#ifndef TASK_FINDER_C #define TASK_FINDER_C #if ! defined(CONFIG_UTRACE) #error "Need CONFIG_UTRACE!" #endif #include #include #include #include #include "syscall.h" #include "task_finder_vma.c" static LIST_HEAD(__stp_task_finder_list); struct stap_task_finder_target; #define __STP_TF_STARTING 0 #define __STP_TF_RUNNING 1 #define __STP_TF_STOPPING 2 #define __STP_TF_STOPPED 3 atomic_t __stp_task_finder_state = ATOMIC_INIT(__STP_TF_STARTING); #ifdef DEBUG_TASK_FINDER atomic_t __stp_attach_count = ATOMIC_INIT (0); #define debug_task_finder_attach() (atomic_inc(&__stp_attach_count)) #define debug_task_finder_detach() (atomic_dec(&__stp_attach_count)) #define debug_task_finder_report() (_stp_dbug(__FUNCTION__, __LINE__, \ "attach count: %d\n", atomic_read(&__stp_attach_count))) #else #define debug_task_finder_attach() /* empty */ #define debug_task_finder_detach() /* empty */ #define debug_task_finder_report() /* empty */ #endif typedef int (*stap_task_finder_callback)(struct task_struct *tsk, int register_p, int process_p, struct stap_task_finder_target *tgt); typedef int (*stap_task_finder_vm_callback)(struct task_struct *tsk, int map_p, char *vm_path, unsigned long vm_start, unsigned long vm_end, unsigned long vm_pgoff); #ifdef DEBUG_TASK_FINDER_VMA int __stp_tf_vm_cb(struct task_struct *tsk, int map_p, char *vm_path, unsigned long vm_start, unsigned long vm_end, unsigned long vm_pgoff) { _stp_dbug(__FUNCTION__, __LINE__, "vm_cb: tsk %d:%d path %s, start 0x%08lx, end 0x%08lx, offset 0x%lx\n", tsk->pid, map_p, vm_path, vm_start, vm_end, vm_pgoff); if (map_p) { // FIXME: What should we do with vm_path? We can't save // the vm_path pointer itself, but we don't have any // storage space allocated to save it in... stap_add_vma_map_info(tsk, vm_start, vm_end, vm_pgoff); } else { stap_remove_vma_map_info(tsk, vm_start, vm_end, vm_pgoff); } return 0; } #endif struct stap_task_finder_target { /* private: */ struct list_head list; /* __stp_task_finder_list linkage */ struct list_head callback_list_head; struct list_head callback_list; struct utrace_engine_ops ops; int engine_attached; size_t pathlen; /* public: */ const char *pathname; pid_t pid; stap_task_finder_callback callback; stap_task_finder_vm_callback vm_callback; }; static u32 __stp_utrace_task_finder_target_death(struct utrace_attached_engine *engine, struct task_struct *tsk); static u32 __stp_utrace_task_finder_target_quiesce(struct utrace_attached_engine *engine, struct task_struct *tsk); static u32 __stp_utrace_task_finder_target_syscall_entry(struct utrace_attached_engine *engine, struct task_struct *tsk, struct pt_regs *regs); static u32 __stp_utrace_task_finder_target_syscall_exit(struct utrace_attached_engine *engine, struct task_struct *tsk, struct pt_regs *regs); static int stap_register_task_finder_target(struct stap_task_finder_target *new_tgt) { // Since this __stp_task_finder_list is (currently) only // written to in one big setup operation before the task // finder process is started, we don't need to lock it. struct list_head *node; struct stap_task_finder_target *tgt = NULL; int found_node = 0; if (new_tgt == NULL) return EFAULT; if (new_tgt->pathname != NULL) new_tgt->pathlen = strlen(new_tgt->pathname); else new_tgt->pathlen = 0; // Make sure everything is initialized properly. new_tgt->engine_attached = 0; memset(&new_tgt->ops, 0, sizeof(new_tgt->ops)); new_tgt->ops.report_death = &__stp_utrace_task_finder_target_death; new_tgt->ops.report_quiesce = &__stp_utrace_task_finder_target_quiesce; new_tgt->ops.report_syscall_entry = \ &__stp_utrace_task_finder_target_syscall_entry; new_tgt->ops.report_syscall_exit = \ &__stp_utrace_task_finder_target_syscall_exit; // Search the list for an existing entry for pathname/pid. list_for_each(node, &__stp_task_finder_list) { tgt = list_entry(node, struct stap_task_finder_target, list); if (tgt != NULL /* pathname-based target */ && ((new_tgt->pathlen > 0 && tgt->pathlen == new_tgt->pathlen && strcmp(tgt->pathname, new_tgt->pathname) == 0) /* pid-based target */ || (new_tgt->pid != 0 && tgt->pid == new_tgt->pid))) { found_node = 1; break; } } // If we didn't find a matching existing entry, add the new // target to the task list. if (! found_node) { INIT_LIST_HEAD(&new_tgt->callback_list_head); list_add(&new_tgt->list, &__stp_task_finder_list); tgt = new_tgt; } // Add this target to the callback list for this task. list_add_tail(&new_tgt->callback_list, &tgt->callback_list_head); return 0; } static int stap_utrace_detach(struct task_struct *tsk, const struct utrace_engine_ops *ops) { struct utrace_attached_engine *engine; struct mm_struct *mm; int rc = 0; // Ignore init if (tsk == NULL || tsk->pid <= 1) return 0; // Notice we're not calling get_task_mm() here. Normally we // avoid tasks with no mm, because those are kernel threads. // So, why is this function different? When a thread is in // the process of dying, its mm gets freed. Then, later the // thread gets in the dying state and the thread's DEATH event // handler gets called (if any). // // If a thread is in this "mortally wounded" state - no mm // but not dead - and at that moment this function is called, // we'd miss detaching from it if we were checking to see if // it had an mm. engine = utrace_attach(tsk, UTRACE_ATTACH_MATCH_OPS, ops, 0); if (IS_ERR(engine)) { rc = -PTR_ERR(engine); if (rc != ENOENT) { _stp_error("utrace_attach returned error %d on pid %d", rc, tsk->pid); } else { rc = 0; } } else if (unlikely(engine == NULL)) { _stp_error("utrace_attach returned NULL on pid %d", (int)tsk->pid); rc = EFAULT; } else { rc = utrace_detach(tsk, engine); switch (rc) { case 0: /* success */ debug_task_finder_detach(); break; case -ESRCH: /* REAP callback already begun */ case -EALREADY: /* DEATH callback already begun */ rc = 0; /* ignore these errors*/ break; default: rc = -rc; _stp_error("utrace_detach returned error %d on pid %d", rc, tsk->pid); break; } } return rc; } static void stap_utrace_detach_ops(struct utrace_engine_ops *ops) { struct task_struct *grp, *tsk; struct utrace_attached_engine *engine; int rc = 0; pid_t pid = 0; // Notice we're not calling get_task_mm() in this loop. In // every other instance when calling do_each_thread, we avoid // tasks with no mm, because those are kernel threads. So, // why is this function different? When a thread is in the // process of dying, its mm gets freed. Then, later the // thread gets in the dying state and the thread's // UTRACE_EVENT(DEATH) event handler gets called (if any). // // If a thread is in this "mortally wounded" state - no mm // but not dead - and at that moment this function is called, // we'd miss detaching from it if we were checking to see if // it had an mm. rcu_read_lock(); do_each_thread(grp, tsk) { rc = stap_utrace_detach(tsk, ops); if (rc != 0) goto udo_err; } while_each_thread(grp, tsk); udo_err: rcu_read_unlock(); debug_task_finder_report(); } static void __stp_task_finder_cleanup(void) { struct list_head *tgt_node, *tgt_next; struct list_head *cb_node, *cb_next; struct stap_task_finder_target *tgt; // Walk the main list, cleaning up as we go. list_for_each_safe(tgt_node, tgt_next, &__stp_task_finder_list) { tgt = list_entry(tgt_node, struct stap_task_finder_target, list); if (tgt == NULL) continue; list_for_each_safe(cb_node, cb_next, &tgt->callback_list_head) { struct stap_task_finder_target *cb_tgt; cb_tgt = list_entry(cb_node, struct stap_task_finder_target, callback_list); if (cb_tgt == NULL) continue; if (cb_tgt->engine_attached) { stap_utrace_detach_ops(&cb_tgt->ops); cb_tgt->engine_attached = 0; } list_del(&cb_tgt->callback_list); } list_del(&tgt->list); } } static char * __stp_get_mm_path(struct mm_struct *mm, char *buf, int buflen) { struct vm_area_struct *vma; char *rc = NULL; down_read(&mm->mmap_sem); vma = mm->mmap; while (vma) { if ((vma->vm_flags & VM_EXECUTABLE) && vma->vm_file) break; vma = vma->vm_next; } if (vma) { #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,25) rc = d_path(vma->vm_file->f_dentry, vma->vm_file->f_vfsmnt, buf, buflen); #else rc = d_path(&(vma->vm_file->f_path), buf, buflen); #endif } else { *buf = '\0'; rc = ERR_PTR(-ENOENT); } up_read(&mm->mmap_sem); return rc; } #define __STP_TASK_FINDER_EVENTS (UTRACE_EVENT(CLONE) \ | UTRACE_EVENT(EXEC) \ | UTRACE_EVENT(DEATH)) #define __STP_ATTACHED_TASK_BASE_EVENTS (UTRACE_EVENT(DEATH)) #define __STP_ATTACHED_TASK_VM_BASE_EVENTS (__STP_ATTACHED_TASK_BASE_EVENTS \ | UTRACE_EVENT(SYSCALL_ENTRY) \ | UTRACE_EVENT(SYSCALL_EXIT)) #define __STP_ATTACHED_TASK_VM_EVENTS (__STP_ATTACHED_TASK_VM_BASE_EVENTS \ | UTRACE_ACTION_QUIESCE \ | UTRACE_EVENT(QUIESCE)) #define __STP_ATTACHED_TASK_EVENTS(tgt) \ ((((tgt)->vm_callback) == NULL) ? __STP_ATTACHED_TASK_BASE_EVENTS \ : __STP_ATTACHED_TASK_VM_EVENTS) static int stap_utrace_attach(struct task_struct *tsk, const struct utrace_engine_ops *ops, void *data, unsigned long event_flags) { struct utrace_attached_engine *engine; struct mm_struct *mm; int rc = 0; // Ignore init if (tsk == NULL || tsk->pid <= 1) return EPERM; // Ignore threads with no mm (which are kernel threads). mm = get_task_mm(tsk); if (! mm) return EPERM; mmput(mm); engine = utrace_attach(tsk, UTRACE_ATTACH_CREATE, ops, data); if (IS_ERR(engine)) { int error = -PTR_ERR(engine); if (error != ENOENT) { _stp_error("utrace_attach returned error %d on pid %d", error, (int)tsk->pid); rc = error; } } else if (unlikely(engine == NULL)) { _stp_error("utrace_attach returned NULL on pid %d", (int)tsk->pid); rc = EFAULT; } else { rc = utrace_set_flags(tsk, engine, event_flags); if (rc == 0) debug_task_finder_attach(); else _stp_error("utrace_set_flags returned error %d on pid %d", rc, (int)tsk->pid); } return rc; } static inline void __stp_utrace_attach_match_filename(struct task_struct *tsk, const char * const filename, int register_p, int process_p) { size_t filelen; struct list_head *tgt_node; struct stap_task_finder_target *tgt; int found_node = 0; filelen = strlen(filename); list_for_each(tgt_node, &__stp_task_finder_list) { tgt = list_entry(tgt_node, struct stap_task_finder_target, list); // Note that we don't bother with looking for pids // here, since they are handled at startup. if (tgt != NULL && tgt->pathlen > 0 && tgt->pathlen == filelen && strcmp(tgt->pathname, filename) == 0) { found_node = 1; break; } } if (found_node) { struct list_head *cb_node; list_for_each(cb_node, &tgt->callback_list_head) { struct stap_task_finder_target *cb_tgt; int rc; cb_tgt = list_entry(cb_node, struct stap_task_finder_target, callback_list); if (cb_tgt == NULL) continue; if (cb_tgt->callback != NULL) { int rc = cb_tgt->callback(tsk, register_p, process_p, cb_tgt); if (rc != 0) { _stp_error("callback for %d failed: %d", (int)tsk->pid, rc); break; } } // Set up events we need for attached tasks. if (register_p) { rc = stap_utrace_attach(tsk, &cb_tgt->ops, cb_tgt, __STP_ATTACHED_TASK_EVENTS(cb_tgt)); if (rc != 0 && rc != EPERM) break; cb_tgt->engine_attached = 1; } else { rc = stap_utrace_detach(tsk, &cb_tgt->ops); if (rc != 0) break; cb_tgt->engine_attached = 0; } } } } // This function handles the details of getting a task's associated // pathname, and calling __stp_utrace_attach_match_filename() to // attach to it if we find the pathname "interesting". So, what's the // difference between path_tsk and match_tsk? Normally they are the // same, except in one case. In an UTRACE_EVENT(EXEC), we need to // detach engines from the newly exec'ed process (since its path has // changed). In this case, we have to match the path of the parent // (path_tsk) against the child (match_tsk). static void __stp_utrace_attach_match_tsk(struct task_struct *path_tsk, struct task_struct *match_tsk, int register_p, int process_p) { struct mm_struct *mm; char *mmpath_buf; char *mmpath; if (path_tsk == NULL || path_tsk->pid <= 1 || match_tsk == NULL || match_tsk->pid <= 1) return; /* Grab the path associated with the path_tsk. */ mm = get_task_mm(path_tsk); if (! mm) { /* If the thread doesn't have a mm_struct, it is * a kernel thread which we need to skip. */ return; } // Allocate space for a path mmpath_buf = _stp_kmalloc(PATH_MAX); if (mmpath_buf == NULL) { mmput(mm); _stp_error("Unable to allocate space for path"); return; } // Grab the path associated with the new task mmpath = __stp_get_mm_path(mm, mmpath_buf, PATH_MAX); mmput(mm); /* We're done with mm */ if (mmpath == NULL || IS_ERR(mmpath)) { int rc = -PTR_ERR(mmpath); if (rc != ENOENT) _stp_error("Unable to get path (error %d) for pid %d", rc, (int)path_tsk->pid); } else { __stp_utrace_attach_match_filename(match_tsk, mmpath, register_p, process_p); } _stp_kfree(mmpath_buf); return; } static u32 __stp_utrace_task_finder_report_clone(struct utrace_attached_engine *engine, struct task_struct *parent, unsigned long clone_flags, struct task_struct *child) { int rc; struct mm_struct *mm; char *mmpath_buf; char *mmpath; if (atomic_read(&__stp_task_finder_state) != __STP_TF_RUNNING) return UTRACE_ACTION_RESUME; // On clone, attach to the child. rc = stap_utrace_attach(child, engine->ops, 0, __STP_TASK_FINDER_EVENTS); if (rc != 0 && rc != EPERM) return UTRACE_ACTION_RESUME; __stp_utrace_attach_match_tsk(parent, child, 1, (clone_flags & CLONE_THREAD) == 0); return UTRACE_ACTION_RESUME; } static u32 __stp_utrace_task_finder_report_exec(struct utrace_attached_engine *engine, struct task_struct *tsk, const struct linux_binprm *bprm, struct pt_regs *regs) { size_t filelen; struct list_head *tgt_node; struct stap_task_finder_target *tgt; int found_node = 0; if (atomic_read(&__stp_task_finder_state) != __STP_TF_RUNNING) return UTRACE_ACTION_RESUME; // When exec'ing, we need to let callers detach from the // parent thread (if necessary). For instance, assume // '/bin/bash' clones and then execs '/bin/ls'. If the user // was probing '/bin/bash', the cloned thread is still // '/bin/bash' up until the exec. #if ! defined(STAPCONF_REAL_PARENT) #define real_parent parent #endif if (tsk != NULL && tsk->real_parent != NULL && tsk->real_parent->pid > 1) { // We'll hardcode this as a process end, but a thread // *could* call exec (although they aren't supposed to). __stp_utrace_attach_match_tsk(tsk->real_parent, tsk, 0, 1); } #undef real_parent // We assume that all exec's are exec'ing a new process. Note // that we don't use bprm->filename, since that path can be // relative. __stp_utrace_attach_match_tsk(tsk, tsk, 1, 1); return UTRACE_ACTION_RESUME; } static u32 stap_utrace_task_finder_report_death(struct utrace_attached_engine *engine, struct task_struct *tsk) { debug_task_finder_detach(); return UTRACE_ACTION_DETACH; } static u32 __stp_utrace_task_finder_target_death(struct utrace_attached_engine *engine, struct task_struct *tsk) { struct stap_task_finder_target *tgt = engine->data; if (atomic_read(&__stp_task_finder_state) != __STP_TF_RUNNING) { debug_task_finder_detach(); return UTRACE_ACTION_DETACH; } // The first implementation of this added a // UTRACE_EVENT(DEATH) handler to // __stp_utrace_task_finder_ops. However, dead threads don't // have a mm_struct, so we can't find the exe's path. So, we // don't know which callback(s) to call. // // So, now when an "interesting" thread is found, we add a // separate UTRACE_EVENT(DEATH) handler for every probe. if (tgt != NULL && tgt->callback != NULL) { int rc; // Call the callback rc = tgt->callback(tsk, 0, (tsk->signal == NULL) || (atomic_read(&tsk->signal->live) == 0), tgt); if (rc != 0) { _stp_error("death callback for %d failed: %d", (int)tsk->pid, rc); } } debug_task_finder_detach(); return UTRACE_ACTION_DETACH; } static u32 __stp_utrace_task_finder_target_quiesce(struct utrace_attached_engine *engine, struct task_struct *tsk) { struct stap_task_finder_target *tgt = engine->data; // Turn off quiesce handling. utrace_set_flags(tsk, engine, __STP_ATTACHED_TASK_VM_BASE_EVENTS); if (atomic_read(&__stp_task_finder_state) != __STP_TF_RUNNING) { debug_task_finder_detach(); return UTRACE_ACTION_DETACH; } if (tgt != NULL && tgt->vm_callback != NULL) { struct mm_struct *mm; char *mmpath_buf; char *mmpath; struct vm_area_struct *vma; int rc; /* Call the vm_callback for every vma associated with * a file. */ mm = get_task_mm(tsk); if (! mm) goto utftq_out; // Allocate space for a path mmpath_buf = _stp_kmalloc(PATH_MAX); if (mmpath_buf == NULL) { mmput(mm); _stp_error("Unable to allocate space for path"); goto utftq_out; } down_read(&mm->mmap_sem); vma = mm->mmap; while (vma) { if (vma->vm_file) { #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,25) mmpath = d_path(vma->vm_file->f_dentry, vma->vm_file->f_vfsmnt, mmpath_buf, PATH_MAX); #else mmpath = d_path(&(vma->vm_file->f_path), mmpath_buf, PATH_MAX); #endif if (mmpath) { // Call the callback rc = tgt->vm_callback(tsk, 1, mmpath, vma->vm_start, vma->vm_end, (vma->vm_pgoff << PAGE_SHIFT)); if (rc != 0) { _stp_error("vm callback for %d failed: %d", (int)tsk->pid, rc); } } else { _stp_dbug(__FUNCTION__, __LINE__, "no mmpath?\n"); } } vma = vma->vm_next; } up_read(&mm->mmap_sem); mmput(mm); /* We're done with mm */ _stp_kfree(mmpath_buf); } utftq_out: return (UTRACE_ACTION_NEWSTATE | UTRACE_ACTION_RESUME); } struct vm_area_struct * __stp_find_file_based_vma(struct mm_struct *mm, unsigned long addr) { struct vm_area_struct *vma = find_vma(mm, addr); // I'm not positive why the checking for vm_start > addr is // necessary, but it seems to be (sometimes find_vma() returns // a vma that addr doesn't belong to). if (vma && (vma->vm_file == NULL || vma->vm_start > addr)) vma = NULL; return vma; } static u32 __stp_utrace_task_finder_target_syscall_entry(struct utrace_attached_engine *engine, struct task_struct *tsk, struct pt_regs *regs) { struct stap_task_finder_target *tgt = engine->data; unsigned long syscall_no; struct mm_struct *mm; struct vm_area_struct *vma; unsigned long *arg0_addr, arg0; int rc; if (atomic_read(&__stp_task_finder_state) != __STP_TF_RUNNING) { debug_task_finder_detach(); return UTRACE_ACTION_DETACH; } if (tgt == NULL || tgt->vm_callback == NULL) return UTRACE_ACTION_RESUME; // See if syscall is one we're interested in. // // FIXME: do we need to handle mremap()? syscall_no = __stp_user_syscall_nr(regs); if (syscall_no != MMAP_SYSCALL_NO(tsk) && syscall_no != MPROTECT_SYSCALL_NO(tsk) && syscall_no != MUNMAP_SYSCALL_NO(tsk)) return UTRACE_ACTION_RESUME; // We need the first syscall argument to see what address // we're operating on. arg0_addr = __stp_user_syscall_arg(tsk, regs, 0); if ((rc = __stp_get_user(arg0, arg0_addr)) != 0) { _stp_error("couldn't read syscall arg 0 for pid %d: %d", tsk->pid, rc); } else if (arg0 != (unsigned long)NULL) { mm = get_task_mm(tsk); if (mm) { down_read(&mm->mmap_sem); // If we can find a matching vma associated // with a file, save off its details. vma = __stp_find_file_based_vma(mm, arg0); if (vma != NULL) { __stp_tf_add_vma(tsk, arg0, vma); } up_read(&mm->mmap_sem); mmput(mm); } } return UTRACE_ACTION_RESUME; } static void __stp_target_call_vm_callback(struct stap_task_finder_target *tgt, struct task_struct *tsk, struct vm_area_struct *vma) { char *mmpath_buf; char *mmpath; int rc; // Allocate space for a path mmpath_buf = _stp_kmalloc(PATH_MAX); if (mmpath_buf == NULL) { _stp_error("Unable to allocate space for path"); return; } // Grab the path associated with this vma. #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,25) mmpath = d_path(vma->vm_file->f_dentry, vma->vm_file->f_vfsmnt, mmpath_buf, PATH_MAX); #else mmpath = d_path(&(vma->vm_file->f_path), mmpath_buf, PATH_MAX); #endif if (mmpath == NULL || IS_ERR(mmpath)) { rc = -PTR_ERR(mmpath); _stp_error("Unable to get path (error %d) for pid %d", rc, (int)tsk->pid); } else { rc = tgt->vm_callback(tsk, 1, mmpath, vma->vm_start, vma->vm_end, (vma->vm_pgoff << PAGE_SHIFT)); if (rc != 0) { _stp_error("vm callback for %d failed: %d", (int)tsk->pid, rc); } } _stp_kfree(mmpath_buf); } static u32 __stp_utrace_task_finder_target_syscall_exit(struct utrace_attached_engine *engine, struct task_struct *tsk, struct pt_regs *regs) { struct stap_task_finder_target *tgt = engine->data; unsigned long syscall_no; unsigned long *rv_addr, rv; unsigned long *arg0_addr, arg0; int rc; struct mm_struct *mm; struct vm_area_struct *vma; struct __stp_tf_vma_entry *entry = NULL; if (atomic_read(&__stp_task_finder_state) != __STP_TF_RUNNING) { debug_task_finder_detach(); return UTRACE_ACTION_DETACH; } if (tgt == NULL || tgt->vm_callback == NULL) return UTRACE_ACTION_RESUME; // See if syscall is one we're interested in. // // FIXME: do we need to handle mremap()? syscall_no = __stp_user_syscall_nr(regs); if (syscall_no != MMAP_SYSCALL_NO(tsk) && syscall_no != MPROTECT_SYSCALL_NO(tsk) && syscall_no != MUNMAP_SYSCALL_NO(tsk)) return UTRACE_ACTION_RESUME; // Get return value rv_addr = __stp_user_syscall_return_value(tsk, regs); if ((rc = __stp_get_user(rv, rv_addr)) != 0) { _stp_error("couldn't read syscall return value for pid %d: %d", tsk->pid, rc); return UTRACE_ACTION_RESUME; } // We need the first syscall argument to see what address we // were operating on. arg0_addr = __stp_user_syscall_arg(tsk, regs, 0); if ((rc = __stp_get_user(arg0, arg0_addr)) != 0) { _stp_error("couldn't read syscall arg 0 for pid %d: %d", tsk->pid, rc); return UTRACE_ACTION_RESUME; } #ifdef DEBUG_TASK_FINDER_VMA _stp_dbug(__FUNCTION__, __LINE__, "tsk %d found %s(0x%lx), returned 0x%lx\n", tsk->pid, ((syscall_no == MMAP_SYSCALL_NO(tsk)) ? "mmap" : ((syscall_no == MPROTECT_SYSCALL_NO(tsk)) ? "mprotect" : ((syscall_no == MUNMAP_SYSCALL_NO(tsk)) ? "munmap" : "UNKNOWN"))), arg0, rv); #endif // Try to find the vma info we might have saved. if (arg0 != (unsigned long)NULL) entry = __stp_tf_get_vma_entry(tsk, arg0); // If entry is NULL, this means we didn't find a file based // vma to store in the syscall_entry routine. This could mean // we just created a new vma. if (entry == NULL) { mm = get_task_mm(tsk); if (mm) { down_read(&mm->mmap_sem); vma = __stp_find_file_based_vma(mm, rv); if (vma != NULL) { __stp_target_call_vm_callback(tgt, tsk, vma); } up_read(&mm->mmap_sem); mmput(mm); } } // If we found saved vma information, try to match it up with // what currently exists. else { #ifdef DEBUG_TASK_FINDER_VMA _stp_dbug(__FUNCTION__, __LINE__, "** found stored vma 0x%lx/0x%lx/0x%lx!\n", entry->vm_start, entry->vm_end, entry->vm_pgoff); #endif mm = get_task_mm(tsk); if (mm) { down_read(&mm->mmap_sem); vma = __stp_find_file_based_vma(mm, entry->vm_start); // We couldn't find the vma at all. The // original vma was deleted. if (vma == NULL) { // FIXME: We'll need to figure out to // retrieve the path of a deleted // vma. rc = tgt->vm_callback(tsk, 0, NULL, entry->vm_start, entry->vm_end, (entry->vm_pgoff << PAGE_SHIFT)); if (rc != 0) { _stp_error("vm callback for %d failed: %d", (int)tsk->pid, rc); } } // If nothing has changed, there is no // need to call the callback. else if (vma->vm_start == entry->vm_start && vma->vm_end == entry->vm_end && vma->vm_pgoff == entry->vm_pgoff) { // do nothing } // The original vma has been changed. It is // possible that calling mprotect (e.g.) split // up an existing vma into 2 or 3 new vma's // (assuming it protected a portion of the // original vma at the beginning, middle, or // end). Try to determine what happened. else { unsigned long tmp; // First report that the original vma // is gone. // // FIXME: We'll need to figure out to // retrieve the path of a deleted // vma. rc = tgt->vm_callback(tsk, 0, NULL, entry->vm_start, entry->vm_end, (entry->vm_pgoff << PAGE_SHIFT)); if (rc != 0) { _stp_error("vm callback for %d failed: %d", (int)tsk->pid, rc); } // Now find all the new vma's that // made up the original vma's address // space and call the callback on each // new vma. tmp = entry->vm_start; while (((vma = __stp_find_file_based_vma(mm, tmp)) != NULL) && vma->vm_end <= entry->vm_end) { __stp_target_call_vm_callback(tgt, tsk, vma); if (vma->vm_end >= entry->vm_end) break; tmp = vma->vm_end; } } up_read(&mm->mmap_sem); mmput(mm); } // Cleanup by deleting the saved vma info. __stp_tf_remove_vma_entry(entry); } return UTRACE_ACTION_RESUME; } struct utrace_engine_ops __stp_utrace_task_finder_ops = { .report_clone = __stp_utrace_task_finder_report_clone, .report_exec = __stp_utrace_task_finder_report_exec, .report_death = stap_utrace_task_finder_report_death, }; int stap_start_task_finder(void) { int rc = 0; struct task_struct *grp, *tsk; char *mmpath_buf; debug_task_finder_report(); mmpath_buf = _stp_kmalloc(PATH_MAX); if (mmpath_buf == NULL) { _stp_error("Unable to allocate space for path"); return ENOMEM; } __stp_tf_vma_initialize(); atomic_set(&__stp_task_finder_state, __STP_TF_RUNNING); rcu_read_lock(); do_each_thread(grp, tsk) { struct mm_struct *mm; char *mmpath; size_t mmpathlen; struct list_head *tgt_node; rc = stap_utrace_attach(tsk, &__stp_utrace_task_finder_ops, 0, __STP_TASK_FINDER_EVENTS); if (rc == EPERM) { /* Ignore EPERM errors, which mean this wasn't * a thread we can attach to. */ rc = 0; continue; } else if (rc != 0) { /* If we get a real error, quit. */ goto stf_err; } /* Grab the path associated with this task. */ mm = get_task_mm(tsk); if (! mm) { /* If the thread doesn't have a mm_struct, it is * a kernel thread which we need to skip. */ continue; } mmpath = __stp_get_mm_path(mm, mmpath_buf, PATH_MAX); mmput(mm); /* We're done with mm */ if (mmpath == NULL || IS_ERR(mmpath)) { rc = -PTR_ERR(mmpath); if (rc == ENOENT) { continue; } else { _stp_error("Unable to get path (error %d) for pid %d", rc, (int)tsk->pid); goto stf_err; } } /* Check the thread's exe's path/pid against our list. */ mmpathlen = strlen(mmpath); list_for_each(tgt_node, &__stp_task_finder_list) { struct stap_task_finder_target *tgt; struct list_head *cb_node; tgt = list_entry(tgt_node, struct stap_task_finder_target, list); if (tgt == NULL) continue; /* pathname-based target */ else if (tgt->pathlen > 0 && (tgt->pathlen != mmpathlen || strcmp(tgt->pathname, mmpath) != 0)) continue; /* pid-based target */ else if (tgt->pid != 0 && tgt->pid != tsk->pid) continue; list_for_each(cb_node, &tgt->callback_list_head) { struct stap_task_finder_target *cb_tgt; cb_tgt = list_entry(cb_node, struct stap_task_finder_target, callback_list); if (cb_tgt == NULL) continue; // Call the callback. Assume that if // the thread is a thread group // leader, it is a process. if (cb_tgt->callback != NULL) { rc = cb_tgt->callback(tsk, 1, (tsk->pid == tsk->tgid), cb_tgt); if (rc != 0) { _stp_error("attach callback for %d failed: %d", (int)tsk->pid, rc); goto stf_err; } } // Set up events we need for attached tasks. rc = stap_utrace_attach(tsk, &cb_tgt->ops, cb_tgt, __STP_ATTACHED_TASK_EVENTS(cb_tgt)); if (rc != 0 && rc != EPERM) goto stf_err; cb_tgt->engine_attached = 1; } } } while_each_thread(grp, tsk); stf_err: rcu_read_unlock(); _stp_kfree(mmpath_buf); return rc; } static void stap_stop_task_finder(void) { atomic_set(&__stp_task_finder_state, __STP_TF_STOPPING); debug_task_finder_report(); stap_utrace_detach_ops(&__stp_utrace_task_finder_ops); __stp_task_finder_cleanup(); debug_task_finder_report(); atomic_set(&__stp_task_finder_state, __STP_TF_STOPPED); } #endif /* TASK_FINDER_C */