f

Kernel driver prog. day 3

Presented by
Hans de Goede

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License



Multitasking/ Threading

e Cooperative: Tasks voluntary give up the cpu
by calling into the OS themselves

@ They can do so at a convenient time removing the
need for locking with multi-threading

e Pre-emptive: The OS takes the CPU away from
the task when its timeslot is up

@ This can happen at any time - need locking
@ Stuck processes cannot kill the entire system

£}
fedora:



Linux

e Uses pre-emptive task switching when a task is
executing userspace code

e Traditionally uses cooperative task switching

when a task is executing
e Also supports a semi-rea

kernel code

time mode where it

uses pre-emptive task switching for tasks
executing kernel code too

e This new semi-realtime mode is often the

default

fedora

f

™
™



Kernel entry points

@ On boot the first cpu core starts executing
kernel

e When a task makes a system call the cpu core
running that task starts executing kernel code

@ On a hardware interrupt the cpu core which

receives this interrupt starts executing kernel
code

fedora



Kernel contexts

e On boot and on a system call the kernel code
being run runs in process context.

e [n process context the code may call into the
scheduler to schedule another task while it
waits for some event, this is called sleeping
and is a coorperative task switch

fedora



Kernel contexts

@ On a hardware interrupt the kernel code being
run is in atomic context

e [n atomic context the code cannot sleep since
it is impossible to schedule another task and
later go back to executing the interrupt
handler

e An interrupt handler must finish in one go,
hence the name atomic

@ An interrupt handler must clear the source of

the interrupt

£}
fedora:



Locking

e Given hardware interrupt handling, multiple
cpu cores and kernel pre-emption, any kernel
code can be running at the same time as any
other kernel code, including itself

e This means that the kernel must make
extensive use of locking to avoid race
conditions

e This locking is often fine grained to avoid
slowdowns due to other tasks waiting for the
same lock (lock starvation)

£}
fedora:



Lock types

e Mutexes are the standard kernel locks, these
sleep while waiting to aquire a lock and thus
can only be used in process context

e Spinlocks are locks for use in atomic context,
these use a busy loop waiting for the lock,
hence the name spinlocks

@ Code sections protected by spinlocks must be
short both in amount of code and executing time

@ Taking a spinlock in process context switches to
atomic context until the lock is released

@ No sleeping while holding a spinlock! f

fedora



Locking (2)

e Most Linux subsystem take care of locking for
you, but you must always be aware of the
locking being done, and in some cases you

may need to take a subsys
e To figure out the locking ru

ock yourself
es for a subsystem

you've to read the subsystem code, there is no
comprehensive and uptodate documentation

fedora

™
™



Lock ordering

e You must always take locks in the same order

e If you've a code-path taking first lock b and
then lock a, then ALL your code paths taking

BOTH lock a and b must first take lock b and
then lock a

e Not following this rule will lead to deadlocks

which causes hanging systems and unhappy
users (which is not good ™)

fedora



Questions”?

Contact;

hdegoede@redhat.com

)C

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

