%}
global VM_FAULT_OOM=0, VM_FAULT_SIGBUS=1, VM_FAULT_MINOR=2, VM_FAULT_MAJOR=3
global VM_FAULT_NOPAGE=4, VM_FAULT_LOCKED=5, VM_FAULT_ERROR=6
/**
* sfunction vm_fault_contains - Test return value for page fault reason
* @value: The fault_type returned by vm.page_fault.return
* @test: The type of fault to test for (VM_FAULT_OOM or similar)
*/
function vm_fault_contains:long (value:long, test:long)
%{
int res;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
switch (THIS->test){
case 0: res = THIS->value == VM_FAULT_OOM; break;
case 1: res = THIS->value == VM_FAULT_SIGBUS; break;
case 2: res = THIS->value == VM_FAULT_MINOR; break;
case 3: res = THIS->value == VM_FAULT_MAJOR; break;
default:
res = 0; break;
}
#else
switch (THIS->test){
case 0: res = THIS->value & VM_FAULT_OOM; break;
case 1: res = THIS->value & VM_FAULT_SIGBUS; break;
case 2: /* VM_FAULT_MINOR infered by that flags off */
res = !((VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_MAJOR) &
THIS->value);
break;
case 3: res = THIS->value & VM_FAULT_MAJOR; break;
case 4: res = THIS->value & VM_FAULT_NOPAGE; break;
case 5: res = THIS->value & VM_FAULT_LOCKED; break;
case 6: res = THIS->value & VM_FAULT_ERROR; break;
default:
res = 0;
}
#endif
THIS->__retvalue = (res != 0);
return;
%}
/**
* probe vm.pagefault - Records that a page fault occurred.
* @address: The address of the faulting memory access; i.e. the address that caused the page fault.
* @write_access: Indicates whether this was a write or read access; 1 indicates a write,
* while 0 indicates a read.
*
* Context: The process which triggered the fault
*/
probe vm.pagefault = kernel.function("__handle_mm_fault@mm/memory.c") ?,
kernel.function("handle_mm_fault@mm/memory.c") ?
{
write_access = $write_access
address = $address
}
/**
* probe vm.pagefault.return - Indicates what type of fault occurred.
* @fault_type: Returns either
* 0 (VM_FAULT_OOM) for out of memory faults,
* 2 (VM_FAULT_MINOR) for minor faults, 3 (VM_FAULT_MAJOR) for
* major faults, or 1 (VM_FAULT_SIGBUS) if the fault was neither OOM, minor fault,
* nor major fault.
*/
probe vm.pagefault.return = kernel.function("__handle_mm_fault@mm/memory.c").return ?,
kernel.function("handle_mm_fault@mm/memory.c").return ?
{
fault_type = $return
}
/**
* sfunction addr_to_node - Returns which node a given address belongs to within a NUMA system.
* @addr: The address of the faulting memory access.
*
*/
function addr_to_node:long(addr:long) %{ /* pure */
int nid;
int pfn = __pa(THIS->addr) >> PAGE_SHIFT;
for_each_online_node(nid)
if ( NODE_DATA(nid)->node_start_pfn <= pfn &&
pfn < (NODE_DATA(nid)->node_start_pfn +
NODE_DATA(nid)->node_spanned_pages) )
{
THIS->__retvalue = nid;
break;
}
%}
// Return whether a page to be copied is a zero page.
function _IS_ZERO_PAGE:long(from:long, vaddr:long) %{ /* pure */
THIS->__retvalue = (THIS->from == (long) ZERO_PAGE(THIS->vaddr));
%}
/**
* probe vm.write_shared - Attempts at writing to a shared page.
* @address: The address of the shared write.
*
* Context:
* The context is the process attempting the write.
*
* Fires when a process attempts to write to a shared page.
* If a copy is necessary, this will be followed by a
* vm.write_shared_copy.
*/
probe vm.write_shared = kernel.function("do_wp_page") {
address = $address
}
/**
* probe vm.write_shared_copy - Page copy for shared page write.
* @address: The address of the shared write.
* @zero: Boolean indicating whether it is a zero page
* (can do a clear instead of a copy).
*
* Context:
* The process attempting the write.
*
* Fires when a write to a shared page requires a page copy. This is
* always preceded by a vm.shared_write.
*/
probe vm.write_shared_copy = kernel.function("copy_cow_page")? {
address = $address
zero = _IS_ZERO_PAGE($from, address);
}
/**
* probe vm.mmap - Fires when an mmap is requested.
* @address: The requested address
* @length: The length of the memory segment
*
* Context:
* The process calling mmap.
*/
probe vm.mmap = kernel.function("do_mmap"), kernel.function("do_mmap2")? {
address = $addr
length = $len
}
/**
* probe vm.munmap - Fires when an munmap is requested.
* @address: The requested address
* @length: The length of the memory segment
*
* Context:
* The process calling munmap.
*/
probe vm.munmap = kernel.function("do_munmap") {
address = $start
length = $len
}
/**
* probe vm.brk - Fires when a brk is requested (i.e. the heap will be resized).
* @address: The requested address
* @length: The length of the memory segment
*
* Context:
* The process calling brk.
*/
probe vm.brk = kernel.function("do_brk") {
address = $addr
length = $len
}
/**
* probe vm.oom_kill - Fires when a thread is selected for termination by the OOM killer.
* @task: The task being killed
*
* Context:
* The process that tried to consume excessive memory, and thus
* triggered the OOM. (is this correct?)
*/
probe vm.oom_kill = kernel.function("__oom_kill_task") {
task = $p
}
ref='#n52'>52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
/*
* Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_types.h"
#include "xfs_log.h"
#include "xfs_inum.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_dir2.h"
#include "xfs_dmapi.h"
#include "xfs_mount.h"
#include "xfs_da_btree.h"
#include "xfs_bmap_btree.h"
#include "xfs_dir2_sf.h"
#include "xfs_attr_sf.h"
#include "xfs_dinode.h"
#include "xfs_inode.h"
#include "xfs_inode_item.h"
#include "xfs_bmap.h"
#include "xfs_error.h"
#include "xfs_quota.h"
#include "xfs_utils.h"
#include "xfs_trans_space.h"
#include "xfs_vnodeops.h"
/*
* Given an array of up to 4 inode pointers, unlock the pointed to inodes.
* If there are fewer than 4 entries in the array, the empty entries will
* be at the end and will have NULL pointers in them.
*/
STATIC void
xfs_rename_unlock4(
xfs_inode_t **i_tab,
uint lock_mode)
{
int i;
xfs_iunlock(i_tab[0], lock_mode);
for (i = 1; i < 4; i++) {
if (i_tab[i] == NULL)
break;
/*
* Watch out for duplicate entries in the table.
*/
if (i_tab[i] != i_tab[i-1])
xfs_iunlock(i_tab[i], lock_mode);
}
}
/*
* Enter all inodes for a rename transaction into a sorted array.
*/
STATIC void
xfs_sort_for_rename(
xfs_inode_t *dp1, /* in: old (source) directory inode */
xfs_inode_t *dp2, /* in: new (target) directory inode */
xfs_inode_t *ip1, /* in: inode of old entry */
xfs_inode_t *ip2, /* in: inode of new entry, if it
already exists, NULL otherwise. */
xfs_inode_t **i_tab,/* out: array of inode returned, sorted */
int *num_inodes) /* out: number of inodes in array */
{
xfs_inode_t *temp;
int i, j;
/*
* i_tab contains a list of pointers to inodes. We initialize
* the table here & we'll sort it. We will then use it to
* order the acquisition of the inode locks.
*
* Note that the table may contain duplicates. e.g., dp1 == dp2.
*/
i_tab[0] = dp1;
i_tab[1] = dp2;
i_tab[2] = ip1;
if (ip2) {
*num_inodes = 4;
i_tab[3] = ip2;
} else {
*num_inodes = 3;
i_tab[3] = NULL;
}
/*
* Sort the elements via bubble sort. (Remember, there are at
* most 4 elements to sort, so this is adequate.)
*/
for (i = 0; i < *num_inodes; i++) {
for (j = 1; j < *num_inodes; j++) {
if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
temp = i_tab[j];
i_tab[j] = i_tab[j-1];
i_tab[j-1] = temp;
|