
Static Analysis of a Linux Distribution

Kamil Dudka <kdudka@redhat.com>

Red Hat, Inc.

November 27th 2018

How to find programming mistakes efficiently?

0 users (preferably volunteers)

1 Automatic Bug Reporting Tool (ABRT)

2 code review, automated tests, dynamic analysis

3 static analysis!

1 / 24

Agenda

1 Code Review

2 Dynamic Analysis

3 Static Analysis

4 Linux Distribution

5 Static Analysis of a Linux Distribution

Code Review

Code Review

design (anti-)patterns

error handling (OOM, permission denied, . . .)

validation of input data (headers, length, encoding, . . .)

sensitive data treatment (avoid exposing private keys, . . .)

use of crypto algorithms

resource management

2 / 24

Dynamic Analysis

Dynamic Analysis

good to have some test-suite to begin with

memory error detectors, profilers, e.g. valgrind

tools to measure test coverage, e.g. gcov/lcov

compiler instrumentation, e.g. GCC built-in sanitizers
(address sanitizer, thread sanitizer, UB sanitizer, . . .)

not so easy to automate as static analysis

3 / 24

Dynamic Analysis

Fuzzing

feeding programs with unusual input

can be combined with valgrind, GCC sanitizers, etc.

radamsa – general purpose data fuzzer

$ cat file | radamsa | program

OSS-Fuzz – continuous fuzzing of open source software

service provided by Google

many security issues detected e.g. in curl

4 / 24

Static Analysis

Static Analysis

does not need to run the code

does not need any test-suite

can detect (potential) bugs fully automatically

5 / 24

Static Analysis

Example – A Defect Found by ShellCheck

Error: SHELLCHECK_WARNING: [#def4]
/etc/rc.d/init.d/squid:136:10: warning: Use "${var:?}" to ensure this never expands to /* . [SC2115]
134| RETVAL=$?
135| if [$RETVAL -eq 0] ; then
136|-> rm -rf $SQUID_PIDFILE_DIR/*
137| start
138| else

https://github.com/koalaman/shellcheck/wiki/SC2115

6 / 24

https://github.com/koalaman/shellcheck/wiki/SC2115

Agenda

1 Code Review

2 Dynamic Analysis

3 Static Analysis

4 Linux Distribution

5 Static Analysis of a Linux Distribution

Linux Distribution

Linux Distribution

operating system (OS)

based on the Linux kernel

a lot of other programs running in user space

usually open source

7 / 24

Linux Distribution

Upstream vs. Downstream

upstream SW projects – usually independent

downstream distribution of upstream SW projects

Red Hat uses the RPM package manager

files on the file system owned by packages:

dependencies form an oriented graph over packages

we can query package database

we can verify installed packages

8 / 24

Linux Distribution

Fedora vs. RHEL

Fedora

new features available early

driven by the community (developers, users, . . .)

RHEL (Red Hat Enterprise Linux)

stability and security of running systems

driven by Red Hat (and its customers)

9 / 24

Linux Distribution

Where do RPM packages come from?

developers maintain source RPM packages (SRPMs)

binary RPMs can be built from SRPMs using rpmbuild:

rpmbuild --rebuild git-2.6.3-1.fc24.src.rpm

binary RPMs can be then installed on the system:

sudo dnf install git

10 / 24

Linux Distribution

Reproducible Builds

local builds are not reproducible

mock – chroot-based tool for building RPMs:

mock -r fedora-rawhide-i386 git-2.6.3-1.fc24.src.rpm

koji – service for scheduling build tasks

koji build rawhide git-2.6.3-1.fc24.src.rpm

easy to hook static analyzers on the build process!

11 / 24

Linux Distribution

Reproducible Builds – Obstacles

build env not 100% isolated from host env

toolchain (compiler, linker, glibc, . . .) evolves

parallel builds with missing dependencies (tricky to debug)

installation of binary RPMs not (always) reproducible

too many unexpected side effects – examples:

SMTP server fails to build on up2date kernel

one-line change of a man page doubles size of curl binary

cookies and certificates in curl upstream test-suite expire

autoconf tests: https://github.com/curl/curl/commit/curl-7 49 1-45-gb2dcf0347

12 / 24

https://github.com/curl/curl/commit/curl-7_49_1-45-gb2dcf0347

Linux Distribution

Reproducible Builds – Best Practices

use git archive to create tarballs
(does not work well with autotools)

isolate build env from host env
(chroot, mock, containers, VMs)

do not use compiler flags like -mtune=native

disable Internet acess during the build

sign release tags and release tarballs

13 / 24

Agenda

1 Code Review

2 Dynamic Analysis

3 Static Analysis

4 Linux Distribution

5 Static Analysis of a Linux Distribution

Static Analysis of a Linux Distribution

Static Analysis of a Linux Distribution (1/2)

RHEL-8 Beta released on November 14th 2018

RHEL-8 Beta static analysis mass in July 2018

analyzed 318 million LoC (Lines of Code) in 3390 packages

95.6% packages scanned successfully

approx. 370 000 potential bugs reported in total

approx. one potential bug per 1000 LoC

14 / 24

Static Analysis of a Linux Distribution

Static Analysis of a Linux Distribution (2/2)

huge number of potential bugs, especially in some packages

packages are developed independently of each other

no control over programming languages and coding style

code annotations (or even fixes) rejected by some upstreams

ignored reports sometimes result in security issues later on

15 / 24

Static Analysis of a Linux Distribution

Which static analyzers?

some analyzers are tweaked for a particular project
(e.g. sparse for kernel)

Relying on a single static analyzer is insufficient!

How to use multiple static analyzers easily?

The csmock tool provides a common interface to GCC, Clang,
Cppcheck, Shellcheck, Pylint, Bandit, Smatch, and Coverity.

Coverity primarily analyzes C/C++, C#, and Java but also
supports dynamic languages (JavaScript, PHP, Python, Ruby).

16 / 24

Static Analysis of a Linux Distribution

Example – Defects Found by Coverity Analysis

Error: NESTING_INDENT_MISMATCH: [#def1]
infinipath-psm-3.3-19_g67c0807_open/psm_diags.c:284: parent: This 'if' statement is the parent, indented to column 5.
infinipath-psm-3.3-19_g67c0807_open/psm_diags.c:285: nephew: This 'if' statement is nested within its parent, indented to column 7.
infinipath-psm-3.3-19_g67c0807_open/psm_diags.c:286: uncle: This 'if' statement is indented to column 7, as if it were nested
within the preceding parent statement, but it is not.
284| if (src == NULL || dst == NULL)
285| if (src) psmi_free(src);
286|-> if (dst) psmi_free(dst);
287| return -1;
288| }

Error: COPY_PASTE_ERROR (CWE-398): [#def2]
gnome-shell-3.14.4/js/ui/boxpointer.js:517: original: "resX -= x2 - arrowOrigin" looks like the original copy.
gnome-shell-3.14.4/js/ui/boxpointer.js:536: copy_paste_error: "resX" in "resX -= y2 - arrowOrigin" looks like a copy-paste error.
gnome-shell-3.14.4/js/ui/boxpointer.js:536: remediation: Should it say "resY" instead?
534| } else if (arrowOrigin >= (y2 - (borderRadius + halfBase))) {
535| if (arrowOrigin < y2)
536|-> resX -= (y2 - arrowOrigin);
537| arrowOrigin = y2;
538| }

Error: IDENTIFIER_TYPO: [#def3]
anaconda-21.48.22.90/pyanaconda/ui/gui/spokes/source.py:1388: identifier_typo: Using "mirorlist" appears to be a typo:
* Identifier "mirorlist" is only known to be referenced here, or in copies of this code.
* Identifier "mirrorlist" is referenced elsewhere at least 27 times.
anaconda-21.48.22.90/pyanaconda/packaging/__init__.py:1046: identifier_use: Example 1: Using identifier "mirrorlist".
anaconda-21.48.22.90/pyanaconda/packaging/yumpayload.py:732: identifier_use: Example 2: Using identifier "mirrorlist".
anaconda-21.48.22.90/pyanaconda/packaging/yumpayload.py:879: identifier_use: Example 3: Using identifier "mirrorlist".
anaconda-21.48.22.90/pyanaconda/packaging/yumpayload.py:726: identifier_use: Example 4: Using identifier "mirrorlist".
anaconda-21.48.22.90/pyanaconda/packaging/yumpayload.py:335: identifier_use: Example 5: Using identifier "mirrorlist".
anaconda-21.48.22.90/pyanaconda/ui/gui/spokes/source.py:1388: remediation: Should identifier "mirorlist" be replaced by "mirrorlist"?
1386| url = self._repoUrlEntry.get_text().strip()
1387| if self._repoMirrorlistCheckbox.get_active():
1388|-> repo.mirorlist = proto + url
1389| else:
1390| repo.baseurl = proto + url

17 / 24

Static Analysis of a Linux Distribution

What is important for developers?

The static analysis tools need to:

be fully automatic

provide reasonable signal to noise ratio

results need to be reproducible and consistent

be approximately as fast as compilation of the package

18 / 24

Static Analysis of a Linux Distribution

Priority Assessment Problem

developers say:

”I have 200+ already known bugs in my project waiting
for a fix. Why should I care about additional bugs that
users are not aware of yet?”

not all bugs are equally important to be fixed!

scoring systems like CWE (Common Weakness Enumeration)

. . . but none of them is universally applicable

19 / 24

Static Analysis of a Linux Distribution

Differential scans

our packages contain a lot of potential bugs

risk of creating new bugs while trying to fix existing bugs

Which bugs were added/fixed in an update of something?

20 / 24

Static Analysis of a Linux Distribution

Example – Differential Scan of logrotate (1/2)

On September 19 someone opened a pull request for logrotate
(https://github.com/logrotate/logrotate/pull/146):

logrotate.c:251:15: warning: Result of ’malloc’ is converted

to a pointer of type ’struct logStates’, which is incompatible

with sizeof operand type ’struct logState’

On September 20 we agreed on a fix and pushed it
(https://github.com/logrotate/logrotate/pull/149):

Release of logrotate-3.13.0 scheduled on October 13th. . .

21 / 24

https://github.com/logrotate/logrotate/pull/146
https://github.com/logrotate/logrotate/pull/149

Static Analysis of a Linux Distribution

Example – Differential Scan of logrotate (2/2)

On October 12th (a day before the release) I ran a differential
scan with the csbuild utility – demo:

git clone https://github.com/logrotate/logrotate.git

cd logrotate && git reset --hard eb322705^

autoreconf -fiv && ./configure

BUILD_CMD=’make clean && make -j9’

csbuild -c $BUILD_CMD -g 3.12.3..master --git-bisect

Luckily, I was able to fix it properly before the release
(https://github.com/logrotate/logrotate/commit/eb322705):

csbuild -c $BUILD_CMD -g origin..master --print-fixed

22 / 24

https://github.com/logrotate/logrotate/commit/eb322705

Static Analysis of a Linux Distribution

Upstream vs. Enterprise

different approaches to static analysis:

upstream – fix as many bugs as possible

false positive ratio increases over time!

enterprise – verify code changes in legacy SW

up to 10% of bugs usually detected as new in an update

up to 10% of them usually confirmed as real by developers

23 / 24

Static Analysis of a Linux Distribution

Continuous Integration

it is expensive to fix bugs detected late in the release cycle

it is difficult and risky to fix bugs in already released products

we would like to catch bugs at the time they are created

an example using the csbuild utility:

csbuild --install ’automake libpopt-devel’ \

--prep-cmd ’autoreconf -fiv && ./configure’ \

--build-cmd ’make clean && make -j9’ \

--git-bisect --gen-travis-yml > .travis.yml

git add .travis.yml

git commit -m "notify me about newly introduced defects"

git push

24 / 24

Slides Available Online

https://kdudka.fedorapeople.org/muni18.pdf

https://kdudka.fedorapeople.org/muni18.pdf

	Code Review
	Dynamic Analysis
	Static Analysis
	Linux Distribution
	Static Analysis of a Linux Distribution

