
EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 1

Severin Gehwolf, Jeff Johnston,
Bernhard Merkle, Andrew Overholt

Hands On With the C/C++ IDE

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 2

Hands On With The C/C++ IDE

In this tutorial, attendees will be led through focussed
examples that illustrate how to effectively use the C/C++
IDE.

A set of C/C++ projects will show users how to take
advantage of the CDT to develop, build, debug, test, and
profile their code within Eclipse.

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 3

Virtual Images: VirtualBox/VM-Ware with Fetora14

Easy Tutorial Setup: Use Virtual Images:
– HIGHLY RECOMMENDED: ready to go
– 4GB Virtual Box Image File
– Fedora14 preinstalled with Eclipse CDT Linux Tools
– Available for

• Oracle Virtual Box
• VM-Ware: VM-Ware Workstation/Player

Setup CDT on Windows  Wascana (Doug Schaefer)

Setup on OS X ? (better use our Virtual Box Image)

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 4

Tutorial Setup 101

Copy VirtualBox-Image somewhere on HardDrive (4GB)

Install VirtualBox-Installer (for your OS)
We have Installers for Windows, MacOS, Linux, AMD/Intel

Startup VirtualBox
– MachineAdd… (Ctrl-A)
– Select Fedora.vbox (Copied in Step1)
– Startup the “Fedora” Virtual Machine
– Should log in automatically, but if not:

• User “eclipsecon2011”, Password “eclipsecon2011”

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 5

Tutorial Setup 101

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 6

Tutorial Setup 101

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 7

Glossary and architecture

Linux Tools
Project

Other C/C++
plugins

C/C++ Development Tooling (CDT)

Eclipse Platform Native toolchain

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 8

Exercises

– Discovering and fixing source code errors
– Configuring the build
– Working with breakpoints and data available while debugging
– Finding memory usage problems
– Tracking down performance bottlenecks
– Performing refactorings
– Integration with UnitTests
– Finding bugs and errors with static analysis

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 9

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 10

Overview

Test Driven Development
– Eclipse plugins for TDD: CUTE
– Implementing an example

Static Analysis (SA)
– 3 rules of Scott Meyers “Effective C++ 2nd” (Item 3, 11, 14)
– Tools for SA:

• Lint, gcc –weffc++

– Eclipse plugins for SA:
• Codan
• Linticator
• Includator

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 11

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 12

Overview

Test Driven Development
– Eclipse plugins for TDD: CUTE
– Implementing an example

Static Analysis (SA)
– 3 rules of Scott Meyers “Effective C++ 2nd” (Item 3, 11, 14)
– Tools for SA:

• Lint, gcc –weffc++

– Eclipse plugins for SA:
• Codan
• Linticator
• Includator

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 13

CUTE

Project of IFS in Rapperswil, CH
– http://www.cute-test.com

Features
– “The JUnit for C/C++ Programmers”
– CUTE = C(++) Unit Testing Easy

– Wizards to initialize and set up new tests
– Test navigator with green/red bar
– Diff-viewer for failing tests

http://www.cute-test.com/

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 14

Vicious Circle: Testing – Stress

Help:
– Write test FIRST !
– Automate tests
– Run them often

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 15

Unit-Testing 101

Test anything that might break

Test everything that does break

New code is guilty until proven innocent

Write at least as much test code as production code

Run local tests with each compile

Run all tests before check-in to repository

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 16

Structure of a typical Unit Testing Framework

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 17

Structure of a typical Unit Testing Framework

Test Assertion / Check statement
– used in

Test (Member-)Function
– defined in

TestCase Subclass bundling Tests
– its objects contained in

Test Suite collecting test objects
– executed by

Test Runner (often in a main() function)
– delivers result

OK or Failure

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 18

My first CUTE Test

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 19

CUTE: Test Fixtures

#include "cute.h"
#include "cute_equals.h"

#include "CircularBuffer.h" // if you have this class separate

struct ATest {
 CircularBuffer<int> buf; // SUT == System Under Test

 ATest():buf(4){}
 void testEmpty(){ ASSERT(buf.empty());}
 void testNotFull(){ ASSERT(!buf.full());}
 void testSizeZero(){ ASSERT_EQUAL(0,buf.size());}
};

#include "cute_testmember.h"
....
s.push_back(CUTE_SMEMFUN(ATest,testEmpty));
s.push_back(CUTE_SMEMFUN(ATest,testNotFull));
s.push_back(CUTE_SMEMFUN(ATest,testSizeZero));
...

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 20

Using CUTE: it IS EASY !!! 

#include "cute.h"

ASSERT(condition);
– fails if condition is false

ASSERT_EQUAL(expected,actual);
– fails if exected is not equal to actual

add a message by appending M
– ASSERTM(msg,condition)
– ASSERT_EQUALM(msg,exp,act)

FAIL(); FAILM(msg)
– fails always, use to mark unwritten tests
– or for checking exceptions

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 21

My first CUTE Test

Create new C++ CUTE project
– In Project Explorer

• New Project
• C++ Project

• CUTE Project
• give project name

Let the project compile

Run binary as a CUTE Test
– Observe Result in CUTE
– Results Tab and Console
– Navigate to the failing test

Fix the Test and observe

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 22

My first CUTE Test

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 23

Collecting multiple Tests

CUTE collects test objects in cute::test_suite
– this is just a std::vector<cute::test>

add your tests to your test suite
– s.push_back(CUTE(testfunction));
– s.push_back(testfunctor());

An overloaded operator+= could ease syntax:
– s += CUTE(testfunction);
– s += testfunctor();

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 24

CUTE: Example with expected Exception

– Test in C++
void testAnException() {

 std::vector<int> v; // arrange

 try {

 v.at(0); // act

 FAILM("expected out_of_range exception"); // assert

 }

 catch(std::out_of_range &) { }

}

– CUTE Version
void testAnException() {

 std::vector<int> v;

 ASSERT_THROWS(v.at(0),std::out_of_range);

}

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 25

Member Functions asTests in CUTE

CUTE_SMEMFUN(TestClass,memfun)
– instantiates a new object of TestClass and calls memfun on it

("simple“ member function)

CUTE_MEMFUN(testobject,TestClass,memfun)
– uses pre-instantiated testobject as target for memfun

• this is kept by reference, take care of its scoping/lifetime

• allows reuse of testobject for several tests and thus of a fixture
provided by it.

• allows for classes with complex constructor parameters

CUTE_CONTEXT_MEMFUN(context,TestClass,memfun)
– keeps a copy of context object and passes it to TestClass'

constructor before calling memfun on it
• avoids scoping problems
• allows single-parameter constructors

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 26

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 27

TDD Example

– Start with a TEST FIRST !!!

– See Requirements R1…R4 for more details

– Requirement Priorities
• High (++):

must be completed to reach minimum usable subset
• Medium (+):

useful and should have, but could in principle live without
• Low :

optional, nice to have but definitely not essential

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 28

RE1 (++): Creation and Output of Strings

Objective
– Allow to create a string with a initial or a default value
– Allow to print its value on the console
– Allow to print the length of the string value

Details:
– String s1();
– String s2(“Hello world”);
– s1.print() results in “”
– s2.print () results in “Hello world”);
– s1.length() == 0;
– s2.length() == 11;

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 29

RE2 (+): Common String operations

Objective
– Allow common string manipulations,

e.g. toUpper(), toLower(), trim()

Details
– String e(“EclipseCon”);
– e.toUpper()  ECLIPSECON
– e.toLower()  eclipsecon
– e.trim()  EclipseCon

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 30

RE3 (++): Support assignment, concatenation etc

Objective
– Extend with additional important convenience operations

Details
– String s1(“one”), String s2(“twenty”);
– s1 = s2; // results in s1 == “twenty”

– String s3 = s2 + s1; // results in  S3 == “twentyone”

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 31

RE4 (): Additional operations

Objective
– Support additional convenience operations

Details
– void clear()
– int compare(const MyString& other)
– support for operator <, ==, > etc.
– boolean contains(const MyString& other)
– starts/endsWith(const MyString& other)
– char operator[int pos]/char at(int pos)

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 32

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 33

Overview

Test Driven Development
– Eclipse plugins for TDD: CUTE
– Implementing an example

Static Analysis (SA)
– 3 rules of Scott Meyers “Effective C++ 2nd” (Item 3, 11, 14)
– Tools for SA:

• Lint, gcc –weffc++

– Eclipse plugins for SA:
• Codan
• Linticator
• Includator

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 34

Possible levels of Static Analysis:

Micro-Level
– Code, MISRA-C
– e.g: =, ==, { },

Macro-Level
– Class-Design, Effective Rules for C++, Java, C#
– e.g: by reference, String concat, Exception-Handling

Architecture-Level:
– Layers, Graphs, Subsystems, Compoments, Interfaces
– e.g: Coupling, Dependency, etc…

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 35

Critical areas of C (C Standard)

...are described in Appendix F/ANSI or G/ISO
– Unspecified behaviour
– Undefined behaviour
– Implementation-defined behaviour
– Locale-specific behaviour

failures can be detected
– at compilation stage / static

– at run-time / dynamic

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 36

Unspecified behaviour

a * b + c;
...
(a * b) + c;
...
a * (b + c);

a * (f() + g());

a = i + b[++i];
a = 2 + b[3]; // valid compiler implementation
a = 3 + b[3]; // valid compiler implementation

for (i = 0; i < 100; a[i++] = b[i])
{
 ...;
}

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 37

Empirically determined misbehaviour

Errors of omission and addition

int a, b;
...
if (a = b)
{
 ...
}

...
a == b;
...

...
if (a == b);
{
 ...
}

- occurs every 3306 lines in commerical C code

- occurs every 12325 lines in commerical C code

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 38

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 39

Overview: EC++ 2nd Edition

– Shifting from C to C++ (Item 1 - 4)

– Memory Management (Item 5 - 10)
– Constructors, Destructors, Assignment Operators (Item 11 - 17)

– Classes and Functions: Design and Declaration (Item 18 - 28)
– Classes and Functions: Implementation (Item 29 - 34)
– Inheritance and Object-Oriented Design (Item 35 - 44)

– Miscellany (Item 45 - 50)

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 40

Support of Effective C++ in tools: e.g. g++ -WeffC++

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 41

Item 3: Prefer new /delete to malloc/free

Problem with malloc and free
– they don't know about constructors and destructors

string *stringArray1 =
static_cast<string*>(malloc(10 * sizeof(string)));

string *stringArray2 = new string[10];

– stringArray1 point to memory enough for 10 strings
– stringArray2 point to memory with 10 fully constructed strings

Advantages of new / delete
– always calls default ctor / dtor

• Can also be a disadvantage (then forbid default ctor)
– they are typesafe

file:///C:/arbeit/_doc/Docs/conferences/EclipseConf/EclipseCon/2011/EI3_FR.HTM

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 42

Item 3: Prefer new /delete to malloc/free

Same for deallocation of memory

 free(stringArray1);
 delete [] stringArray2;

– free only releases the memory, no dtor is called
– delete[] does what the programmer expects
– NOTE: delete and delete[] are discussed in Item5 (!!!)

Always use matching allocate / deallocate calls:
 new --> delete
 new[] --> delete[]
 malloc --> free

You are asking for trouble if you violate this rule

file:///C:/arbeit/_doc/Docs/conferences/EclipseConf/EclipseCon/2011/EI3_FR.HTM

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 43

Constructor(s), Destructor, and Assignment Oper

Ctor, Dtor, (Cctor), operator=

every class you write will have
– one or more constructors,
– a destructor, and
– an assignment operator

In fact, they already HAVE one if you don‘t define it (Item50)

these are your bread-and-butter functions

it's vital that you get them right

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 44

Item 11: cctor & operator= for classes with dny. memory

Example:

// a poorly designed String class

class String {

public:

 String(const char *value);

 ~String();

 ... // no copy ctor or operator=

private:

 char *data;

};

file:///C:/arbeit/_doc/Docs/conferences/EclipseConf/EclipseCon/2011/EI11_FR.HTM

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 45

Item 11: cctor & operator= for classes with dny. memory

String::String(const char *value)

{

 if (value) {

 data = new char[strlen(value) + 1];

 strcpy(data, value);

 }

 else {

 data = new char[1];

 *data = '\0';

 }

}

inline String::~String() { delete [] data; }

file:///C:/arbeit/_doc/Docs/conferences/EclipseConf/EclipseCon/2011/EI11_FR.HTM

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 46

Item 11: cctor & operator= for classes with dny. memory

String a("Hello");
String b("World");
b = a; //…

– problems during assignment:
• multiple pointers on the SAME data
• multiple deletes are called on the SAME data

– there is no client-defined operator=
– default assignment operator performs memberwise assignment

from the members (just a bitwise copy)

void doNothing(String localString) {}

String s = "The Truth Is Out There";
doNothing(s); //…

– The case of the copy constructor differs a little from that of the
assignment operator

file:///C:/arbeit/_doc/Docs/conferences/EclipseConf/EclipseCon/2011/EI11_FR.HTM

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 47

Item 11: cctor & op= for classes with memory

solution to these kinds of pointer aliasing problems:
– write your own versions of

• the copy constructor and
• the assignment operator

if you have any pointers in your class

– Inside those functions, you can either
• copy the pointed-to data structures, every object has its own copy
• implement some kind of reference-counting scheme

if you want to inhibit assignment or copy of this class
– You declare the functions (private, as it turns out),

but you don't define (i.e., implement) them at all (Item 27)
– Or use boost:non_copyable

file:///C:/arbeit/_doc/Docs/conferences/EclipseConf/EclipseCon/2011/EI11_FR.HTM

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 48

default and delete in C++0x

struct NC { // NonCopyable „old style“
NC() {…};

private:
NC(const NC&); // no impl !
NC& operator=(const NC&); // no impl !

};

struct NC { // NonCopyable in C++0x
NC() = default;
NC(const NC&) = delete;
NC& operator=(const NC&) = delete;

};

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 49

Item 11: cctor & operator= for classes with dny. memory

Declare a copy constructor and an assignment
operator for classes with dynamically allocated
memory (ressources)

Example:

// a poorly designed String class
class String {
public:
 String(const char *value);
 ~String();
 ... // TODO !!! copy ctor AND operator=
private:
 char *data;
};

file:///C:/arbeit/_doc/Docs/conferences/EclipseConf/EclipseCon/2011/EI11_FR.HTM

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 50

Item 14: have base classes have virtual dtors.

class Target {
public:
 Target() { ++numTargets; }
 Target(const Target&) { ++numTargets; }
 ~Target() { --numTargets; }

 static size_t numberOfTargets() { return numTargets; }
 virtual bool fire();
private:
 static size_t numTargets; // object counter
};

// Target.cpp init static member
size_t Target::numTargets = 0;

class EnemyTank: public Target {
public:
 EnemyTank() { ++numTanks; }
 EnemyTank(const EnemyTank& rhs): Target(rhs) { ++numTanks; }
 ~EnemyTank() { --numTanks; }

 static size_t numberOfTanks() { return numTanks; }
 virtual bool fire();
private:
 static size_t numTanks; // object counter for tanks
};

file:///C:/arbeit/_doc/Docs/conferences/EclipseConf/EclipseCon/2011/EI14_FR.HTM

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 51

Item 14: have base classes have virtual dtors.

Target *targetPtr = new EnemyTank;

...

delete targetPtr;

file:///C:/arbeit/_doc/Docs/conferences/EclipseConf/EclipseCon/2011/EI14_FR.HTM

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 52

Item 14: have base classes have virtual dtors.

Target *targetPtr = new EnemyTank;

...

delete targetPtr; //behaviour is undefined if no virtual dtor

– rule:
declare a virtual destructor in a class if and only if that class
contains at least one virtual function

– Efficiency in C++: declaring all destructors virtual is just as wrong
as never declaring them virtual

– Finally, it can be convenient to declare pure virtual destructors in
some classes

– one twist, however: you must provide a definition for the pure
virtual destructor

file:///C:/arbeit/_doc/Docs/conferences/EclipseConf/EclipseCon/2011/EI14_FR.HTM

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 53

Item 14: have base classes have virtual dtors.

– When you
• try to delete a derived class object
• through a base class pointer

• and
• the base class has a nonvirtual destructor
• the results are undefined

– To avoid this problem you have only to make the destructor virtual
– If a class does not contain any virtual functions, that is often an

indication that it is not meant to be used as a base class

file:///C:/arbeit/_doc/Docs/conferences/EclipseConf/EclipseCon/2011/EI14_FR.HTM

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 54

Item 15: Have operator= return *this

– C++ and the creator strived to ensure that user-defined types would
mimic the built-in types as closely as possible

– With built-in types, you can chain assignments together
int w, x, y, z;

w = x = y = z = 0;

– you should be able to chain together assignments for user-defined
types, too
String w, x, y, z;

w = x = y = z = “hello“;

w = (x = (y = (z = "Hello")));

w.operator=(x.operator=(y.operator=(z.operator=("Hello"))));

file:///C:/arbeit/_doc/Docs/conferences/EclipseConf/EclipseCon/2011/EI15_FR.HTM

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 55

Item 15: Have operator= return *this

operator=
– return type of must be acceptable as an input to the function
– define that return a reference to their left-hand argument, *this

String& String::operator=(const String& rhs)

{

 ...

 return *this; // return reference

 // to left-hand object

}

file:///C:/arbeit/_doc/Docs/conferences/EclipseConf/EclipseCon/2011/EI15_FR.HTM

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 56

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 57

Codan == CODe ANalysis

Tool Vendors
– create plugins containing end-user checkers and templates
– integrate command line static analysis tools into CDT

Software Architects, Process Enforcement
– create customized new checkers, based on templates

(no programming involved)
– To create problem profiles

Developer, Tester, Code Inspector
– check for errors as you type and have a quick way to fix them
– find bugs, security violations, API violations, coding standard

violations during code inspection and before code execution

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 58

Codan: Severity + Enablement on Workspace/Project

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 59

Codan: Launch Control

Run on demand from context menu Run with Build

Run as you type

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 60

Codan: Problem Markers

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 61

Codan: How the write own checkers

Internal Checker
– Problem scope is userdefine (you found e.g. a bug)
– Pick a model to find that problem e.g.

AST, Index, ControlFlow-, DataFlow-, Call-Graph
– Extend abstract checker for that model + implement check
– Create Extension for finding
– Create Autofix Action ?

External Checker
– Problem scope is defined by external tool
– Integrate output into eclipse concole/problems view (error parser)
– Offer Autofix Actions ?

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 62

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 63

Linticator

Project of IFS in Rapperswil, CH
– http://www.linticator.ch

Features
– Autosetup + Project Configuration
– Problems Overview
– Message Explanation View
– Quickfixes
– Supressions

http://www.linticator.ch/

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 64

Linticator: Project Configuration

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 65

Linticator: Overview

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 66

Linticator: Problems View + Message Explanation

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 67

Linticator: Quickfix

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 68

Linticator: Quickfix

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 69

Linticator: Supress Message

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 70

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 71

Includator

Project of IFS in Rapperswil, CH
– http://www.includator.ch

Features
– Find unused includes
– Directly include referenced files
– Organize includes
– Static code coverage
– Find unused files

http://www.includator.ch/

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 72

Includator: Find unused includes

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 73

Includator: Directly include referenced files

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 74

Includator: Organize includes

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 75

Includator: Static code coverage

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 76

Includator: Find unused files

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 77

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 78

More information

Eclipse CDT: http://eclipse.org/cdt

Linux Tools Project: http://www.eclipse.org/linuxtools

Wascana: http://code.google.com/a/eclipselabs.org/p/wascana

CUTE: http://www.cute-test.com/

Linticator: http://www.linticator.ch

Includator: http://includator.ch/

Sconsolidator: http://www.sconsolidator.ch/

http://eclipse.org/cdt
http://www.eclipse.org/linuxtools
http://code.google.com/a/eclipselabs.org/p/wascana
http://www.cute-test.com/
http://www.cute-test.com/
http://www.linticator.ch/
http://includator.ch/
http://includator.ch/
http://www.sconsolidator.ch/
http://www.sconsolidator.ch/

EclipseCon C/C++ Tutorial | © 2011 by Jeff Johnston, Bernhard Merkle, and Andrew Overholt, made available under the EPL v1.0 Page: 79

Conclusion

We hope you have enjoyed seeing some of the breadth and
power of a few Eclipse C/C++ tools. All communities of
developers writing these tools are active and always
interested in feedback. Any level of participation is greatly
appreciated and can be as easy as filing a bug, tweeting
about a cool feature, or writing a blog post about how you
set things up for your project.

Thank you.

	Folie 1
	Hands On With The C/C++ IDE
	Virtual Images: VirtualBox/VM-Ware with Fetora14
	Tutorial Setup 101
	Slide 5
	Slide 6
	Slide 7
	Exercises
	Folie 9
	Overview
	Folie 11
	Slide 12
	CUTE
	Vicious Circle: Testing – Stress
	Unit-Testing 101
	Structure of a typical Unit Testing Framework
	Slide 17
	My first CUTE Test
	CUTE: Test Fixtures
	Using CUTE: it IS EASY !!! 
	Slide 21
	Slide 22
	Collecting multiple Tests
	CUTE: Example with expected Exception
	Member Functions asTests in CUTE
	Folie 26
	TDD Example
	RE1 (++): Creation and Output of Strings
	RE2 (+): Common String operations
	RE3 (++): Support assignment, concatenation etc
	RE4 (): Additional operations
	Folie 32
	Slide 33
	Possible levels of Static Analysis:
	Critical areas of C (C Standard)
	Unspecified behaviour
	Empirically determined misbehaviour
	Folie 38
	Overview: EC++ 2nd Edition
	Support of Effective C++ in tools: e.g. g++ -WeffC++
	Item 3: Prefer new /delete to malloc/free
	Slide 42
	Constructor(s), Destructor, and Assignment Oper
	Item 11: cctor & operator= for classes with dny. memory
	Slide 45
	Slide 46
	Item 11: cctor & op= for classes with memory
	default and delete in C++0x
	Slide 49
	Item 14: have base classes have virtual dtors.
	Slide 51
	Slide 52
	Slide 53
	Item 15: Have operator= return *this
	Slide 55
	Folie 56
	Codan == CODe ANalysis
	Codan: Severity + Enablement on Workspace/Project
	Codan: Launch Control
	Codan: Problem Markers
	Codan: How the write own checkers
	Folie 62
	Linticator
	Linticator: Project Configuration
	Linticator: Overview
	Linticator: Problems View + Message Explanation
	Linticator: Quickfix
	Slide 68
	Linticator: Supress Message
	Folie 70
	Includator
	Includator: Find unused includes
	Includator: Directly include referenced files
	Includator: Organize includes
	Includator: Static code coverage
	Includator: Find unused files
	Folie 77
	More information
	Conclusion

