summaryrefslogtreecommitdiffstats
path: root/kernel-i686-debug-fedora.config
Commit message (Expand)AuthorAgeFilesLines
* kernel-5.7.0-0.rc3.1Justin M. Forbes2020-04-261-1/+1
* kernel-5.7.0-0.rc2.20200423git7adc4b399952.1Jeremy Cline2020-04-231-1/+1
* kernel-5.7.0-0.rc2.20200422git18bf34080c4c.1Justin M. Forbes2020-04-221-0/+1
* kernel-5.7.0-0.rc1.20200414git8632e9b5645b.1Jeremy Cline2020-04-141-11/+101
* Linux v5.7-rc1Justin M. Forbes2020-04-131-0/+9
* minor update for deleted configsPeter Robinson2020-04-111-1/+0
* Linux v5.6-12046-gae46d2aa6a7fJustin M. Forbes2020-04-081-0/+13
* Linux v5.6-11374-ga10c9c710f9eJustin M. Forbes2020-04-061-0/+4
* Linux v5.6-9431-gbef7b2a7be28Justin M. Forbes2020-04-031-1/+7
* staging: initial driver deletion cleanupsPeter Robinson2020-04-031-10/+0
* VIDEO_USBVISION has moved to staging for removal so disable itPeter Robinson2020-04-031-1/+1
* Linux v5.6-7632-g919dce24701fJustin M. Forbes2020-04-021-0/+16
* Linux v5.6-5611-g1a323ea5356eJustin M. Forbes2020-04-011-0/+17
* Linux v5.6-2405-gcad18da0afb1Justin M. Forbes2020-03-311-0/+17
* Linux v5.6-461-g47acac8cae28Justin M. Forbes2020-03-301-0/+1
* Panel support for PinePhonePeter Robinson2020-03-191-0/+1
* arm: minor updatesPeter Robinson2020-03-161-2/+0
* Linux v5.6-rc5Peter Robinson2020-03-091-0/+1
* Drop THUNDERBOLT_NET and move EFI_RCI2_TABLE to x86_64Jeremy Cline2020-02-271-2/+1
* Drop dead and invalid configuration optionsJeremy Cline2020-02-241-13/+0
* Linux v5.6-rc2-8-gb1da3acc781cJeremy Cline2020-02-181-1/+1
* arm: last bitsPeter Robinson2020-02-171-1/+0
* arm: more minor updatesPeter Robinson2020-02-171-1/+0
* arm updatesPeter Robinson2020-02-161-1/+1
* X86_INTEL_MPX removed u/sPeter Robinson2020-02-111-1/+0
* Disable CONFIG_SFIJustin M. Forbes2020-02-101-1/+1
* Remove sysrq support to lift lockdown (rhbz 1800859)Jeremy Cline2020-02-101-1/+0
* Minor arm updatesPeter Robinson2020-02-101-2/+0
* Linux v5.6-rc1Jeremy Cline2020-02-101-0/+6
* enable iProc rng200 on armPeter Robinson2020-02-101-1/+0
* Linux v5.5-9824-g90568ecf5615Jeremy Cline2020-02-071-1/+1
* Linux v5.5-9737-g4c46bef2e96aJeremy Cline2020-02-061-0/+5
* Linux v5.5-9402-g6992ca0dd017Jeremy Cline2020-02-051-1/+16
* Temporarily disable STACKPROTECTOR_STRONG for x86 (rhbz 1796780)Jeremy Cline2020-02-041-1/+1
* Disable CONFIG_DRM_DP_CEC temporarilyJeremy Cline2020-02-041-1/+1
* Linux v5.5-8686-g14cd0bd04907Jeremy Cline2020-02-031-0/+33
* disble BT_CMTP (CAPI Message Transport Protocol), we disable ISDNPeter Robinson2020-01-311-1/+1
* Linux v5.5-3996-gb3a608222336Jeremy Cline2020-01-291-1/+45
* ima: enable system extra cert to enable adding an extra cert without needing ...Peter Robinson2020-01-291-1/+2
* Kconfig symbol cleanup for v5.5-rc1Paul Bolle2020-01-251-10/+0
* arm: qcom: disable some 32 bit HW in aarch64Peter Robinson2020-01-211-1/+0
* Enable EROFS as it has been promoted from stagingJustin M. Forbes2020-01-091-1/+7
* enable CRYPTO_DEV_ATMEL_SHA204A driver, it's used in a number of devices acro...Peter Robinson2020-01-081-1/+1
* enable CRYPTO_DEV_ATMEL_ECC driver, it's used in a number of devices across a...Peter Robinson2020-01-081-1/+1
* Make the MFD Intel LPSS driver builtin, some devices require this to beHans de Goede2020-01-061-2/+2
* Linux v5.5-rc2-56-gea200dec5128Justin M. Forbes2019-12-171-1/+2
* Enable ASoC SOF driver for Intel DSPJaroslav Kysela2019-12-161-2/+22
* arm: a few more updatesPeter Robinson2019-12-111-5/+1
* 5.5 Updates for ARMv7/aarch64, Enable newer TI ARMv7 platformsPeter Robinson2019-12-111-2/+0
* Revert "Goodbye CONFIG_AX25"Laura Abbott2019-12-101-1/+1
38 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
/*
 * This file is part of UBIFS.
 *
 * Copyright (C) 2006-2008 Nokia Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 51
 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 *
 * Author: Adrian Hunter
 */

#include "ubifs.h"

/*
 * An orphan is an inode number whose inode node has been committed to the index
 * with a link count of zero. That happens when an open file is deleted
 * (unlinked) and then a commit is run. In the normal course of events the inode
 * would be deleted when the file is closed. However in the case of an unclean
 * unmount, orphans need to be accounted for. After an unclean unmount, the
 * orphans' inodes must be deleted which means either scanning the entire index
 * looking for them, or keeping a list on flash somewhere. This unit implements
 * the latter approach.
 *
 * The orphan area is a fixed number of LEBs situated between the LPT area and
 * the main area. The number of orphan area LEBs is specified when the file
 * system is created. The minimum number is 1. The size of the orphan area
 * should be so that it can hold the maximum number of orphans that are expected
 * to ever exist at one time.
 *
 * The number of orphans that can fit in a LEB is:
 *
 *         (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)
 *
 * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough.
 *
 * Orphans are accumulated in a rb-tree. When an inode's link count drops to
 * zero, the inode number is added to the rb-tree. It is removed from the tree
 * when the inode is deleted.  Any new orphans that are in the orphan tree when
 * the commit is run, are written to the orphan area in 1 or more orphan nodes.
 * If the orphan area is full, it is consolidated to make space.  There is
 * always enough space because validation prevents the user from creating more
 * than the maximum number of orphans allowed.
 */

#ifdef CONFIG_UBIFS_FS_DEBUG
static int dbg_check_orphans(struct ubifs_info *c);
#else
#define dbg_check_orphans(c) 0
#endif

/**
 * ubifs_add_orphan - add an orphan.
 * @c: UBIFS file-system description object
 * @inum: orphan inode number
 *
 * Add an orphan. This function is called when an inodes link count drops to
 * zero.
 */
int ubifs_add_orphan(struct ubifs_info *c, ino_t inum)
{
	struct ubifs_orphan *orphan, *o;
	struct rb_node **p, *parent = NULL;

	orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS);
	if (!orphan)
		return -ENOMEM;
	orphan->inum = inum;
	orphan->new = 1;

	spin_lock(&c->orphan_lock);
	if (c->tot_orphans >= c->max_orphans) {
		spin_unlock(&c->orphan_lock);
		kfree(orphan);
		return -ENFILE;
	}
	p = &c->orph_tree.rb_node;
	while (*p) {
		parent = *p;
		o = rb_entry(parent, struct ubifs_orphan, rb);
		if (inum < o->inum)
			p = &(*p)->rb_left;
		else if (inum > o->inum)
			p = &(*p)->rb_right;
		else {
			dbg_err("orphaned twice");
			spin_unlock(&c->orphan_lock);
			kfree(orphan);
			return 0;
		}
	}
	c->tot_orphans += 1;
	c->new_orphans += 1;
	rb_link_node(&orphan->rb, parent, p);
	rb_insert_color(&orphan->rb, &c->orph_tree);
	list_add_tail(&orphan->list, &c->orph_list);
	list_add_tail(&orphan->new_list, &c->orph_new);
	spin_unlock(&c->orphan_lock);
	dbg_gen("ino %lu", (unsigned long)inum);
	return 0;
}

/**
 * ubifs_delete_orphan - delete an orphan.
 * @c: UBIFS file-system description object
 * @inum: orphan inode number
 *
 * Delete an orphan. This function is called when an inode is deleted.
 */
void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum)
{
	struct ubifs_orphan *o;
	struct rb_node *p;

	spin_lock(&c->orphan_lock);
	p = c->orph_tree.rb_node;
	while (p) {
		o = rb_entry(p, struct ubifs_orphan, rb);
		if (inum < o->inum)
			p = p->rb_left;
		else if (inum > o->inum)
			p = p->rb_right;
		else {
			if (o->dnext) {
				spin_unlock(&c->orphan_lock);
				dbg_gen("deleted twice ino %lu",
					(unsigned long)inum);
				return;
			}
			if (o->cnext) {
				o->dnext = c->orph_dnext;
				c->orph_dnext = o;
				spin_unlock(&c->orphan_lock);
				dbg_gen("delete later ino %lu",
					(unsigned long)inum);
				return;
			}
			rb_erase(p, &c->orph_tree);
			list_del(&o->list);
			c->tot_orphans -= 1;
			if (o->new) {
				list_del(&o->new_list);
				c->new_orphans -= 1;
			}
			spin_unlock(&c->orphan_lock);
			kfree(o);
			dbg_gen("inum %lu", (unsigned long)inum);
			return;
		}
	}
	spin_unlock(&c->orphan_lock);
	dbg_err("missing orphan ino %lu", (unsigned long)inum);
	dbg_dump_stack();
}

/**
 * ubifs_orphan_start_commit - start commit of orphans.
 * @c: UBIFS file-system description object
 *
 * Start commit of orphans.
 */
int ubifs_orphan_start_commit(struct ubifs_info *c)
{
	struct ubifs_orphan *orphan, **last;

	spin_lock(&c->orphan_lock);
	last = &c->orph_cnext;
	list_for_each_entry(orphan, &c->orph_new, new_list) {
		ubifs_assert(orphan->new);
		orphan->new = 0;
		*last = orphan;
		last = &orphan->cnext;
	}
	*last = orphan->cnext;
	c->cmt_orphans = c->new_orphans;
	c->new_orphans = 0;
	dbg_cmt("%d orphans to commit", c->cmt_orphans);
	INIT_LIST_HEAD(&c->orph_new);
	if (c->tot_orphans == 0)
		c->no_orphs = 1;
	else
		c->no_orphs = 0;
	spin_unlock(&c->orphan_lock);
	return 0;
}

/**
 * avail_orphs - calculate available space.
 * @c: UBIFS file-system description object
 *
 * This function returns the number of orphans that can be written in the
 * available space.
 */
static int avail_orphs(struct ubifs_info *c)
{
	int avail_lebs, avail, gap;

	avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1;
	avail = avail_lebs *
	       ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
	gap = c->leb_size - c->ohead_offs;
	if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64))
		avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
	return avail;
}

/**
 * tot_avail_orphs - calculate total space.
 * @c: UBIFS file-system description object
 *
 * This function returns the number of orphans that can be written in half
 * the total space. That leaves half the space for adding new orphans.
 */
static int tot_avail_orphs(struct ubifs_info *c)
{
	int avail_lebs, avail;

	avail_lebs = c->orph_lebs;
	avail = avail_lebs *
	       ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
	return avail / 2;
}

/**
 * do_write_orph_node - write a node to the orphan head.
 * @c: UBIFS file-system description object
 * @len: length of node
 * @atomic: write atomically
 *
 * This function writes a node to the orphan head from the orphan buffer. If
 * %atomic is not zero, then the write is done atomically. On success, %0 is
 * returned, otherwise a negative error code is returned.
 */
static int do_write_orph_node(struct ubifs_info *c, int len, int atomic)
{
	int err = 0;

	if (atomic) {
		ubifs_assert(c->ohead_offs == 0);
		ubifs_prepare_node(c, c->orph_buf, len, 1);
		len = ALIGN(len, c->min_io_size);
		err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len,
				       UBI_SHORTTERM);
	} else {
		if (c->ohead_offs == 0) {
			/* Ensure LEB has been unmapped */
			err = ubifs_leb_unmap(c, c->ohead_lnum);
			if (err)
				return err;
		}
		err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum,
				       c->ohead_offs, UBI_SHORTTERM);
	}
	return err;
}

/**
 * write_orph_node - write an orphan node.
 * @c: UBIFS file-system description object
 * @atomic: write atomically
 *
 * This function builds an orphan node from the cnext list and writes it to the
 * orphan head. On success, %0 is returned, otherwise a negative error code
 * is returned.
 */
static int write_orph_node(struct ubifs_info *c, int atomic)
{
	struct ubifs_orphan *orphan, *cnext;
	struct ubifs_orph_node *orph;
	int gap, err, len, cnt, i;

	ubifs_assert(c->cmt_orphans > 0);
	gap = c->leb_size - c->ohead_offs;
	if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) {
		c->ohead_lnum += 1;
		c->ohead_offs = 0;
		gap = c->leb_size;
		if (c->ohead_lnum > c->orph_last) {
			/*
			 * We limit the number of orphans so that this should
			 * never happen.
			 */
			ubifs_err("out of space in orphan area");
			return -EINVAL;
		}
	}
	cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
	if (cnt > c->cmt_orphans)
		cnt = c->cmt_orphans;
	len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64);
	ubifs_assert(c->orph_buf);
	orph = c->orph_buf;
	orph->ch.node_type = UBIFS_ORPH_NODE;
	spin_lock(&c->orphan_lock);
	cnext = c->orph_cnext;
	for (i = 0; i < cnt; i++) {
		orphan = cnext;
		orph->inos[i] = cpu_to_le64(orphan->inum);
		cnext = orphan->cnext;
		orphan->cnext = NULL;
	}
	c->orph_cnext = cnext;
	c->cmt_orphans -= cnt;
	spin_unlock(&c->orphan_lock);
	if (c->cmt_orphans)
		orph->cmt_no = cpu_to_le64(c->cmt_no);
	else
		/* Mark the last node of the commit */
		orph->cmt_no = cpu_to_le64((c->cmt_no) | (1ULL << 63));
	ubifs_assert(c->ohead_offs + len <= c->leb_size);
	ubifs_assert(c->ohead_lnum >= c->orph_first);
	ubifs_assert(c->ohead_lnum <= c->orph_last);
	err = do_write_orph_node(c, len, atomic);
	c->ohead_offs += ALIGN(len, c->min_io_size);
	c->ohead_offs = ALIGN(c->ohead_offs, 8);
	return err;
}

/**
 * write_orph_nodes - write orphan nodes until there are no more to commit.
 * @c: UBIFS file-system description object
 * @atomic: write atomically
 *
 * This function writes orphan nodes for all the orphans to commit. On success,
 * %0 is returned, otherwise a negative error code is returned.
 */
static int write_orph_nodes(struct ubifs_info *c, int atomic)
{
	int err;

	while (c->cmt_orphans > 0) {
		err = write_orph_node(c, atomic);
		if (err)
			return err;
	}
	if (atomic) {
		int lnum;

		/* Unmap any unused LEBs after consolidation */
		lnum = c->ohead_lnum + 1;
		for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) {
			err = ubifs_leb_unmap(c, lnum);
			if (err)
				return err;
		}
	}
	return 0;
}

/**
 * consolidate - consolidate the orphan area.
 * @c: UBIFS file-system description object
 *
 * This function enables consolidation by putting all the orphans into the list
 * to commit. The list is in the order that the orphans were added, and the
 * LEBs are written atomically in order, so at no time can orphans be lost by
 * an unclean unmount.
 *
 * This function returns %0 on success and a negative error code on failure.
 */
static int consolidate(struct ubifs_info *c)
{
	int tot_avail = tot_avail_orphs(c), err = 0;

	spin_lock(&c->orphan_lock);
	dbg_cmt("there is space for %d orphans and there are %d",
		tot_avail, c->tot_orphans);
	if (c->tot_orphans - c->new_orphans <= tot_avail) {
		struct ubifs_orphan *orphan, **last;
		int cnt = 0;

		/* Change the cnext list to include all non-new orphans */
		last = &c->orph_cnext;
		list_for_each_entry(orphan, &c->orph_list, list) {
			if (orphan->new)
				continue;
			*last = orphan;
			last = &orphan->cnext;
			cnt += 1;
		}
		*last = orphan->cnext;
		ubifs_assert(cnt == c->tot_orphans - c->new_orphans);
		c->cmt_orphans = cnt;
		c->ohead_lnum = c->orph_first;
		c->ohead_offs = 0;
	} else {
		/*
		 * We limit the number of orphans so that this should
		 * never happen.
		 */
		ubifs_err("out of space in orphan area");
		err = -EINVAL;
	}
	spin_unlock(&c->orphan_lock);
	return err;
}

/**
 * commit_orphans - commit orphans.
 * @c: UBIFS file-system description object
 *
 * This function commits orphans to flash. On success, %0 is returned,
 * otherwise a negative error code is returned.
 */
static int commit_orphans(struct ubifs_info *c)
{
	int avail, atomic = 0, err;

	ubifs_assert(c->cmt_orphans > 0);
	avail = avail_orphs(c);
	if (avail < c->cmt_orphans) {
		/* Not enough space to write new orphans, so consolidate */
		err = consolidate(c);
		if (err)
			return err;
		atomic = 1;
	}
	err = write_orph_nodes(c, atomic);
	return err;
}

/**
 * erase_deleted - erase the orphans marked for deletion.
 * @c: UBIFS file-system description object
 *
 * During commit, the orphans being committed cannot be deleted, so they are
 * marked for deletion and deleted by this function. Also, the recovery
 * adds killed orphans to the deletion list, and therefore they are deleted
 * here too.
 */
static void erase_deleted(struct ubifs_info *c)
{
	struct ubifs_orphan *orphan, *dnext;

	spin_lock(&c->orphan_lock);
	dnext = c->orph_dnext;
	while (dnext) {
		orphan = dnext;
		dnext = orphan->dnext;
		ubifs_assert(!orphan->new);
		rb_erase(&orphan->rb, &c->orph_tree);
		list_del(&orphan->list);
		c->tot_orphans -= 1;
		dbg_gen("deleting orphan ino %lu", (unsigned long)orphan->inum);
		kfree(orphan);
	}
	c->orph_dnext = NULL;
	spin_unlock(&c->orphan_lock);
}

/**
 * ubifs_orphan_end_commit - end commit of orphans.
 * @c: UBIFS file-system description object
 *
 * End commit of orphans.
 */
int ubifs_orphan_end_commit(struct ubifs_info *c)
{
	int err;

	if (c->cmt_orphans != 0) {
		err = commit_orphans(c);
		if (err)
			return err;
	}
	erase_deleted(c);
	err = dbg_check_orphans(c);
	return err;
}

/**
 * ubifs_clear_orphans - erase all LEBs used for orphans.
 * @c: UBIFS file-system description object
 *
 * If recovery is not required, then the orphans from the previous session
 * are not needed. This function locates the LEBs used to record
 * orphans, and un-maps them.
 */
int ubifs_clear_orphans(struct ubifs_info *c)
{
	int lnum, err;

	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
		err = ubifs_leb_unmap(c, lnum);
		if (err)
			return err;
	}
	c->ohead_lnum = c->orph_first;
	c->ohead_offs = 0;
	return 0;
}

/**
 * insert_dead_orphan - insert an orphan.
 * @c: UBIFS file-system description object
 * @inum: orphan inode number
 *
 * This function is a helper to the 'do_kill_orphans()' function. The orphan
 * must be kept until the next commit, so it is added to the rb-tree and the
 * deletion list.
 */
static int insert_dead_orphan(struct ubifs_info *c, ino_t inum)
{
	struct ubifs_orphan *orphan, *o;
	struct rb_node **p, *parent = NULL;

	orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_KERNEL);
	if (!orphan)
		return -ENOMEM;
	orphan->inum = inum;

	p = &c->orph_tree.rb_node;
	while (*p) {
		parent = *p;
		o = rb_entry(parent, struct ubifs_orphan, rb);
		if (inum < o->inum)
			p = &(*p)->rb_left;
		else if (inum > o->inum)
			p = &(*p)->rb_right;
		else {
			/* Already added - no problem */
			kfree(orphan);
			return 0;
		}
	}
	c->tot_orphans += 1;
	rb_link_node(&orphan->rb, parent, p);
	rb_insert_color(&orphan->rb, &c->orph_tree);
	list_add_tail(&orphan->list, &c->orph_list);
	orphan->dnext = c->orph_dnext;
	c->orph_dnext = orphan;
	dbg_mnt("ino %lu, new %d, tot %d", (unsigned long)inum,
		c->new_orphans, c->tot_orphans);
	return 0;
}

/**
 * do_kill_orphans - remove orphan inodes from the index.
 * @c: UBIFS file-system description object
 * @sleb: scanned LEB
 * @last_cmt_no: cmt_no of last orphan node read is passed and returned here
 * @outofdate: whether the LEB is out of date is returned here
 * @last_flagged: whether the end orphan node is encountered
 *
 * This function is a helper to the 'kill_orphans()' function. It goes through
 * every orphan node in a LEB and for every inode number recorded, removes
 * all keys for that inode from the TNC.
 */
static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
			   unsigned long long *last_cmt_no, int *outofdate,
			   int *last_flagged)
{
	struct ubifs_scan_node *snod;
	struct ubifs_orph_node *orph;
	unsigned long long cmt_no;
	ino_t inum;
	int i, n, err, first = 1;

	list_for_each_entry(snod, &sleb->nodes, list) {
		if (snod->type != UBIFS_ORPH_NODE) {
			ubifs_err("invalid node type %d in orphan area at "
				  "%d:%d", snod->type, sleb->lnum, snod->offs);
			dbg_dump_node(c, snod->node);
			return -EINVAL;
		}

		orph = snod->node;

		/* Check commit number */
		cmt_no = le64_to_cpu(orph->cmt_no) & LLONG_MAX;
		/*
		 * The commit number on the master node may be less, because
		 * of a failed commit. If there are several failed commits in a
		 * row, the commit number written on orphan nodes will continue
		 * to increase (because the commit number is adjusted here) even
		 * though the commit number on the master node stays the same
		 * because the master node has not been re-written.
		 */
		if (cmt_no > c->cmt_no)
			c->cmt_no = cmt_no;
		if (cmt_no < *last_cmt_no && *last_flagged) {
			/*
			 * The last orphan node had a higher commit number and
			 * was flagged as the last written for that commit
			 * number. That makes this orphan node, out of date.
			 */
			if (!first) {
				ubifs_err("out of order commit number %llu in "
					  "orphan node at %d:%d",
					  cmt_no, sleb->lnum, snod->offs);
				dbg_dump_node(c, snod->node);
				return -EINVAL;
			}
			dbg_rcvry("out of date LEB %d", sleb->lnum);
			*outofdate = 1;
			return 0;
		}

		if (first)
			first = 0;

		n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
		for (i = 0; i < n; i++) {
			inum = le64_to_cpu(orph->inos[i]);
			dbg_rcvry("deleting orphaned inode %lu",
				  (unsigned long)inum);
			err = ubifs_tnc_remove_ino(c, inum);
			if (err)
				return err;
			err = insert_dead_orphan(c, inum);
			if (err)
				return err;
		}

		*last_cmt_no = cmt_no;
		if (le64_to_cpu(orph->cmt_no) & (1ULL << 63)) {
			dbg_rcvry("last orph node for commit %llu at %d:%d",
				  cmt_no, sleb->lnum, snod->offs);
			*last_flagged = 1;
		} else
			*last_flagged = 0;
	}

	return 0;
}

/**
 * kill_orphans - remove all orphan inodes from the index.
 * @c: UBIFS file-system description object
 *
 * If recovery is required, then orphan inodes recorded during the previous
 * session (which ended with an unclean unmount) must be deleted from the index.
 * This is done by updating the TNC, but since the index is not updated until
 * the next commit, the LEBs where the orphan information is recorded are not
 * erased until the next commit.
 */
static int kill_orphans(struct ubifs_info *c)
{
	unsigned long long last_cmt_no = 0;
	int lnum, err = 0, outofdate = 0, last_flagged = 0;

	c->ohead_lnum = c->orph_first;
	c->ohead_offs = 0;
	/* Check no-orphans flag and skip this if no orphans */
	if (c->no_orphs) {
		dbg_rcvry("no orphans");
		return 0;
	}
	/*
	 * Orph nodes always start at c->orph_first and are written to each
	 * successive LEB in turn. Generally unused LEBs will have been unmapped
	 * but may contain out of date orphan nodes if the unmap didn't go
	 * through. In addition, the last orphan node written for each commit is
	 * marked (top bit of orph->cmt_no is set to 1). It is possible that
	 * there are orphan nodes from the next commit (i.e. the commit did not
	 * complete successfully). In that case, no orphans will have been lost
	 * due to the way that orphans are written, and any orphans added will
	 * be valid orphans anyway and so can be deleted.
	 */
	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
		struct ubifs_scan_leb *sleb;

		dbg_rcvry("LEB %d", lnum);
		sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1);
		if (IS_ERR(sleb)) {
			if (PTR_ERR(sleb) == -EUCLEAN)
				sleb = ubifs_recover_leb(c, lnum, 0,
							 c->sbuf, -1);
			if (IS_ERR(sleb)) {
				err = PTR_ERR(sleb);
				break;
			}
		}
		err = do_kill_orphans(c, sleb, &last_cmt_no, &outofdate,
				      &last_flagged);
		if (err || outofdate) {
			ubifs_scan_destroy(sleb);
			break;
		}
		if (sleb->endpt) {
			c->ohead_lnum = lnum;
			c->ohead_offs = sleb->endpt;
		}
		ubifs_scan_destroy(sleb);
	}
	return err;
}

/**
 * ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them.
 * @c: UBIFS file-system description object
 * @unclean: indicates recovery from unclean unmount
 * @read_only: indicates read only mount
 *
 * This function is called when mounting to erase orphans from the previous
 * session. If UBIFS was not unmounted cleanly, then the inodes recorded as
 * orphans are deleted.
 */
int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only)
{
	int err = 0;

	c->max_orphans = tot_avail_orphs(c);

	if (!read_only) {
		c->orph_buf = vmalloc(c->leb_size);
		if (!c->orph_buf)
			return -ENOMEM;
	}

	if (unclean)
		err = kill_orphans(c);
	else if (!read_only)
		err = ubifs_clear_orphans(c);

	return err;
}

#ifdef CONFIG_UBIFS_FS_DEBUG

struct check_orphan {
	struct rb_node rb;
	ino_t inum;
};

struct check_info {
	unsigned long last_ino;
	unsigned long tot_inos;
	unsigned long missing;
	unsigned long long leaf_cnt;
	struct ubifs_ino_node *node;
	struct rb_root root;
};

static int dbg_find_orphan(struct ubifs_info *c, ino_t inum)
{
	struct ubifs_orphan *o;
	struct rb_node *p;

	spin_lock(&c->orphan_lock);
	p = c->orph_tree.rb_node;
	while (p) {
		o = rb_entry(p, struct ubifs_orphan, rb);
		if (inum < o->inum)
			p = p->rb_left;
		else if (inum > o->inum)
			p = p->rb_right;
		else {
			spin_unlock(&c->orphan_lock);
			return 1;
		}
	}
	spin_unlock(&c->orphan_lock);
	return 0;
}

static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum)
{
	struct check_orphan *orphan, *o;
	struct rb_node **p, *parent = NULL;

	orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS);
	if (!orphan)
		return -ENOMEM;
	orphan->inum = inum;

	p = &root->rb_node;
	while (*p) {
		parent = *p;
		o = rb_entry(parent, struct check_orphan, rb);
		if (inum < o->inum)
			p = &(*p)->rb_left;
		else if (inum > o->inum)
			p = &(*p)->rb_right;
		else {
			kfree(orphan);
			return 0;
		}
	}
	rb_link_node(&orphan->rb, parent, p);
	rb_insert_color(&orphan->rb, root);
	return 0;
}

static int dbg_find_check_orphan(struct rb_root *root, ino_t inum)
{
	struct check_orphan *o;
	struct rb_node *p;

	p = root->rb_node;
	while (p) {
		o = rb_entry(p, struct check_orphan, rb);
		if (inum < o->inum)
			p = p->rb_left;
		else if (inum > o->inum)
			p = p->rb_right;
		else
			return 1;
	}
	return 0;
}

static void dbg_free_check_tree(struct rb_root *root)
{
	struct rb_node *this = root->rb_node;
	struct check_orphan *o;

	while (this) {
		if (this->rb_left) {
			this = this->rb_left;
			continue;
		} else if (this->rb_right) {
			this = this->rb_right;
			continue;
		}
		o = rb_entry(this, struct check_orphan, rb);
		this = rb_parent(this);
		if (this) {
			if (this->rb_left == &o->rb)
				this->rb_left = NULL;
			else
				this->rb_right = NULL;
		}
		kfree(o);
	}
}

static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr,
			    void *priv)
{
	struct check_info *ci = priv;
	ino_t inum;
	int err;

	inum = key_inum(c, &zbr->key);
	if (inum != ci->last_ino) {
		/* Lowest node type is the inode node, so it comes first */
		if (key_type(c, &zbr->key) != UBIFS_INO_KEY)
			ubifs_err("found orphan node ino %lu, type %d",
				  (unsigned long)inum, key_type(c, &zbr->key));
		ci->last_ino = inum;
		ci->tot_inos += 1;
		err = ubifs_tnc_read_node(c, zbr, ci->node);
		if (err) {
			ubifs_err("node read failed, error %d", err);
			return err;
		}
		if (ci->node->nlink == 0)
			/* Must be recorded as an orphan */
			if (!dbg_find_check_orphan(&ci->root, inum) &&
			    !dbg_find_orphan(c, inum)) {
				ubifs_err("missing orphan, ino %lu",
					  (unsigned long)inum);
				ci->missing += 1;
			}
	}
	ci->leaf_cnt += 1;
	return 0;
}

static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb)
{
	struct ubifs_scan_node *snod;
	struct ubifs_orph_node *orph;
	ino_t inum;
	int i, n, err;

	list_for_each_entry(snod, &sleb->nodes, list) {
		cond_resched();
		if (snod->type != UBIFS_ORPH_NODE)
			continue;
		orph = snod->node;
		n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
		for (i = 0; i < n; i++) {
			inum = le64_to_cpu(orph->inos[i]);
			err = dbg_ins_check_orphan(&ci->root, inum);
			if (err)
				return err;
		}
	}
	return 0;
}

static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci)
{
	int lnum, err = 0;
	void *buf;

	/* Check no-orphans flag and skip this if no orphans */
	if (c->no_orphs)
		return 0;

	buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
	if (!buf) {
		ubifs_err("cannot allocate memory to check orphans");
		return 0;
	}

	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
		struct ubifs_scan_leb *sleb;

		sleb = ubifs_scan(c, lnum, 0, buf, 0);
		if (IS_ERR(sleb)) {
			err = PTR_ERR(sleb);
			break;
		}

		err = dbg_read_orphans(ci, sleb);
		ubifs_scan_destroy(sleb);
		if (err)
			break;
	}

	vfree(buf);
	return err;
}

static int dbg_check_orphans(struct ubifs_info *c)
{
	struct check_info ci;
	int err;

	if (!(ubifs_chk_flags & UBIFS_CHK_ORPH))
		return 0;

	ci.last_ino = 0;
	ci.tot_inos = 0;
	ci.missing  = 0;
	ci.leaf_cnt = 0;
	ci.root = RB_ROOT;
	ci.node = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
	if (!ci.node) {
		ubifs_err("out of memory");
		return -ENOMEM;
	}

	err = dbg_scan_orphans(c, &ci);
	if (err)
		goto out;

	err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci);
	if (err) {
		ubifs_err("cannot scan TNC, error %d", err);
		goto out;
	}

	if (ci.missing) {
		ubifs_err("%lu missing orphan(s)", ci.missing);
		err = -EINVAL;
		goto out;
	}

	dbg_cmt("last inode number is %lu", ci.last_ino);
	dbg_cmt("total number of inodes is %lu", ci.tot_inos);
	dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt);

out:
	dbg_free_check_tree(&ci.root);
	kfree(ci.node);
	return err;
}

#endif /* CONFIG_UBIFS_FS_DEBUG */