIND_BASIC_DATA)
            found_data_parts = TRUE;
    }
    
    if (!found_data_parts) {
        Print(L"Status: GPT partition table has no data partitions, no need to sync.\n");
        return 1;
    }
    
    return 0;
}

//
// compare GPT and MBR tables
//

#define ACTION_NONE        (0)
#define ACTION_NOP         (1)
#define ACTION_REWRITE     (2)

static UINTN analyze(VOID)
{
    UINTN   action;
    UINTN   i, k, iter, count_active, detected_parttype;
    CHARN   *fsname;
    UINT64  min_start_lba;
    UINTN   status;
    BOOLEAN have_esp;
    
    new_mbr_part_count = 0;
    
    // determine correct MBR types for GPT partitions
    if (gpt_part_count == 0) {
        Print(L"Status: No GPT partitions defined, nothing to sync.\n");
        return 0;
    }
    have_esp = FALSE;
    for (i = 0; i < gpt_part_count; i++) {
        gpt_parts[i].mbr_type = gpt_parts[i].gpt_parttype->mbr_type;
        if (gpt_parts[i].gpt_parttype->kind == GPT_KIND_BASIC_DATA) {
            // Basic Data: need to look at data in the partition
            status = detect_mbrtype_fs(gpt_parts[i].start_lba, &detected_parttype, &fsname);
            if (detected_parttype)
                gpt_parts[i].mbr_type = detected_parttype;
            else
                gpt_parts[i].mbr_type = 0x0b;  // fallback: FAT32
        } else if (gpt_parts[i].mbr_type == 0xef) {
            // EFI System Partition: GNU parted can put this on any partition,
            // need to detect file systems
            status = detect_mbrtype_fs(gpt_parts[i].start_lba, &detected_parttype, &fsname);
            if (!have_esp && (detected_parttype == 0x01 || detected_parttype == 0x0e || detected_parttype == 0x0c))
                ;  // seems to be a legitimate ESP, don't change
            else if (detected_parttype)
                gpt_parts[i].mbr_type = detected_parttype;
            else if (have_esp)    // make sure there's no more than one ESP per disk
                gpt_parts[i].mbr_type = 0x83;  // fallback: Linux
        }
        // NOTE: mbr_type may still be 0 if content detection fails for exotic GPT types or file systems
        
        if (gpt_parts[i].mbr_type == 0xef)
            have_esp = TRUE;
    }
    
    // check for common scenarios
    action = ACTION_NONE;
    if (mbr_part_count == 0) {
        // current MBR is empty
        action = ACTION_REWRITE;
    } else if (mbr_part_count == 1 && mbr_parts[0].mbr_type == 0xee) {
        // MBR has just the EFI Protective partition (i.e. untouched)
        action = ACTION_REWRITE;
    }
    if (action == ACTION_NONE && mbr_part_count > 0) {
        if (mbr_parts[0].mbr_type == 0xee &&
            gpt_parts[0].mbr_type == 0xef &&
            mbr_parts[0].start_lba == 1 &&
            mbr_parts[0].end_lba == gpt_parts[0].end_lba) {
            // The Apple Way, "EFI Protective" covering the tables and the ESP
            action = ACTION_NOP;
            if ((mbr_part_count != gpt_part_count && gpt_part_count <= 4) ||
                (mbr_part_count != 4              && gpt_part_count > 4)) {
                // number of partitions has changed
                action = ACTION_REWRITE;
            } else {
                // check partition ranges and types
                for (i = 1; i < mbr_part_count; i++) {
                    if (mbr_parts[i].start_lba != gpt_parts[i].start_lba ||
                        mbr_parts[i].end_lba   != gpt_parts[i].end_lba ||
                        (gpt_parts[i].mbr_type && mbr_parts[i].mbr_type != gpt_parts[i].mbr_type))
                        // position or type has changed
                        action = ACTION_REWRITE;
                }
            }
            // check number of active partitions
            count_active = 0;
            for (i = 0; i < mbr_part_count; i++)
                if (mbr_parts[i].active)
                    count_active++;
            if (count_active!= 1)
                action = ACTION_REWRITE;
        }
    }
    if (action == ACTION_NONE && mbr_part_count > 0 && mbr_parts[0].mbr_type == 0xef) {
        // The XOM Way, all partitions mirrored 1:1
        action = ACTION_REWRITE;
        // check partition ranges and types
        for (i = 0; i < mbr_part_count; i++) {
            if (mbr_parts[i].start_lba != gpt_parts[i].start_lba ||
                mbr_parts[i].end_lba   != gpt_parts[i].end_lba ||
                (gpt_parts[i].mbr_type && mbr_parts[i].mbr_type != gpt_parts[i].mbr_type))
                // position or type has changed -> better don't touch
                action = ACTION_NONE;
        }
    }
    
    if (action == ACTION_NOP) {
        Print(L"Status: Tables are synchronized, no need to sync.\n");
        return 0;
    } else if (action == ACTION_REWRITE) {
        Print(L"Status: MBR table must be updated.\n");
    } else {
        Print(L"Status: Analysis inconclusive, will not touch this disk.\n");
        return 1;
    }
    
    // generate the new table
    
    // first entry: EFI Protective
    new_mbr_parts[0].index     = 0;
    new_mbr_parts[0].start_lba = 1;
    new_mbr_parts[0].mbr_type  = 0xee;
    new_mbr_part_count = 1;
    
    if (gpt_parts[0].mbr_type == 0xef) {
        new_mbr_parts[0].end_lba = gpt_parts[0].end_lba;
        i = 1;
    } else {
        min_start_lba = gpt_parts[0].start_lba;
        for (k = 0; k < gpt_part_count; k++) {
            if (min_start_lba > gpt_parts[k].start_lba)
                min_start_lba = gpt_parts[k].start_lba;
        }
        new_mbr_parts[0].end_lba = min_start_lba - 1;
        i = 0;
    }
    
    // add other GPT partitions until the table is full
    // TODO: in the future, prioritize partitions by kind
    for (; i < gpt_part_count && new_mbr_part_count < 4; i++) {
        new_mbr_parts[new_mbr_part_count].index     = new_mbr_part_count;
        new_mbr_parts[new_mbr_part_count].start_lba = gpt_parts[i].start_lba;
        new_mbr_parts[new_mbr_part_count].end_lba   = gpt_parts[i].end_lba;
        new_mbr_parts[new_mbr_part_count].mbr_type  = gpt_parts[i].mbr_type;
        new_mbr_parts[new_mbr_part_count].active    = FALSE;
        
        // find matching partition in the old MBR table
        for (k = 0; k < mbr_part_count; k++) {
            if (mbr_parts[k].start_lba == gpt_parts[i].start_lba) {
                // keep type if not detected
                if (new_mbr_parts[new_mbr_part_count].mbr_type == 0)
                    new_mbr_parts[new_mbr_part_count].mbr_type = mbr_parts[k].mbr_type;
                // keep active flag
                new_mbr_parts[new_mbr_part_count].active = mbr_parts[k].active;
                break;
            }
        }
        
        if (new_mbr_parts[new_mbr_part_count].mbr_type == 0)
            // final fallback: set to a (hopefully) unused type
            new_mbr_parts[new_mbr_part_count].mbr_type = 0xc0;
        
        new_mbr_part_count++;
    }
    
    // make sure there's exactly one active partition
    for (iter = 0; iter < 3; iter++) {
        // check
        count_active = 0;
        for (i = 0; i < new_mbr_part_count; i++)
            if (new_mbr_parts[i].active)
                count_active++;
        if (count_active == 1)
            break;
        
        // set active on the first matching partition
        if (count_active == 0) {
            for (i = 0; i < new_mbr_part_count; i++) {
                if ((iter >= 0 && (new_mbr_parts[i].mbr_type == 0x07 ||    // NTFS
                                   new_mbr_parts[i].mbr_type == 0x0b ||    // FAT32
                                   new_mbr_parts[i].mbr_type == 0x0c)) ||  // FAT32 (LBA)
                    (iter >= 1 && (new_mbr_parts[i].mbr_type == 0x83)) ||  // Linux
                    (iter >= 2 && i > 0)) {
                    new_mbr_parts[i].active = TRUE;
                    break;
                }
            }
        } else if (count_active > 1 && iter == 0) {
            // too many active partitions, try deactivating the ESP / EFI Protective entry
            if ((new_mbr_parts[0].mbr_type == 0xee || new_mbr_parts[0].mbr_type == 0xef) &&
                new_mbr_parts[0].active) {
                new_mbr_parts[0].active = FALSE;
            }
        } else if (count_active > 1 && iter > 0) {
            // too many active partitions, deactivate all but the first one
            count_active = 0;
            for (i = 0; i < new_mbr_part_count; i++)
                if (new_mbr_parts[i].active) {
                    if (count_active > 0)
                        new_mbr_parts[i].active = FALSE;
                    count_active++;
                }
        }
    }
    
    // dump table
    Print(L"\nProposed new MBR partition table:\n");
    Print(L" # A    Start LBA      End LBA  Type\n");
    for (i = 0; i < new_mbr_part_count; i++) {
        Print(L" %d %s %12lld %12lld  %02x  %s\n",
              new_mbr_parts[i].index + 1,
              new_mbr_parts[i].active ? STR("*") : STR(" "),
              new_mbr_parts[i].start_lba,
              new_mbr_parts[i].end_lba,
              new_mbr_parts[i].mbr_type,
              mbr_parttype_name(new_mbr_parts[i].mbr_type));
    }
    
    return 0;
}

//
// sync algorithm entry point
//

UINTN gptsync(VOID)
{
    UINTN   status = 0;
    UINTN   status_gpt, status_mbr;
    // BOOLEAN proceed = FALSE;
    
    // get full information from disk
    status_gpt = read_gpt();
    status_mbr = read_mbr();
    if (status_gpt != 0 || status_mbr != 0)
        return (status_gpt || status_mbr);
    
    // cross-check current situation
    Print(L"\n");
    status = check_gpt();   // check GPT for consistency
    if (status != 0)
        return status;
    status = check_mbr();   // check MBR for consistency
    if (status != 0)
        return status;
    status = analyze();     // analyze the situation & compose new MBR table
    if (status != 0)
        return status;
    if (new_mbr_part_count == 0)
        return status;
    
    // offer user the choice what to do
    // status = input_boolean(STR("\nMay I update the MBR as printed above? [y/N] "), &proceed);
    // if (status != 0 || proceed != TRUE)
    //    return status;
    
    // adjust the MBR and write it back
    status = write_mbr();
    if (status != 0)
        return status;
    
    return status;
}