
Hans de Goede
Presented by

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License

Kernel driver prog. day 3

Cooperative: Tasks voluntary give up the cpu
by calling into the OS themselves

They can do so at a convenient time removing the
need for locking with multi-threading

Pre-emptive: The OS takes the CPU away from
the task when its timeslot is up

This can happen at any time need locking→
Stuck processes cannot kill the entire system

Multitasking/Threading

Uses pre-emptive task switching when a task is
executing userspace code

Traditionally uses cooperative task switching
when a task is executing kernel code

Also supports a semi-realtime mode where it
uses pre-emptive task switching for tasks
executing kernel code too

This new semi-realtime mode is often the
default

Linux

On boot the first cpu core starts executing
kernel

When a task makes a system call the cpu core
running that task starts executing kernel code

On a hardware interrupt the cpu core which
receives this interrupt starts executing kernel
code

Kernel entry points

On boot and on a system call the kernel code
being run runs in process context.

In process context the code may call into the
scheduler to schedule another task while it
waits for some event, this is called sleeping
and is a coorperative task switch

Kernel contexts

On a hardware interrupt the kernel code being
run is in atomic context

In atomic context the code cannot sleep since
it is impossible to schedule another task and
later go back to executing the interrupt
handler

An interrupt handler must finish in one go,
hence the name atomic

An interrupt handler must clear the source of
the interrupt

Kernel contexts

Given hardware interrupt handling, multiple
cpu cores and kernel pre-emption, any kernel
code can be running at the same time as any
other kernel code, including itself

This means that the kernel must make
extensive use of locking to avoid race
conditions

This locking is often fine grained to avoid
slowdowns due to other tasks waiting for the
same lock (lock starvation)

Locking

Mutexes are the standard kernel locks, these
sleep while waiting to aquire a lock and thus
can only be used in process context

Spinlocks are locks for use in atomic context,
these use a busy loop waiting for the lock,
hence the name spinlocks

Code sections protected by spinlocks must be
short both in amount of code and executing time

Taking a spinlock in process context switches to
atomic context until the lock is released

No sleeping while holding a spinlock!

Lock types

Most Linux subsystem take care of locking for
you, but you must always be aware of the
locking being done, and in some cases you
may need to take a subsys lock yourself

To figure out the locking rules for a subsystem
you've to read the subsystem code, there is no
comprehensive and uptodate documentation

Locking (2)

You must always take locks in the same order

If you've a code-path taking first lock b and
then lock a, then ALL your code paths taking
BOTH lock a and b must first take lock b and
then lock a

Not following this rule will lead to deadlocks
which causes hanging systems and unhappy
users (which is not good ™)

Lock ordering

Questions?

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License

hdegoede@redhat.com
Contact:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

