summaryrefslogtreecommitdiffstats
path: root/tapset/ioblock.stp
blob: 94781c04148dee9d959499ebb67f8fdcc8e6fa6b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
// Block I/O tapset
// Copyright (C) 2006 Intel Corp.
// Copyright (C) 2006 IBM Corp.
//
// This file is part of systemtap, and is free software.  You can
// redistribute it and/or modify it under the terms of the GNU General
// Public License (GPL); either version 2, or (at your option) any
// later version.

%{
#include <linux/bio.h>
#include <linux/genhd.h>
%}

/* get i-node number of mapped file */
function __bio_ino:long(bio:long)
%{ /* pure */
    struct bio *bio = (struct bio *)(long)THIS->bio;
    struct page *bv_page = bio? kread(&(bio->bi_io_vec[0].bv_page)) : NULL;
    struct address_space *mapping;
    struct inode *host;
    THIS->__retvalue = -1;
    if (bv_page && !PageSlab(bv_page) && !PageSwapCache(bv_page)) {
        mapping = kread(&(bv_page->mapping));
        if (mapping && ((unsigned long)mapping & PAGE_MAPPING_ANON) == 0) {
            host = kread(&(mapping->host));
            if (host)
                THIS->__retvalue = kread(&(host->i_ino));
        }
    }
    CATCH_DEREF_FAULT();
%}

/* returns 0 for read, 1 for write */
function bio_rw_num:long(rw:long)
%{ /* pure */
    long rw = (long)THIS->rw;
    THIS->__retvalue = (rw & (1 << BIO_RW));
%}

/* returns R for read, W for write */
function bio_rw_str(rw)
{
    return bio_rw_num(rw) == BIO_READ ? "R" : "W"
}

/* returns start sector */
function __bio_start_sect:long(bio:long)
%{ /* pure */
    struct bio *bio = (struct bio *)(long)THIS->bio;
    struct block_device *bi_bdev = bio? kread(&(bio->bi_bdev)) : NULL;
    struct hd_struct *bd_part = bi_bdev? kread(&(bi_bdev->bd_part)) : NULL;
    if (bd_part == NULL)
        THIS->__retvalue = -1;
    else
        THIS->__retvalue = kread(&(bd_part->start_sect));
    CATCH_DEREF_FAULT();
%}

/* returns the block device name */
function __bio_devname:string(bio:long)
%{ /* pure */
    char b[BDEVNAME_SIZE];
    struct bio *bio = (struct bio *)(long)THIS->bio;
    struct block_device *bdev = kread(&(bio->bi_bdev));
	if (bdev == NULL) {
		strlcpy(THIS->__retvalue, "N/A", MAXSTRINGLEN);
	} else {
		const char *name = bdevname(bdev, b); /* FIXME: deref hazard! */
		deref_string(THIS->__retvalue, name, MAXSTRINGLEN);
	}
	CATCH_DEREF_FAULT();
%}

global BIO_READ = 0, BIO_WRITE = 1


/* probe ioblock.request
 *
 *  Fires whenever making a generic block I/O request.
 *
 * Context:
 *  The process makes block I/O request
 *
 * Variables:
 *  devname   - block device name
 *  ino       - i-node number of the mapped file 
 *  sector    - beginning sector for the entire bio 
 *  flags     - see below 
 *  	BIO_UPTODATE    0       ok after I/O completion
 *  	BIO_RW_BLOCK    1       RW_AHEAD set, and read/write would block
 *  	BIO_EOF         2       out-out-bounds error
 *  	BIO_SEG_VALID   3       nr_hw_seg valid 
 *  	BIO_CLONED      4       doesn't own data
 *  	BIO_BOUNCED     5       bio is a bounce bio
 *  	BIO_USER_MAPPED 6       contains user pages
 *  	BIO_EOPNOTSUPP  7       not supported
 *  
 *  rw        - binary trace for read/write request
 *  vcnt      - bio vector count which represents number of array element (page, 
 *              offset, length) which make up this I/O request
 *  idx       - offset into the bio vector array
 *  phys_segments - number of segments in this bio after physical address
 *                  coalescing is performed.  
 *  hw_segments -   number of segments after physical and DMA remapping
 *              hardware coalescing is performed
 *  size      - total size in bytes 
 *  bdev      - target block device
 *  bdev_contains - points to the device object which contains the
 *                  partition (when bio structure represents a partition)
 *  p_start_sect -  points to the start sector of the partition
 *                  structure of the device
 */
probe ioblock.request = kernel.function ("generic_make_request")
{
        devname = __bio_devname($bio)
        ino = __bio_ino($bio)

        sector = $bio->bi_sector
        flags = $bio->bi_flags
        rw = $bio->bi_rw
        vcnt = $bio->bi_vcnt
        idx = $bio->bi_idx
        phys_segments = $bio->bi_phys_segments
        hw_segments = $bio->bi_hw_segments
        size = $bio->bi_size

        bdev = $bio->bi_bdev
        bdev_contains = $bio->bi_bdev->bd_contains
        p_start_sect = __bio_start_sect($bio)
}

/* probe ioblock.end
 *
 *  Fires whenever a block I/O transfer is complete.
 *
 * Context:
 *  The process signals the transfer is done.
 *
 * Variables:
 *  devname   - block device name
 *  ino       - i-node number of the mapped file
 *  byte_done - number of bytes transferred 
 *  sector    - beginning sector for the entire bio
 *  flags     - see below
 *      BIO_UPTODATE    0       ok after I/O completion
 *      BIO_RW_BLOCK    1       RW_AHEAD set, and read/write would block
 *      BIO_EOF         2       out-out-bounds error
 *      BIO_SEG_VALID   3       nr_hw_seg valid
 *      BIO_CLONED      4       doesn't own data
 *      BIO_BOUNCED     5       bio is a bounce bio
 *      BIO_USER_MAPPED 6       contains user pages
 *      BIO_EOPNOTSUPP  7       not supported
 *  error     - 0 on success
 *  rw        - binary trace for read/write request 
 *  vcnt      - bio vector count which represents number of array element (page,
 *              offset, length) which makes up this I/O request
 *  idx       - offset into the bio vector array
 *  phys_segments - number of segments in this bio after physical address
 *                  coalescing is performed.
 *  hw_segments -   number of segments after physical and DMA remapping
 *              hardware coalescing is performed
 *  size      - total size in bytes 
 */
probe ioblock.end = kernel.function("bio_endio")
{
        devname = __bio_devname($bio)
        ino = __bio_ino($bio)

        bytes_done = $bytes_done
        error = $error

        sector = $bio->bi_sector
        flags = $bio->bi_flags
        rw = $bio->bi_rw
        vcnt = $bio->bi_vcnt
        idx = $bio->bi_idx
        phys_segments = $bio->bi_phys_segments
        hw_segments = $bio->bi_hw_segments
        size = $bio->bi_size
}