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Overview

An incomplete tour of:
● CPython's memory usage:

● How it works
● How it goes wrong
● Some fixes

● Tools you can use to track memory usage
● Introduction to my new gdb-heap tool

https://fedorahosted.org/gdb-heap/



Memory overuse: symptoms

● A given workload uses more memory than 
you'd like

● Memory leaks: gradual increase in the memory 
usage of a process

● High-water-mark memory usage
● Lack of sharing between different processes



CPython Memory overuse: causes

● Inefficient representations
● True leaks:

● Bugs in refcounting
● Bugs in tp_traverse

● Apparent leaks:
● Too much caching (user code)
● Too much caching (implementation code)
● Heap fragmentation

● Lack of sharing: “read-only” access to objects 
generates writes to memory (ob_refcnt)



Memory overuse: fixes

● Better data representations
● Fix the bugs
● Evict your caches
● Use PyPy (it's not just the JIT)



Python...



...as an object reference graph



...as allocated blocks of memory (CPython)



sys.getsizeof(obj)

● “How big is this object, in bytes?”
● Includes buffers allocated for obj
● Doesn't include other objects referenced by obj
● CPython 2.6 onwards
● Implemented for all of the builtin types
● 3rd party extension modules might get this wrong



Sizes of fundamental types, in bytes
(optimized CPython)

Type 32-bit 64-bit

int (python2)
   (Single instances for range [-5, 257); custom 
allocator)

12 24

long (python2) / int (python3)
   (Single instances for range [-5, 257) on py3k)

14 +
(2 * num “digits”)

30 +
(2 * num “digits”)

str (python2) / bytes (python3)
   (Single instances for empty string and all length-1 
values)

24 + length 40 + length

unicode (python2) / str (python3)
   (Single instances for empty string and all length-1 
values for Latin-1)

28
+ (2 or 4 * length)

52
+ (2 or 4 * length)

list 32 + (4 * length) 72 + (8 * length)

tuple
   (Shared instance of empty tuple; custom allocator)

24 + (4 * length) 64 + (8 * length)

float
   (Custom allocator)

16 24



Sizes of small dictionaries
(optimized CPython)

32-bit 64-bit

Base size 136 
+ (12 * per external 
PyDictEntry tables)

280 + (24 per external 
PyDictEntry table)

0-5 entries 136 280

6-21 entries 520 1048

22-85 entries 1672 3352

This directly affects the sizes of most objects in memory: __dict__



Different object representations can have very 
different sizes

10,000 instances of a 6-field type (CPython)

New-style, with __slots__

tuple

NamedTuple

dict

New-style class

Old-style

0 5,000,000 10,000,000 15,000,000

2517448

258 78 00

2775496

8 436528

12903416

1298 338 4

Size in bytes



The __slots__ optimization in CPython



Meliae

https://launchpad.net/meliae
● Python extension module for taking a snapshot 

of the object reference graph, as seen by the 
GC.
● Everything, via gc.get_objects()
● Everything “downstream” of a given object

● Dumps object reference graph in JSON form
● address, type, __name__, len, value, refs

● Tools for analyzing results



Below the object reference graph...







Malloc in GNU libc: boundary tags

● sbrk and anonymous mmap regions:











How can we track down problems at the lower 
levels?

● Valgrind is one way...
● But it introduces behavior changes
● Slows things down
● Can't attach to a running program
● ...or deal with a core dump



Introducing gdb-heap

https://fedorahosted.org/gdb-heap/

● gdb 7 onwards can be scripted via in Python
● I've written Python code to analyze how the 

process being debugged is using its heap
● Doesn't require co-operation of the process 

under investigation
● Usable on coredumps

https://fedorahosted.org/gdb-heap/


gdb-heap (GNU)

● ~2600 lines of Python code, analyzing:
● GNU libc's malloc/free implementation
● CPython's allocators and objects
● Other stuff: C++, GTK's GType

● Very low level
● Great at dealing with problems deeper down in the 

stack (e.g. within a C library)
● Analysis of processes built from mixed technologies 

e.g. C, C++ and Python



What gdb-heap does

● Locates the allocator implementations:
● GNU libc's malloc/free implementation
● CPython's PYMALLOC implementation

● Other allocators?

● Walks the blocks of memory in use:
● by malloc/realloc (sbrk and mmap)
● Detects and subdivides the 256KB blocks used by 

PYMALLOC

● Tries to categorize every allocated block



Categorizing allocations “in situ”

● Casting to (PyObject*)
● Do fields look valid?  e.g. ((PyObject*)ptr)->ob_type

● Also, it tries the (PyGC_Head) offset
● If so: categorize using the ob_type

● Example:
● a block of memory  (void*)ptr  that has

((PyObject*)(ptr+sizeof(PyGC_Head))->ob_type

== &PyDict_Type

● Looking for a C++ v-table at the top of the block
● Do the bytes look like a C-style string?

...and other heuristics



Categorizing allocations via cross-references

● Follow statically-allocated pointers: do they 
point at this block?
● Example: static PyObject *interned;

● Look at all the already-allocated blocks
● Do any of them contain pointers?

● Use this to categorize the blocks they point to
● Rinse and repeat, with a scoring system

● Example:
● given an block known to be a python instance, categorize 

the __dict__, and the ma_table (if not ma_smalltable)















Query language

● (gdb) heap select criteria
● Currently implemented criteria:

● and, or, ==
● “domain”, “kind”, “detail”, “size”









Caveats

● Too low-level?
● doesn't know about garbage collector generations (yet)
● doesn't understand the object reference graph (yet)

● Categorization can be hit-or-miss
● Could use more speed optimizations
● Ironically, uses too much RAM



Success story

● Analysing RAM usage of Fedora's software 
updater
● identified large blocks of C library data

● being kept alive via a cache at the Python level
● being fixed for next release



Future plans

● Support for apr (httpd, mod_wsgi, etc)
● Anything else?



Summary

● A brief tour of some aspects of CPython's 
memory usage

● Introduction to a new tool for tracking problems 
down

http://fedorahosted.org/gdb-heap/



Q & A



Additional material



...via per-type allocators (tp_new/tp_alloc)
(CPython)

● Specialized allocators for int, float, etc
● High-water-mark behavior (until 2.6/3.0)

● PyDict_New



...via _PyObject_GC_Malloc (CPython)

● Reference-owning objects get a hidden 
PyGC_Head at the front:

● 12 bytes on a 32-bit build of python
● 32 bytes on a 64-bit build

● Allocation can trigger a garbage-collection
● ...every 700 of such allocations, by default



Missing slide: reference counting (CPython)



Missing slide: the garbage collector (CPython)



Virtual memory

● All of the above are divided into 4K pages
● Not all of them are necessarily used by physical 

memory
● Some of them may be shared

● Not as many as you'd like (ob_refcnt)

● KVM, KSM, and ob_refcnt



Investigative tools

● sys.getsizeof()
● Debug build
● Meliae
● Heapy
● valgrind
● gdb-heap



Debug build of Python

● Adds: _ob_next, _ob_prev pointers to the top of 
every object

● Doubly-linked list of all objects that think they're 
alive

● Adds sys.gettotalrefcount()
● If this continually increases you may have a leak

● Or a cache...

● Set “PYTHONDUMPREFS=1” in the 
environment to see all objects still alive on exit



Heapy

● http://guppy-pe.sourceforge.net/#Heapy



Valgrind  (Linux)

● Low-level memory-leak finder
● Instrumented malloc/free
● As of CPython 2.7, 3.2, CPython can detect if 

it's being run under valgrind and automatically 
turn off the arena allocator



Fixing memory leaks: the crude and nasty way

● Kill the process at regular intervals
● Let it die, e.g. after 100 requests

For when you need to keep a system running, 
and haven't diagnosed the root cause of the 
leak yet

Obviously not ideal, but may save you in an 
emergency



Fixing memory leaks: the better way

Figure out the root cause

Fix that



How do memory leaks happen?

● High-tide marks: caches
● ob_refcnt errors
● tp_traverse errors
● C and C++ bugs
● SWIG errors



High-tide marks: caches

● in user code: caches that are never purged
● allocator caches that aren't purged (older 

pythons)
● the fixed arena high-watermark issue (fixed in 

2.5a1; also RHEL 5.6)
● the per-type allocators 

(int/float/method/frame/CFunction/tuple/unicode) 
(fixed in 2.6alpha1 and 3.0a3)

● See gcmodule.c:clear_freelists: 
http://svn.python.org/view?view=revision&revision=60797

● One-time initialization (e.g. in wrapped libraries)

http://svn.python.org/view?view=revision&revision=60797


Bugs: ob_refcnt 

Objects with too high an ob_refcnt:
● think they're alive, but nothing references them.

Detection:
● Debug build of python
● Valgrind
● gdb-heap?
● meliae?



Bugs: tp_traverse

● Classes that don't call Py_VISIT on every held 
reference in their tp_traverse

● Classes that don't have a tp_traverse callback



Differences in a debug build of CPython

● Obmalloc arenas are disabled
● Extra padding around every allocation
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