1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
|
From f9b32cd97783f2be14386f1347439e86109050b9 Mon Sep 17 00:00:00 2001
From: Jeroen Van den Keybus <jeroen.vandenkeybus@gmail.com>
Date: Mon, 30 Jan 2012 22:37:28 +0100
Subject: [PATCH] Unhandled IRQs on AMD E-450: temporarily switch to
low-performance polling IRQ mode
It seems that some motherboard designs using the ASM1083 PCI/PCIe
bridge (PCI device ID 1b21:1080, Rev. 01) suffer from stuck IRQ lines
on the PCI bus (causing the kernel to emit 'IRQxx: nobody cared' and
disable the IRQ). The following patch is an attempt to mitigate the
serious impact of permanently disabling an IRQ in that case and
actually make PCI devices better usable on this platform.
It seems that the bridge fails to issue a IRQ deassertion message on
the PCIe bus, when the relevant driver causes the interrupting PCI
device to deassert its IRQ line. To solve this issue, it was tried to
re-issue an IRQ on a PCI device being able to do so (e1000 in this
case), but we suspect that the attempt to re-assert/deassert may have
occurred too soon after the initial IRQ for the ASM1083. Anyway, it
didn't work but if, after some delay, a new IRQ occurred, the related
IRQ deassertion message eventually did clear the IOAPIC IRQ. It would
be useful to re-enable the IRQ here.
Therefore the patch below to poll_spurious_irqs() in spurious.c is
proposed, It does the following:
1. lets the kernel decide that an IRQ is unhandled after only 10
positives (instead of 100,000);
2. briefly (a few seconds or so, currently 1 s) switches to polling
IRQ at a higher rate than usual (100..1,000Hz instead of 10Hz,
currently 100Hz), but not too high to avoid excessive CPU load. Any
device drivers 'see' their interrupts handled with a higher latency
than usual, but they will still operate properly;
3. afterwards, simply reenable the IRQ.
If proper operation of the PCIe legacy IRQ line emulation is restored
after 3, the system operates again at normal performance. If the IRQ
is still stuck after this procedure, the sequence repeats.
If a genuinely stuck IRQ is used with this solution, the system would
simply sustain short bursts of 10 unhandled IRQs per second, and use
polling mode indefinitely at a moderate 100Hz rate. It seemed a good
alternative to the default irqpoll behaviour to me, which is why I
left it in poll_spurious_irqs() (instead of creating a new kernel
option). Additionally, if any device happens to share an IRQ with a
faulty one, that device is no longer banned forever.
Debugging output is still present and may be removed. Bad IRQ
reporting is also commented out now.
I have now tried it for about 2 months and I can conclude the following:
1. The patch works and, judging from my Firewire card interrupt on
IRQ16, which repeats every 64 secs, I can confirm that the IRQ usually
gets reset when a new IRQ arrives (polling mode runs for 64 seconds
every time).
2. When testing a SiL-3114 SATA PCI card behind the ASM1083, I could
keep this running at fairly high speeds (50..70MB/s) for an hour or
so, but eventually the SiL driver crashed. In such conditions the PCI
system had to deal with a few hundred IRQs per second / polling mode
kicking in every 5..10 seconds).
I would like to thank Clemens Ladisch for his invaluable help in
finding a solution (and providing a patch to avoid my SATA going down
every time during debugging).
Signed-off-by: Jeroen Van den Keybus <jeroen.vandenkeybus@gmail.com>
Make it less chatty. Only kick it in if we detect an ASM1083 PCI bridge.
Fix logic error due to lack of braces
Josh Boyer <jwboyer@redhat.com>
======
---
drivers/pci/quirks.c | 16 +++++++++++
kernel/irq/spurious.c | 73 +++++++++++++++++++++++++++++++++++++++---------
2 files changed, 75 insertions(+), 14 deletions(-)
diff --git a/drivers/pci/quirks.c b/drivers/pci/quirks.c
index 78fda9c..6ba5dbf 100644
--- a/drivers/pci/quirks.c
+++ b/drivers/pci/quirks.c
@@ -1677,6 +1677,22 @@ DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_INTEL, 0x2609, quirk_intel_pcie_pm);
DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_INTEL, 0x260a, quirk_intel_pcie_pm);
DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_INTEL, 0x260b, quirk_intel_pcie_pm);
+/* ASM108x transparent PCI bridges apparently have broken IRQ deassert
+ * handling. This causes interrupts to get "stuck" and eventually disabled.
+ * However, the interrupts are often shared and disabling them is fairly bad.
+ * It's been somewhat successful to switch to polling mode and retry after
+ * a bit, so let's do that.
+ */
+extern int irq_poll_and_retry;
+static void quirk_asm108x_poll_interrupts(struct pci_dev *dev)
+{
+ dev_info(&dev->dev, "Buggy bridge found [%04x:%04x]\n",
+ dev->vendor, dev->device);
+ dev_info(&dev->dev, "Stuck interrupts will be polled and retried\n");
+ irq_poll_and_retry = 1;
+}
+DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_ASMEDIA, 0x1080, quirk_asm108x_poll_interrupts);
+
#ifdef CONFIG_X86_IO_APIC
/*
* Boot interrupts on some chipsets cannot be turned off. For these chipsets,
diff --git a/kernel/irq/spurious.c b/kernel/irq/spurious.c
index 611cd60..f722eb6 100644
--- a/kernel/irq/spurious.c
+++ b/kernel/irq/spurious.c
@@ -18,6 +18,8 @@
static int irqfixup __read_mostly;
+int irq_poll_and_retry = 0;
+
#define POLL_SPURIOUS_IRQ_INTERVAL (HZ/10)
static void poll_spurious_irqs(unsigned long dummy);
static DEFINE_TIMER(poll_spurious_irq_timer, poll_spurious_irqs, 0, 0);
@@ -141,12 +143,13 @@ out:
static void poll_spurious_irqs(unsigned long dummy)
{
struct irq_desc *desc;
- int i;
+ int i, poll_again;
if (atomic_inc_return(&irq_poll_active) != 1)
goto out;
irq_poll_cpu = smp_processor_id();
+ poll_again = 0; /* Will stay false as long as no polling candidate is found */
for_each_irq_desc(i, desc) {
unsigned int state;
@@ -159,14 +162,33 @@ static void poll_spurious_irqs(unsigned long dummy)
if (!(state & IRQS_SPURIOUS_DISABLED))
continue;
- local_irq_disable();
- try_one_irq(i, desc, true);
- local_irq_enable();
+ /* We end up here with a disabled spurious interrupt.
+ desc->irqs_unhandled now tracks the number of times
+ the interrupt has been polled */
+ if (irq_poll_and_retry) {
+ if (desc->irqs_unhandled < 100) { /* 1 second delay with poll frequency 100 Hz */
+ local_irq_disable();
+ try_one_irq(i, desc, true);
+ local_irq_enable();
+ desc->irqs_unhandled++;
+ poll_again = 1;
+ } else {
+ irq_enable(desc); /* Reenable the interrupt line */
+ desc->depth--;
+ desc->istate &= (~IRQS_SPURIOUS_DISABLED);
+ desc->irqs_unhandled = 0;
+ }
+ } else {
+ local_irq_disable();
+ try_one_irq(i, desc, true);
+ local_irq_enable();
+ }
}
+ if (poll_again)
+ mod_timer(&poll_spurious_irq_timer,
+ jiffies + POLL_SPURIOUS_IRQ_INTERVAL);
out:
atomic_dec(&irq_poll_active);
- mod_timer(&poll_spurious_irq_timer,
- jiffies + POLL_SPURIOUS_IRQ_INTERVAL);
}
static inline int bad_action_ret(irqreturn_t action_ret)
@@ -177,11 +199,19 @@ static inline int bad_action_ret(irqreturn_t action_ret)
}
/*
- * If 99,900 of the previous 100,000 interrupts have not been handled
+ * If 9 of the previous 10 interrupts have not been handled
* then assume that the IRQ is stuck in some manner. Drop a diagnostic
* and try to turn the IRQ off.
*
- * (The other 100-of-100,000 interrupts may have been a correctly
+ * Although this may cause early deactivation of a sporadically
+ * malfunctioning IRQ line, the poll system will:
+ * a) Poll it for 100 cycles at a 100 Hz rate
+ * b) Reenable it afterwards
+ *
+ * In worst case, with current settings, this will cause short bursts
+ * of 10 interrupts every second.
+ *
+ * (The other single interrupt may have been a correctly
* functioning device sharing an IRQ with the failing one)
*/
static void
@@ -269,6 +299,8 @@ try_misrouted_irq(unsigned int irq, struct irq_desc *desc,
void note_interrupt(unsigned int irq, struct irq_desc *desc,
irqreturn_t action_ret)
{
+ int unhandled_thresh = 999000;
+
if (desc->istate & IRQS_POLL_INPROGRESS)
return;
@@ -302,19 +334,32 @@ void note_interrupt(unsigned int irq, struct irq_desc *desc,
}
desc->irq_count++;
- if (likely(desc->irq_count < 100000))
- return;
+ if (!irq_poll_and_retry) {
+ if (likely(desc->irq_count < 100000))
+ return;
+ } else {
+ if (likely(desc->irq_count < 10))
+ return;
+ }
desc->irq_count = 0;
- if (unlikely(desc->irqs_unhandled > 99900)) {
+ if (irq_poll_and_retry)
+ unhandled_thresh = 9;
+
+ if (unlikely(desc->irqs_unhandled >= unhandled_thresh)) {
/*
- * The interrupt is stuck
+ * The interrupt might be stuck
*/
- __report_bad_irq(irq, desc, action_ret);
+ if (!irq_poll_and_retry) {
+ __report_bad_irq(irq, desc, action_ret);
+ printk(KERN_EMERG "Disabling IRQ %d\n", irq);
+ } else {
+ printk(KERN_INFO "IRQ %d might be stuck. Polling\n",
+ irq);
+ }
/*
* Now kill the IRQ
*/
- printk(KERN_EMERG "Disabling IRQ #%d\n", irq);
desc->istate |= IRQS_SPURIOUS_DISABLED;
desc->depth++;
irq_disable(desc);
--
1.7.7.6
|