

 Container Security

Daniel J Walsh
Consulting Engineer

Twitter: @rhatdan
Blog: danwalsh.livejournal.com

Email: dwalsh@redhat.com

Container Security

Container Security

As explained
by the

three pigs

Chapter 1: When should I use containers versus VMs?

Chapter 2: What platform should host my containers?

Chapter 3: How do I ensure container separation?

Chapter 4: How do I secure content inside container?

GLOSSARY
PIG==Application Service

Chapter 1
Where should the pigs live?

When should I use containers
versus virtual machines?

 Standalone Homes
(Separate Physical Machines)

Duplex Home
(Virtual Machines)

1 9 3 8 2 0 1 3

Apartment Building
(Containers)

40

30

41

31

42

32

43

33

Hostel
(Services Same Machine)

Park
(setenforce 0)

http://stopdisablingselinux.com/

Pigs in Apartment Buildings

Best combination of resource sharing ease
of maintainance & security

 Chapter 2
 What kind of apartment building?

What platform should host your
containers?

Straw?

Straw?

Running containers on do it yourself
platform.

Sticks?

Sticks?

Running containers on community
platform.

Brick?

Brick?

Running containers on
Red Hat Enterprise Linux

RHEL Maintenance

RHEL Maintenance

Security Response Team.

Chapter 3
How do I separate/secure

pig apartments?

Chapter 3
How do I separate/secure

pig apartments?

How do you ensure container
separation?

CONTAINERS DO NOT CONTAIN

http://www.maritimenz.govt.nz/images/Incident-area/Rena7.jpg

 Do you care?

 Should you care?

● Drop privileges as quickly as possible

Treat Container Services just like
regular services

● Drop privileges as quickly as possible
● Run your services as non Root whenever

possible

Treat Container Services just like
regular services

● Drop privileges as quickly as possible
● Run your services as non Root whenever

possible
● Treat root within a container the same as root

outside of the container

Treat Container Services just like
regular services

● Drop privileges as quickly as possible
● Run your services as non Root whenever

possible
● Treat root within a container the same as root

outside of the container

Treat Container Services just like
regular services

"Docker is about running random crap
from the internet as root on your host"

Only run container images
from trusted parties

See Chapter 4

"Docker is about running random crap
from the internet as root on your host"

Why don't
containers contain?

Why don't containers contain?

● Everything in Linux is not namespaced

Why don't containers contain?

● Everything in Linux is not namespaced
● Containers are not comprehensive like virtual

machines (kvm)

Why don't containers contain?

● Everything in Linux is not namespaced
● Containers are not comprehensive like virtual

machines (kvm)
● Kernel file systems: /sys, /sys/fs, /proc/sys
● Cgroups, SELinux, /dev/mem, kernel modules

Chapter 3
Overview of Security within

Docker containers

Read Only Mount Points

● /sys, /proc/sys, /proc/sysrq-trigger,/proc/irq,
/proc/bus

Capabilities

man capabilities

DESCRIPTION

 For the purpose of performing permission checks, traditional UNIX

 implementations distinguish two categories of processes: privileged

 processes (whose effective user ID is 0, referred to as superuser or

 root), and unprivileged processes (whose effective UID is nonzero).

 Privileged processes bypass all kernel permission checks, while

 unprivileged processes are subject to full permission checking based on

 the process's credentials (usually: effective UID, effective GID, and

 supplementary group list).

 Starting with kernel 2.2, Linux divides the privileges traditionally

 associated with superuser into distinct units, known as capabilities,

 which can be independently enabled and disabled. Capabilities are a

 per-thread attribute.

Capabilities Removed

CAP_SETPCAP Modify process capabilities

CAP_SYS_MODULE Insert/Remove kernel modules

CAP_SYS_RAWIO Modify Kernel Memory

CAP_SYS_PACCT Configure process accounting

CAP_SYS_NICE Modify Priotity of processes

CAP_SYS_RESOURCE Override Resource Limits

CAP_SYS_TIME Modify the system clock

CAP_SYS_TTY_CONFIG Configure tty devices

CAP_AUDIT_WRITE Write the audit log

CAP_AUDIT_CONTROL Configure Audit Subsystem

CAP_MAC_OVERRIDE Ignore Kernel MAC Policy

CAP_MAC_ADMIN Configure MAC Configuration

CAP_SYSLOGModify Kernel printk behavior

Capabilities Removed

CAP_NET_ADMIN Configure the network

Capabilities Removed

CAP_NET_ADMIN Configure the network

CAP_SYS_ADMIN Catch all

SYS_ADMIN

less /usr/include/linux/capability.h
...
/* Allow configuration of the secure attention key */
/* Allow administration of the random device */
/* Allow examination and configuration of disk quotas */
/* Allow setting the domainname */
/* Allow setting the hostname */
/* Allow calling bdflush() */
/* Allow mount() and umount(), setting up new smb connection */
/* Allow some autofs root ioctls */
/* Allow nfsservctl */
/* Allow VM86_REQUEST_IRQ */
/* Allow to read/write pci config on alpha */
/* Allow irix_prctl on mips (setstacksize) */
/* Allow flushing all cache on m68k (sys_cacheflush) */
/* Allow removing semaphores */
/* Used instead of CAP_CHOWN to "chown" IPC message queues, semaphores
 and shared memory */
/* Allow locking/unlocking of shared memory segment */
/* Allow turning swap on/off */
/* Allow forged pids on socket credentials passing */
/* Allow setting readahead and flushing buffers on block devices */

SYS_ADMIN
/* Allow setting geometry in floppy driver */
/* Allow turning DMA on/off in xd driver */
/* Allow administration of md devices (mostly the above, but some
 extra ioctls) */
/* Allow tuning the ide driver */
/* Allow access to the nvram device */
/* Allow administration of apm_bios, serial and bttv (TV) device */
/* Allow manufacturer commands in isdn CAPI support driver */
/* Allow reading non-standardized portions of pci configuration space */
/* Allow DDI debug ioctl on sbpcd driver */
/* Allow setting up serial ports */
/* Allow sending raw qic-117 commands */
/* Allow enabling/disabling tagged queuing on SCSI controllers and sending
 arbitrary SCSI commands */
/* Allow setting encryption key on loopback filesystem */
/* Allow setting zone reclaim policy */

Namespaces

● PID Namespace

Namespaces

● PID Namespace
● Network Namespace

Cgroups

Device Cgroup

Device nodes allow processes to configure kernel

Cgroups

Device Cgroup

Device nodes allow processes to configure kernel

Should have been a namespace

Cgroups

Device Cgroup

Device nodes allow processes to configure kernel

Should have been a namespace

Controls device nodes that can be created

Cgroups

Device Cgroup

Device nodes allow processes to configure kernel

Should have been a namespace

Controls device nodes that can be created

/dev/console/dev/zero /dev/null /dev/fuse

/dev/full /dev/tty* /dev/urandom /dev/random

Cgroups

Device Cgroup

Device nodes allow processes to configure kernel

Should have been a namespace

Controls device nodes that can be created

/dev/console/dev/zero /dev/null /dev/fuse

/dev/full /dev/tty* /dev/urandom /dev/random

Images also mounted with nodev

SELinux

Everyone Please standup and repeat after me.

SELinux

Everyone Please standup and repeat after me.

SELinux is a LABELING system

SELinux

Everyone Please standup and repeat after me.

SELinux is a LABELING system

Every Process has a LABEL

SELinux

Everyone Please standup and repeat after me.

SELinux is a LABELING system

Every Process has a LABEL

Every File, Directory, System object has a LABEL

SELinux

Everyone Please standup and repeat after me.

SELinux is a LABELING system

Every Process has a LABEL

Every File, Directory, System object has a LABEL

Policy rules control access between labeled
processes and labeled objects

SELinux

Everyone Please standup and repeat after me.

SELinux is a LABELING system

Every Process has a LABEL

Every File, Directory, System object has a LABEL

Policy rules control access between labeled
processes and labeled objects

The Kernel enforces the rules

Grab your
SELinux

Coloring Book

Type Enforcement

Type Enforcement

Type Enforcement

Type Enforcement

Type Enforcement

Type Enforcement

Type Enforcement

● Protects the host system from container
processes

● Container processes can only read/execute /usr
files

● Container processes only write to container
files.

● Process type svirt_lxc_net_t
● file type svirt_sandbox_file_t

MCS Enforcement

Multi Category Security

MCS Enforcement

MCS Enforcement

MCS Enforcement

MCS Enforcement

MCS Enforcement

● Protects containers from each other.
● Container processes can only read/write their files.
● Docker daemon picks unique random MCS Label.

– s0:c1,c2

● Assigns MCS Label to all content
● Launches the container processes with same label

Docker Without SELinux

Is like Tupperware without the burp

Future - seccomp

● Shrink the attack surface on the kernel
● Eliminate syscalls
● kexec_load, open_by_handle_at, init_module,

finit_module, delete_module, iopl, ioperm, swapon,
swapoff, sysfs, sysctl, adjtimex, clock_adjtime,
lookup_dcookie, perf_event_open, fanotify_init,
kcmp

● block 32 bit syscalls
● block old weird networks

Future – User Name Space

● Map non root user to root within container
● Available in docker-1.9 (Limited)
● Only used to protect the host from containers,

not used to protect containers from each other.
● Can we protect one container from another?
● No file system support

Future – Clear Linux Containers

● Use KVM with slimmed down kernel
● Intel Introduced
● Better isolation

– Better SELinux protection

● Breaks certain use cases
● Supports docker containers
● Starts container in .2 seconds

Chapter 4
How do you furnish the pigs

apartment?

How do I secure content inside container?

LINUX 1999

LINUX 1999
Where did you get your software?

LINUX 1999
Where did you get your software?
Go to yahoo.com or AltaVista.com

and google it?

LINUX 1999
Where did you get your software?
Go to yahoo.com or AltaVista.com

and google it?
Find it on rpmfind.net, download and install.

LINUX 1999
Where did you get your software?
Go to yahoo.com or AltaVista.com

and google it?
Find it on rpmfind.net, download and install.

Hey I hear there is a big Security
vulnerability in Zlib.

LINUX 1999
Where did you get your software?
Go to yahoo.com or AltaVista.com

and google it?
Find it on rpmfind.net, download and install.

Hey I hear there is a big Security
vulnerability in Zlib.

How many copies of the Zlib vulnerability to
you have?

LINUX 1999
Where did you get your software?
Go to yahoo.com or AltaVista.com

and google it?
Find it on rpmfind.net, download and install.

Hey I hear there is a big Security
vulnerability in Zlib.

How many copies of the Zlib vulnerability to
you have?

I have no clue!!!

Red Hat to the Rescue

Red Hat to the Rescue
Red Hat Enterprise Linux solved this problem

Red Hat to the Rescue
Red Hat Enterprise Linux solved this problem

Certified software and hardware platforms

How do you furnish the pigs
apartment?

People have no idea of quality of software
in docker images

How do you furnish the pigs
apartment?

Or they build it themselves.

Lets Talk about DEV/OPS

Lets Talk about DEV/OPS
Containers move the responsibility for security
updates from the Operator to the Developer.

Lets Talk about DEV/OPS
Containers move the responsibility for security
updates from the Operator to the Developer.

Do you trust developers to
fix security issues in their images?

What happens when the
next Shell Shock hits

How do you furnish the pigs
apartment?

RHEL Certified Images

How do you furnish the pigs
apartment?

Red Hat Support and Security teams
partnering with you to secure your software

Don't let this be you.

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97

