/* (PD) 2001 The Bitzi Corporation * Please see file COPYING or http://bitzi.com/publicdomain * for more info. * * NIST Secure Hash Algorithm * heavily modified by Uwe Hollerbach * from Peter C. Gutmann's implementation as found in * Applied Cryptography by Bruce Schneier * Further modifications to include the "UNRAVEL" stuff, below * * This code is in the public domain * * $Id: sha1.c,v 1.1 2005-12-28 18:06:50 tpm Exp $ */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #define SHA_BYTE_ORDER G_BYTE_ORDER #include #include "sha1.h" /* UNRAVEL should be fastest & biggest */ /* UNROLL_LOOPS should be just as big, but slightly slower */ /* both undefined should be smallest and slowest */ #define UNRAVEL /* #define UNROLL_LOOPS */ /* SHA f()-functions */ #define f1(x,y,z) ((x & y) | (~x & z)) #define f2(x,y,z) (x ^ y ^ z) #define f3(x,y,z) ((x & y) | (x & z) | (y & z)) #define f4(x,y,z) (x ^ y ^ z) /* SHA constants */ #define CONST1 0x5a827999L #define CONST2 0x6ed9eba1L #define CONST3 0x8f1bbcdcL #define CONST4 0xca62c1d6L /* truncate to 32 bits -- should be a null op on 32-bit machines */ #define T32(x) ((x) & 0xffffffffL) /* 32-bit rotate */ #define R32(x,n) T32(((x << n) | (x >> (32 - n)))) /* the generic case, for when the overall rotation is not unraveled */ #define FG(n) \ T = T32(R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n); \ E = D; D = C; C = R32(B,30); B = A; A = T /* specific cases, for when the overall rotation is unraveled */ #define FA(n) \ T = T32(R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n); B = R32(B,30) #define FB(n) \ E = T32(R32(T,5) + f##n(A,B,C) + D + *WP++ + CONST##n); A = R32(A,30) #define FC(n) \ D = T32(R32(E,5) + f##n(T,A,B) + C + *WP++ + CONST##n); T = R32(T,30) #define FD(n) \ C = T32(R32(D,5) + f##n(E,T,A) + B + *WP++ + CONST##n); E = R32(E,30) #define FE(n) \ B = T32(R32(C,5) + f##n(D,E,T) + A + *WP++ + CONST##n); D = R32(D,30) #define FT(n) \ A = T32(R32(B,5) + f##n(C,D,E) + T + *WP++ + CONST##n); C = R32(C,30) /* do SHA transformation */ static void sha_transform (SHA_INFO * sha_info) { int i; SHA_BYTE *dp; SHA_LONG T, A, B, C, D, E, W[80], *WP; dp = sha_info->data; /* the following makes sure that at least one code block below is traversed or an error is reported, without the necessity for nested preprocessor if/else/endif blocks, which are a great pain in the nether regions of the anatomy... */ #undef SWAP_DONE #if (SHA_BYTE_ORDER == 1234) #define SWAP_DONE for (i = 0; i < 16; ++i) { T = *((SHA_LONG *) dp); dp += 4; W[i] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) | ((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff); } #endif /* SHA_BYTE_ORDER == 1234 */ #if (SHA_BYTE_ORDER == 4321) #define SWAP_DONE for (i = 0; i < 16; ++i) { T = *((SHA_LONG *) dp); dp += 4; W[i] = T32 (T); } #endif /* SHA_BYTE_ORDER == 4321 */ #if (SHA_BYTE_ORDER == 12345678) #define SWAP_DONE for (i = 0; i < 16; i += 2) { T = *((SHA_LONG *) dp); dp += 8; W[i] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) | ((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff); T >>= 32; W[i + 1] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) | ((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff); } #endif /* SHA_BYTE_ORDER == 12345678 */ #if (SHA_BYTE_ORDER == 87654321) #define SWAP_DONE for (i = 0; i < 16; i += 2) { T = *((SHA_LONG *) dp); dp += 8; W[i] = T32 (T >> 32); W[i + 1] = T32 (T); } #endif /* SHA_BYTE_ORDER == 87654321 */ #ifndef SWAP_DONE #error Unknown byte order -- you need to add code here #endif /* SWAP_DONE */ for (i = 16; i < 80; ++i) { W[i] = W[i - 3] ^ W[i - 8] ^ W[i - 14] ^ W[i - 16]; #if (SHA_VERSION == 1) W[i] = R32 (W[i], 1); #endif /* SHA_VERSION */ } A = sha_info->digest[0]; B = sha_info->digest[1]; C = sha_info->digest[2]; D = sha_info->digest[3]; E = sha_info->digest[4]; WP = W; #ifdef UNRAVEL FA (1); FB (1); FC (1); FD (1); FE (1); FT (1); FA (1); FB (1); FC (1); FD (1); FE (1); FT (1); FA (1); FB (1); FC (1); FD (1); FE (1); FT (1); FA (1); FB (1); FC (2); FD (2); FE (2); FT (2); FA (2); FB (2); FC (2); FD (2); FE (2); FT (2); FA (2); FB (2); FC (2); FD (2); FE (2); FT (2); FA (2); FB (2); FC (2); FD (2); FE (3); FT (3); FA (3); FB (3); FC (3); FD (3); FE (3); FT (3); FA (3); FB (3); FC (3); FD (3); FE (3); FT (3); FA (3); FB (3); FC (3); FD (3); FE (3); FT (3); FA (4); FB (4); FC (4); FD (4); FE (4); FT (4); FA (4); FB (4); FC (4); FD (4); FE (4); FT (4); FA (4); FB (4); FC (4); FD (4); FE (4); FT (4); FA (4); FB (4); sha_info->digest[0] = T32 (sha_info->digest[0] + E); sha_info->digest[1] = T32 (sha_info->digest[1] + T); sha_info->digest[2] = T32 (sha_info->digest[2] + A); sha_info->digest[3] = T32 (sha_info->digest[3] + B); sha_info->digest[4] = T32 (sha_info->digest[4] + C); #else /* !UNRAVEL */ #ifdef UNROLL_LOOPS FG (1); FG (1); FG (1); FG (1); FG (1); FG (1); FG (1); FG (1); FG (1); FG (1); FG (1); FG (1); FG (1); FG (1); FG (1); FG (1); FG (1); FG (1); FG (1); FG (1); FG (2); FG (2); FG (2); FG (2); FG (2); FG (2); FG (2); FG (2); FG (2); FG (2); FG (2); FG (2); FG (2); FG (2); FG (2); FG (2); FG (2); FG (2); FG (2); FG (2); FG (3); FG (3); FG (3); FG (3); FG (3); FG (3); FG (3); FG (3); FG (3); FG (3); FG (3); FG (3); FG (3); FG (3); FG (3); FG (3); FG (3); FG (3); FG (3); FG (3); FG (4); FG (4); FG (4); FG (4); FG (4); FG (4); FG (4); FG (4); FG (4); FG (4); FG (4); FG (4); FG (4); FG (4); FG (4); FG (4); FG (4); FG (4); FG (4); FG (4); #else /* !UNROLL_LOOPS */ for (i = 0; i < 20; ++i) { FG (1); } for (i = 20; i < 40; ++i) { FG (2); } for (i = 40; i < 60; ++i) { FG (3); } for (i = 60; i < 80; ++i) { FG (4); } #endif /* !UNROLL_LOOPS */ sha_info->digest[0] = T32 (sha_info->digest[0] + A); sha_info->digest[1] = T32 (sha_info->digest[1] + B); sha_info->digest[2] = T32 (sha_info->digest[2] + C); sha_info->digest[3] = T32 (sha_info->digest[3] + D); sha_info->digest[4] = T32 (sha_info->digest[4] + E); #endif /* !UNRAVEL */ } /* initialize the SHA digest */ void sha_init (SHA_INFO * sha_info) { sha_info->digest[0] = 0x67452301L; sha_info->digest[1] = 0xefcdab89L; sha_info->digest[2] = 0x98badcfeL; sha_info->digest[3] = 0x10325476L; sha_info->digest[4] = 0xc3d2e1f0L; sha_info->count_lo = 0L; sha_info->count_hi = 0L; sha_info->local = 0; } /* update the SHA digest */ void sha_update (SHA_INFO * sha_info, const SHA_BYTE * buffer, int count) { int i; SHA_LONG clo; clo = T32 (sha_info->count_lo + ((SHA_LONG) count << 3)); if (clo < sha_info->count_lo) { ++sha_info->count_hi; } sha_info->count_lo = clo; sha_info->count_hi += (SHA_LONG) count >> 29; if (sha_info->local) { i = SHA_BLOCKSIZE - sha_info->local; if (i > count) { i = count; } memcpy (((SHA_BYTE *) sha_info->data) + sha_info->local, buffer, i); count -= i; buffer += i; sha_info->local += i; if (sha_info->local == SHA_BLOCKSIZE) { sha_transform (sha_info); } else { return; } } while (count >= SHA_BLOCKSIZE) { memcpy (sha_info->data, buffer, SHA_BLOCKSIZE); buffer += SHA_BLOCKSIZE; count -= SHA_BLOCKSIZE; sha_transform (sha_info); } memcpy (sha_info->data, buffer, count); sha_info->local = count; } /* finish computing the SHA digest */ void sha_final (unsigned char digest[20], SHA_INFO * sha_info) { int count; SHA_LONG lo_bit_count, hi_bit_count; lo_bit_count = sha_info->count_lo; hi_bit_count = sha_info->count_hi; count = (int) ((lo_bit_count >> 3) & 0x3f); ((SHA_BYTE *) sha_info->data)[count++] = 0x80; if (count > SHA_BLOCKSIZE - 8) { memset (((SHA_BYTE *) sha_info->data) + count, 0, SHA_BLOCKSIZE - count); sha_transform (sha_info); memset ((SHA_BYTE *) sha_info->data, 0, SHA_BLOCKSIZE - 8); } else { memset (((SHA_BYTE *) sha_info->data) + count, 0, SHA_BLOCKSIZE - 8 - count); } sha_info->data[56] = (unsigned char) ((hi_bit_count >> 24) & 0xff); sha_info->data[57] = (unsigned char) ((hi_bit_count >> 16) & 0xff); sha_info->data[58] = (unsigned char) ((hi_bit_count >> 8) & 0xff); sha_info->data[59] = (unsigned char) ((hi_bit_count >> 0) & 0xff); sha_info->data[60] = (unsigned char) ((lo_bit_count >> 24) & 0xff); sha_info->data[61] = (unsigned char) ((lo_bit_count >> 16) & 0xff); sha_info->data[62] = (unsigned char) ((lo_bit_count >> 8) & 0xff); sha_info->data[63] = (unsigned char) ((lo_bit_count >> 0) & 0xff); sha_transform (sha_info); digest[0] = (unsigned char) ((sha_info->digest[0] >> 24) & 0xff); digest[1] = (unsigned char) ((sha_info->digest[0] >> 16) & 0xff); digest[2] = (unsigned char) ((sha_info->digest[0] >> 8) & 0xff); digest[3] = (unsigned char) ((sha_info->digest[0]) & 0xff); digest[4] = (unsigned char) ((sha_info->digest[1] >> 24) & 0xff); digest[5] = (unsigned char) ((sha_info->digest[1] >> 16) & 0xff); digest[6] = (unsigned char) ((sha_info->digest[1] >> 8) & 0xff); digest[7] = (unsigned char) ((sha_info->digest[1]) & 0xff); digest[8] = (unsigned char) ((sha_info->digest[2] >> 24) & 0xff); digest[9] = (unsigned char) ((sha_info->digest[2] >> 16) & 0xff); digest[10] = (unsigned char) ((sha_info->digest[2] >> 8) & 0xff); digest[11] = (unsigned char) ((sha_info->digest[2]) & 0xff); digest[12] = (unsigned char) ((sha_info->digest[3] >> 24) & 0xff); digest[13] = (unsigned char) ((sha_info->digest[3] >> 16) & 0xff); digest[14] = (unsigned char) ((sha_info->digest[3] >> 8) & 0xff); digest[15] = (unsigned char) ((sha_info->digest[3]) & 0xff); digest[16] = (unsigned char) ((sha_info->digest[4] >> 24) & 0xff); digest[17] = (unsigned char) ((sha_info->digest[4] >> 16) & 0xff); digest[18] = (unsigned char) ((sha_info->digest[4] >> 8) & 0xff); digest[19] = (unsigned char) ((sha_info->digest[4]) & 0xff); }