
“Dude – Where's My RAM?”
A deep dive into how Python
uses memory.

David Malcolm, Red Hat

<dmalcolm@redhat.com>

PyCon US 2011

Overview

An incomplete tour of:
● CPython's memory usage:

● How it works
● How it goes wrong
● Some fixes

● Tools you can use to track memory usage
● Introduction to my new gdb-heap tool

https://fedorahosted.org/gdb-heap/

Memory overuse: symptoms

● A given workload uses more memory than
you'd like

● Memory leaks: gradual increase in the memory
usage of a process

● High-water-mark memory usage
● Lack of sharing between different processes

CPython Memory overuse: causes

● Inefficient representations
● True leaks:

● Bugs in refcounting
● Bugs in tp_traverse

● Apparent leaks:
● Too much caching (user code)
● Too much caching (implementation code)
● Heap fragmentation

● Lack of sharing: “read-only” access to objects
generates writes to memory (ob_refcnt)

Memory overuse: fixes

● Better data representations
● Fix the bugs
● Evict your caches
● Use PyPy (it's not just the JIT)

Python...

...as an object reference graph

...as allocated blocks of memory (CPython)

sys.getsizeof(obj)

● “How big is this object, in bytes?”
● Includes buffers allocated for obj
● Doesn't include other objects referenced by obj
● CPython 2.6 onwards
● Implemented for all of the builtin types
● 3rd party extension modules might get this wrong

Sizes of fundamental types, in bytes
(optimized CPython)

Type 32-bit 64-bit

int (python2)
 (Single instances for range [-5, 257); custom
allocator)

12 24

long (python2) / int (python3)
 (Single instances for range [-5, 257) on py3k)

14 +
(2 * num “digits”)

30 +
(2 * num “digits”)

str (python2) / bytes (python3)
 (Single instances for empty string and all length-1
values)

24 + length 40 + length

unicode (python2) / str (python3)
 (Single instances for empty string and all length-1
values for Latin-1)

28
+ (2 or 4 * length)

52
+ (2 or 4 * length)

list 32 + (4 * length) 72 + (8 * length)

tuple
 (Shared instance of empty tuple; custom allocator)

24 + (4 * length) 64 + (8 * length)

float
 (Custom allocator)

16 24

Sizes of small dictionaries
(optimized CPython)

32-bit 64-bit

Base size 136
+ (12 * per external
PyDictEntry tables)

280 + (24 per external
PyDictEntry table)

0-5 entries 136 280

6-21 entries 520 1048

22-85 entries 1672 3352

This directly affects the sizes of most objects in memory: __dict__

Different object representations can have very
different sizes

10,000 instances of a 6-field type (CPython)

New-style, with __slots__

tuple

NamedTuple

dict

New-style class

Old-style

0 5,000,000 10,000,000 15,000,000

2517448

258 78 00

2775496

8 436528

12903416

1298 338 4

Size in bytes

The __slots__ optimization in CPython

Meliae

https://launchpad.net/meliae
● Python extension module for taking a snapshot

of the object reference graph, as seen by the
GC.
● Everything, via gc.get_objects()
● Everything “downstream” of a given object

● Dumps object reference graph in JSON form
● address, type, __name__, len, value, refs

● Tools for analyzing results

Below the object reference graph...

Malloc in GNU libc: boundary tags

● sbrk and anonymous mmap regions:

How can we track down problems at the lower
levels?

● Valgrind is one way...
● But it introduces behavior changes
● Slows things down
● Can't attach to a running program
● ...or deal with a core dump

Introducing gdb-heap

https://fedorahosted.org/gdb-heap/

● gdb 7 onwards can be scripted via in Python
● I've written Python code to analyze how the

process being debugged is using its heap
● Doesn't require co-operation of the process

under investigation
● Usable on coredumps

https://fedorahosted.org/gdb-heap/

gdb-heap (GNU)

● ~2600 lines of Python code, analyzing:
● GNU libc's malloc/free implementation
● CPython's allocators and objects
● Other stuff: C++, GTK's GType

● Very low level
● Great at dealing with problems deeper down in the

stack (e.g. within a C library)
● Analysis of processes built from mixed technologies

e.g. C, C++ and Python

What gdb-heap does

● Locates the allocator implementations:
● GNU libc's malloc/free implementation
● CPython's PYMALLOC implementation

● Other allocators?

● Walks the blocks of memory in use:
● by malloc/realloc (sbrk and mmap)
● Detects and subdivides the 256KB blocks used by

PYMALLOC

● Tries to categorize every allocated block

Categorizing allocations “in situ”

● Casting to (PyObject*)
● Do fields look valid? e.g. ((PyObject*)ptr)->ob_type

● Also, it tries the (PyGC_Head) offset
● If so: categorize using the ob_type

● Example:
● a block of memory (void*)ptr that has

((PyObject*)(ptr+sizeof(PyGC_Head))->ob_type

== &PyDict_Type

● Looking for a C++ v-table at the top of the block
● Do the bytes look like a C-style string?

...and other heuristics

Categorizing allocations via cross-references

● Follow statically-allocated pointers: do they
point at this block?
● Example: static PyObject *interned;

● Look at all the already-allocated blocks
● Do any of them contain pointers?

● Use this to categorize the blocks they point to
● Rinse and repeat, with a scoring system

● Example:
● given an block known to be a python instance, categorize

the __dict__, and the ma_table (if not ma_smalltable)

Query language

● (gdb) heap select criteria
● Currently implemented criteria:

● and, or, ==
● “domain”, “kind”, “detail”, “size”

Caveats

● Too low-level?
● doesn't know about garbage collector generations (yet)
● doesn't understand the object reference graph (yet)

● Categorization can be hit-or-miss
● Could use more speed optimizations
● Ironically, uses too much RAM

Success story

● Analysing RAM usage of Fedora's software
updater
● identified large blocks of C library data

● being kept alive via a cache at the Python level
● being fixed for next release

Future plans

● Support for apr (httpd, mod_wsgi, etc)
● Anything else?

Summary

● A brief tour of some aspects of CPython's
memory usage

● Introduction to a new tool for tracking problems
down

http://fedorahosted.org/gdb-heap/

Q & A

Additional material

...via per-type allocators (tp_new/tp_alloc)
(CPython)

● Specialized allocators for int, float, etc
● High-water-mark behavior (until 2.6/3.0)

● PyDict_New

...via _PyObject_GC_Malloc (CPython)

● Reference-owning objects get a hidden
PyGC_Head at the front:

● 12 bytes on a 32-bit build of python
● 32 bytes on a 64-bit build

● Allocation can trigger a garbage-collection
● ...every 700 of such allocations, by default

Missing slide: reference counting (CPython)

Missing slide: the garbage collector (CPython)

Virtual memory

● All of the above are divided into 4K pages
● Not all of them are necessarily used by physical

memory
● Some of them may be shared

● Not as many as you'd like (ob_refcnt)

● KVM, KSM, and ob_refcnt

Investigative tools

● sys.getsizeof()
● Debug build
● Meliae
● Heapy
● valgrind
● gdb-heap

Debug build of Python

● Adds: _ob_next, _ob_prev pointers to the top of
every object

● Doubly-linked list of all objects that think they're
alive

● Adds sys.gettotalrefcount()
● If this continually increases you may have a leak

● Or a cache...

● Set “PYTHONDUMPREFS=1” in the
environment to see all objects still alive on exit

Heapy

● http://guppy-pe.sourceforge.net/#Heapy

Valgrind (Linux)

● Low-level memory-leak finder
● Instrumented malloc/free
● As of CPython 2.7, 3.2, CPython can detect if

it's being run under valgrind and automatically
turn off the arena allocator

Fixing memory leaks: the crude and nasty way

● Kill the process at regular intervals
● Let it die, e.g. after 100 requests

For when you need to keep a system running,
and haven't diagnosed the root cause of the
leak yet

Obviously not ideal, but may save you in an
emergency

Fixing memory leaks: the better way

Figure out the root cause

Fix that

How do memory leaks happen?

● High-tide marks: caches
● ob_refcnt errors
● tp_traverse errors
● C and C++ bugs
● SWIG errors

High-tide marks: caches

● in user code: caches that are never purged
● allocator caches that aren't purged (older

pythons)
● the fixed arena high-watermark issue (fixed in

2.5a1; also RHEL 5.6)
● the per-type allocators

(int/float/method/frame/CFunction/tuple/unicode)
(fixed in 2.6alpha1 and 3.0a3)

● See gcmodule.c:clear_freelists:
http://svn.python.org/view?view=revision&revision=60797

● One-time initialization (e.g. in wrapped libraries)

http://svn.python.org/view?view=revision&revision=60797

Bugs: ob_refcnt

Objects with too high an ob_refcnt:
● think they're alive, but nothing references them.

Detection:
● Debug build of python
● Valgrind
● gdb-heap?
● meliae?

Bugs: tp_traverse

● Classes that don't call Py_VISIT on every held
reference in their tp_traverse

● Classes that don't have a tp_traverse callback

Differences in a debug build of CPython

● Obmalloc arenas are disabled
● Extra padding around every allocation

	Front page
	"top"
	"top", highlighted
	Overview
	Types of problem
	Causes
	Fixes
	Sample python code
	Object Reference Graph
	Allocated memory blocks
	sys.getsizeof(obj)
	Sizes of builtin types
	dict sizes
	Benchmarks (6-attrs)
	__slots__
	Meliae
	Below the object reference graph...
	obmalloc.c
	obmalloc.c, continued
	Boundary tags
	Memory map (p1)
	Memory map (p1 v2)
	Memory map (p2)
	Memory map (p2 v2)
	Slide 25
	Introducing gdb-heap
	gdb-heap
	What gdb-heap does
	Categorization p1
	Categorization p2
	gdb-heap demo (p1)
	gdb-heap demo (p2)
	gdb-heap demo (p3)
	gdb-heap demo (p4)
	gdb-heap demo (p5)
	gdb-heap demo (p6)
	Query language
	gdb-heap: select int allocator
	gdb-heap : select str
	gdb-heap: cpython-allocators
	gdb-heap caveats
	Success story
	Future plans
	Summary
	Q and A
	Extra material
	per-type allocators
	_PyObject_GC_Malloc
	Reference counting
	The garbage collector
	Slide 51
	Slide 52
	Slide 53
	Heapy
	Valgrind
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Debug builds of CPython

