// elaboration functions // Copyright (C) 2005 Red Hat Inc. // // This file is part of systemtap, and is free software. You can // redistribute it and/or modify it under the terms of the GNU General // Public License (GPL); either version 2, or (at your option) any // later version. #include "config.h" #include "elaborate.h" #include "parse.h" #include "tapsets.h" extern "C" { #include } #include #include #include #include #include using namespace std; template inline OUT lex_cast(IN const & in) { stringstream ss; OUT out; if (!(ss << in && ss >> out)) throw runtime_error("bad lexical cast"); return out; } // ------------------------------------------------------------------------ derived_probe::derived_probe (probe *p): base (p) { if (p) { this->locations = p->locations; this->tok = p->tok; this->body = deep_copy_visitor::deep_copy(p->body); } } derived_probe::derived_probe (probe *p, probe_point *l): base (p) { this->locations.push_back (l); if (p) { this->tok = p->tok; this->body = deep_copy_visitor::deep_copy(p->body); } } // ------------------------------------------------------------------------ // Members of derived_probe_builder bool derived_probe_builder::get_param (std::map const & params, const std::string& key, std::string& value) { map::const_iterator i = params.find (key); if (i == params.end()) return false; literal_string * ls = dynamic_cast(i->second); if (!ls) return false; value = ls->value; return true; } bool derived_probe_builder::get_param (std::map const & params, const std::string& key, int64_t& value) { map::const_iterator i = params.find (key); if (i == params.end()) return false; if (i->second == NULL) return false; literal_number * ln = dynamic_cast(i->second); if (!ln) return false; value = ln->value; return true; } // ------------------------------------------------------------------------ // Members of match_key. match_key::match_key(string const & n) : name(n), have_parameter(false), parameter_type(tok_junk) { } match_key::match_key(probe_point::component const & c) : name(c.functor), have_parameter(c.arg != NULL), parameter_type(c.arg ? c.arg->tok->type : tok_junk) { } match_key & match_key::with_number() { have_parameter = true; parameter_type = tok_number; return *this; } match_key & match_key::with_string() { have_parameter = true; parameter_type = tok_string; return *this; } string match_key::str() const { if (have_parameter) switch (parameter_type) { case tok_string: return name + "(string)"; case tok_number: return name + "(number)"; default: return name + "(...)"; } return name; } bool match_key::operator<(match_key const & other) const { return ((name < other.name) || (name == other.name && have_parameter < other.have_parameter) || (name == other.name && have_parameter == other.have_parameter && parameter_type < other.parameter_type)); } // ------------------------------------------------------------------------ // Members of match_node // ------------------------------------------------------------------------ match_node::match_node() : end(NULL) {} match_node * match_node::bind(match_key const & k) { if (k.name == "*") throw semantic_error("invalid use of wildcard probe point component"); map::const_iterator i = sub.find(k); if (i != sub.end()) return i->second; match_node * n = new match_node(); sub.insert(make_pair(k, n)); return n; } void match_node::bind(derived_probe_builder * e) { if (end) throw semantic_error("duplicate probe point pattern"); end = e; } match_node * match_node::bind(string const & k) { return bind(match_key(k)); } match_node * match_node::bind_str(string const & k) { return bind(match_key(k).with_string()); } match_node * match_node::bind_num(string const & k) { return bind(match_key(k).with_number()); } void match_node::find_and_build (systemtap_session& s, probe* p, probe_point *loc, unsigned pos, vector& results) { assert (pos <= loc->components.size()); if (pos == loc->components.size()) // matched all probe point components so far { derived_probe_builder *b = end; // may be 0 if only nested names are bound if (! b) { string alternatives; for (sub_map_iterator_t i = sub.begin(); i != sub.end(); i++) alternatives += string(" ") + i->first.str(); throw semantic_error (string("probe point truncated at position ") + lex_cast (pos) + " (follow:" + alternatives + ")"); } map param_map; for (unsigned i=0; icomponents[i]->functor] = loc->components[i]->arg; // maybe 0 b->build (s, p, loc, param_map, results); } else if (loc->components[pos]->functor == "*") // wildcard? { // Recursively call derive_probes for all matches of the current // key position. To do this, we have to perform almost an // alias-level duplication of the probe body and synthesis of // new probe_points. probe * n = new probe(); n->tok = p->tok; n->body = deep_copy_visitor::deep_copy(p->body); // Construct N probe_point instances: one per wildcard match for (sub_map_iterator_t i = sub.begin(); i != sub.end(); i++) { const match_key& match = i->first; probe_point *loc2 = new probe_point; loc2->tok = loc->tok; // deep-copy probe point components, except for this wildcard position for (unsigned k=0; kcomponents.size(); k++) if (pos != k) loc2->components.push_back(new probe_point::component(loc->components[k]->functor, loc->components[k]->arg)); else // NB: we retain wildcard arg - foo.*(5).bar => foo.a(5).bar, foo.b(5).bar loc2->components.push_back(new probe_point::component(match.name, loc->components[k]->arg)); n->locations.push_back (loc2); } derive_probes (s, n, results, false); } else { match_key match (* loc->components[pos]); sub_map_iterator_t i = sub.find (match); if (i == sub.end()) // no match { string alternatives; for (sub_map_iterator_t i = sub.begin(); i != sub.end(); i++) alternatives += string(" ") + i->first.str(); throw semantic_error (string("probe point mismatch at position ") + lex_cast (pos) + " (alternatives:" + alternatives + ")"); } match_node* subnode = i->second; // recurse subnode->find_and_build (s, p, loc, pos+1, results); } } // ------------------------------------------------------------------------ // Alias probes // ------------------------------------------------------------------------ struct alias_expansion_builder : public derived_probe_builder { probe_alias * alias; alias_expansion_builder(probe_alias * a) : alias(a) {} virtual void build(systemtap_session & sess, probe * use, probe_point * location, std::map const & parameters, vector & finished_results) { // We're going to build a new probe and wrap it up in an // alias_expansion_probe so that the expansion loop recognizer it as // such and re-expands its expansion. probe * n = new probe(); n->body = new block(); // The new probe gets the location list of the alias, n->locations = alias->locations; // the token location of the use, n->tok = use->tok; n->body->tok = use->tok; // and statements representing the concatenation of the alias' // body with the use's. // // NB: locals are *not* copied forward, from either alias or // use. The expansion should have its locals re-inferred since // there's concatenated code here and we only want one vardecl per // resulting variable. for (unsigned i = 0; i < alias->body->statements.size(); ++i) { statement *s = deep_copy_visitor::deep_copy(alias->body->statements[i]); n->body->statements.push_back(s); } for (unsigned i = 0; i < use->body->statements.size(); ++i) { statement *s = deep_copy_visitor::deep_copy(use->body->statements[i]); n->body->statements.push_back(s); } derive_probes (sess, n, finished_results, false); } }; // ------------------------------------------------------------------------ // Pattern matching // ------------------------------------------------------------------------ // Register all the aliases we've seen in library files, and the user // file, as patterns. void systemtap_session::register_library_aliases() { vector files(library_files); files.push_back(user_file); for (unsigned f = 0; f < files.size(); ++f) { stapfile * file = files[f]; for (unsigned a = 0; a < file->aliases.size(); ++a) { probe_alias * alias = file->aliases[a]; try { for (unsigned n = 0; n < alias->alias_names.size(); ++n) { probe_point * name = alias->alias_names[n]; match_node * n = pattern_root; for (unsigned c = 0; c < name->components.size(); ++c) { probe_point::component * comp = name->components[c]; // XXX: alias parameters if (comp->arg) throw semantic_error("alias component " + comp->functor + " contains illegal parameter"); n = n->bind(comp->functor); } n->bind(new alias_expansion_builder(alias)); } } catch (const semantic_error& e) { print_error (e); cerr << " while: registering probe alias "; alias->printsig(cerr); cerr << endl; } } } } static unsigned max_recursion = 100; struct recursion_guard { unsigned & i; recursion_guard(unsigned & i) : i(i) { if (i > max_recursion) throw semantic_error("recursion limit reached"); ++i; } ~recursion_guard() { --i; } }; // The match-and-expand loop. void derive_probes (systemtap_session& s, probe *p, vector& dps, bool exc_outermost) { for (unsigned i = 0; i < p->locations.size(); ++i) { probe_point *loc = p->locations[i]; try { unsigned num_atbegin = dps.size(); s.pattern_root->find_and_build (s, p, loc, 0, dps); unsigned num_atend = dps.size(); if (exc_outermost && (num_atbegin == num_atend)) // nothing new derived! throw semantic_error ("no match for probe point"); } catch (const semantic_error& e) { // XXX: prefer not to print_error at every nest/unroll level s.print_error (e); cerr << " while: resolving probe point " << *loc << endl; // if (! exc_outermost) // throw; } } } // ------------------------------------------------------------------------ // // Map usage checks // struct mutated_map_collector : public traversing_visitor { set * mutated_maps; mutated_map_collector(set * mm) : mutated_maps (mm) {} void visit_arrayindex (arrayindex *e) { if (is_active_lvalue(e)) mutated_maps->insert(e->referent); } }; struct no_map_mutation_during_iteration_check : public traversing_visitor { systemtap_session & session; map *> & function_mutates_maps; vector maps_being_iterated; no_map_mutation_during_iteration_check (systemtap_session & sess, map *> & fmm) : session(sess), function_mutates_maps (fmm) {} void visit_arrayindex (arrayindex *e) { if (is_active_lvalue(e)) { for (unsigned i = 0; i < maps_being_iterated.size(); ++i) { vardecl *m = maps_being_iterated[i]; if (m == e->referent) { string err = ("map '" + m->name + "' modified during 'foreach' iteration"); session.print_error (semantic_error (err, e->tok)); } } } } void visit_functioncall (functioncall* e) { map *>::const_iterator i = function_mutates_maps.find (e->referent); if (i != function_mutates_maps.end()) { for (unsigned j = 0; j < maps_being_iterated.size(); ++j) { vardecl *m = maps_being_iterated[j]; if (i->second->find (m) != i->second->end()) { string err = ("function call modifies map '" + m->name + "' during 'foreach' iteration"); session.print_error (semantic_error (err, e->tok)); } } } for (unsigned i=0; iargs.size(); i++) e->args[i]->visit (this); } void visit_foreach_loop(foreach_loop* s) { maps_being_iterated.push_back (s->base_referent); for (unsigned i=0; iindexes.size(); i++) s->indexes[i]->visit (this); s->block->visit (this); maps_being_iterated.pop_back(); } }; static int semantic_pass_maps (systemtap_session & sess) { map *> fmm; no_map_mutation_during_iteration_check chk(sess, fmm); for (unsigned i = 0; i < sess.functions.size(); ++i) { functiondecl * fn = sess.functions[i]; if (fn->body) { set * m = new set(); mutated_map_collector mc (m); fn->body->visit (&mc); fmm[fn] = m; } } for (unsigned i = 0; i < sess.functions.size(); ++i) { if (sess.functions[i]->body) sess.functions[i]->body->visit (&chk); } for (unsigned i = 0; i < sess.probes.size(); ++i) { if (sess.probes[i]->body) sess.probes[i]->body->visit (&chk); } return sess.num_errors; } // ------------------------------------------------------------------------ static int semantic_pass_symbols (systemtap_session&); static int semantic_pass_types (systemtap_session&); static int semantic_pass_maps (systemtap_session&); // Link up symbols to their declarations. Set the session's // files/probes/functions/globals vectors from the transitively // reached set of stapfiles in s.library_files, starting from // s.user_file. Perform automatic tapset inclusion and probe // alias expansion. static int semantic_pass_symbols (systemtap_session& s) { symresolution_info sym (s); // NB: s.files can grow during this iteration, so size() can // return gradually increasing numbers. s.files.push_back (s.user_file); for (unsigned i = 0; i < s.files.size(); i++) { stapfile* dome = s.files[i]; // Pass 1: add globals and functions to systemtap-session master list, // so the find_* functions find them for (unsigned i=0; iglobals.size(); i++) s.globals.push_back (dome->globals[i]); for (unsigned i=0; ifunctions.size(); i++) s.functions.push_back (dome->functions[i]); for (unsigned i=0; iembeds.size(); i++) s.embeds.push_back (dome->embeds[i]); // Pass 2: process functions for (unsigned i=0; ifunctions.size(); i++) { functiondecl* fd = dome->functions[i]; try { sym.current_function = fd; sym.current_probe = 0; fd->body->visit (& sym); } catch (const semantic_error& e) { s.print_error (e); } } // Pass 3: derive probes and resolve any further symbols in the // derived results. for (unsigned i=0; iprobes.size(); i++) { probe* p = dome->probes [i]; vector dps; // much magic happens here: probe alias expansion, // provider identification derive_probes (s, p, dps); for (unsigned j=0; jbody->visit (& sym); } catch (const semantic_error& e) { s.print_error (e); } } } } return s.num_errors; // all those print_error calls } int semantic_pass (systemtap_session& s) { int rc = 0; try { s.register_library_aliases(); register_standard_tapsets(s); rc = semantic_pass_symbols (s); if (rc == 0) rc = semantic_pass_types (s); if (rc == 0) rc = semantic_pass_maps (s); } catch (const semantic_error& e) { s.print_error (e); } return rc; } // ------------------------------------------------------------------------ systemtap_session::systemtap_session (): pattern_root(new match_node), user_file (0), op (0), up (0), num_errors (0) { } void systemtap_session::print_error (const semantic_error& e) { cerr << "semantic error: " << e.what (); if (e.tok1 || e.tok2) cerr << ": "; if (e.tok1) cerr << *e.tok1; cerr << e.msg2; if (e.tok2) cerr << *e.tok2; cerr << endl; num_errors ++; } // ------------------------------------------------------------------------ // semantic processing: symbol resolution symresolution_info::symresolution_info (systemtap_session& s): session (s), current_function (0), current_probe (0) { } void symresolution_info::visit_block (block* e) { for (unsigned i=0; istatements.size(); i++) { try { e->statements[i]->visit (this); } catch (const semantic_error& e) { session.print_error (e); } } } void symresolution_info::visit_foreach_loop (foreach_loop* e) { for (unsigned i=0; iindexes.size(); i++) e->indexes[i]->visit (this); if (e->base_referent) return; vardecl* d = find_var (e->base, e->indexes.size ()); if (d) e->base_referent = d; else throw semantic_error ("unresolved global array " + e->base, e->tok); e->block->visit (this); } struct delete_statement_symresolution_info: public traversing_visitor { symresolution_info *parent; delete_statement_symresolution_info (symresolution_info *p): parent(p) {} void visit_arrayindex (arrayindex* e) { parent->visit_arrayindex (e); } void visit_functioncall (functioncall* e) { parent->visit_functioncall (e); } void visit_symbol (symbol* e) { if (e->referent) return; vardecl* d = parent->find_var (e->name, -1); if (d) e->referent = d; else throw semantic_error ("unresolved array in delete statement", e->tok); } }; void symresolution_info::visit_delete_statement (delete_statement* s) { delete_statement_symresolution_info di (this); s->value->visit (&di); } void symresolution_info::visit_symbol (symbol* e) { if (e->referent) return; vardecl* d = find_var (e->name, 0); if (d) e->referent = d; else { // new local vardecl* v = new vardecl; v->name = e->name; v->tok = e->tok; if (current_function) current_function->locals.push_back (v); else if (current_probe) current_probe->locals.push_back (v); else // must not happen throw semantic_error ("no current probe/function", e->tok); e->referent = v; } } void symresolution_info::visit_arrayindex (arrayindex* e) { for (unsigned i=0; iindexes.size(); i++) e->indexes[i]->visit (this); if (e->referent) return; vardecl* d = find_var (e->base, e->indexes.size ()); if (d) e->referent = d; else { // new local vardecl* v = new vardecl; v->set_arity(e->indexes.size()); v->name = e->base; v->tok = e->tok; if (current_function) current_function->locals.push_back (v); else if (current_probe) current_probe->locals.push_back (v); else // must not happen throw semantic_error ("no current probe/function", e->tok); e->referent = v; } } void symresolution_info::visit_functioncall (functioncall* e) { for (unsigned i=0; iargs.size(); i++) e->args[i]->visit (this); if (e->referent) return; functiondecl* d = find_function (e->function, e->args.size ()); if (d) e->referent = d; else throw semantic_error ("unresolved function call", e->tok); } vardecl* symresolution_info::find_var (const string& name, int arity) { // search locals vector& locals = (current_function ? current_function->locals : current_probe->locals); for (unsigned i=0; iname == name && locals[i]->compatible_arity(arity)) { locals[i]->set_arity (arity); return locals[i]; } // search function formal parameters (for scalars) if (arity == 0 && current_function) for (unsigned i=0; iformal_args.size(); i++) if (current_function->formal_args[i]->name == name) { // NB: no need to check arity here: formal args always scalar current_function->formal_args[i]->set_arity (0); return current_function->formal_args[i]; } // search processed globals for (unsigned i=0; iname == name && session.globals[i]->compatible_arity(arity)) { session.globals[i]->set_arity (arity); return session.globals[i]; } // search library globals for (unsigned i=0; iglobals.size(); j++) { vardecl* g = f->globals[j]; if (g->name == name && g->compatible_arity (arity)) { g->set_arity (arity); // put library into the queue if not already there if (find (session.files.begin(), session.files.end(), f) == session.files.end()) session.files.push_back (f); return g; } } } return 0; } functiondecl* symresolution_info::find_function (const string& name, unsigned arity) { for (unsigned j = 0; j < session.functions.size(); j++) { functiondecl* fd = session.functions[j]; if (fd->name == name && fd->formal_args.size() == arity) return fd; } // search library globals for (unsigned i=0; ifunctions.size(); j++) if (f->functions[j]->name == name && f->functions[j]->formal_args.size() == arity) { // put library into the queue if not already there if (0) // session.verbose_resolution cerr << " function " << name << " " << "is defined from " << f->name << endl; if (find (session.files.begin(), session.files.end(), f) == session.files.end()) session.files.push_back (f); // else .. print different message? return f->functions[j]; } } return 0; } // ------------------------------------------------------------------------ // type resolution static int semantic_pass_types (systemtap_session& s) { int rc = 0; // next pass: type inference unsigned iterations = 0; typeresolution_info ti (s); ti.assert_resolvability = false; // XXX: maybe convert to exception-based error signalling while (1) { iterations ++; // cerr << "Type resolution, iteration " << iterations << endl; ti.num_newly_resolved = 0; ti.num_still_unresolved = 0; for (unsigned j=0; jbody->visit (& ti); // NB: we don't have to assert a known type for // functions here, to permit a "void" function. // The translator phase will omit the "retvalue". // // if (fn->type == pe_unknown) // ti.unresolved (fn->tok); } for (unsigned j=0; jbody->visit (& ti); } for (unsigned j=0; jtype == pe_unknown) ti.unresolved (gd->tok); } if (ti.num_newly_resolved == 0) // converged if (ti.num_still_unresolved == 0) break; // successfully else if (! ti.assert_resolvability) ti.assert_resolvability = true; // last pass, with error msgs else { // unsuccessful conclusion rc ++; break; } } return rc + s.num_errors; } void typeresolution_info::visit_literal_number (literal_number* e) { assert (e->type == pe_long); if ((t == e->type) || (t == pe_unknown)) return; mismatch (e->tok, e->type, t); } void typeresolution_info::visit_literal_string (literal_string* e) { assert (e->type == pe_string); if ((t == e->type) || (t == pe_unknown)) return; mismatch (e->tok, e->type, t); } void typeresolution_info::visit_logical_or_expr (logical_or_expr *e) { visit_binary_expression (e); } void typeresolution_info::visit_logical_and_expr (logical_and_expr *e) { visit_binary_expression (e); } void typeresolution_info::visit_comparison (comparison *e) { // NB: result of any comparison is an integer! if (t == pe_stats || t == pe_string) invalid (e->tok, t); t = (e->right->type != pe_unknown) ? e->right->type : pe_unknown; e->left->visit (this); t = (e->left->type != pe_unknown) ? e->left->type : pe_unknown; e->right->visit (this); if (e->left->type != pe_unknown && e->right->type != pe_unknown && e->left->type != e->right->type) mismatch (e->tok, e->left->type, e->right->type); if (e->type == pe_unknown) { e->type = pe_long; resolved (e->tok, e->type); } } void typeresolution_info::visit_concatenation (concatenation *e) { if (t != pe_unknown && t != pe_string) invalid (e->tok, t); t = pe_string; e->left->visit (this); t = pe_string; e->right->visit (this); if (e->type == pe_unknown) { e->type = pe_string; resolved (e->tok, e->type); } } void typeresolution_info::visit_assignment (assignment *e) { if (t == pe_stats) invalid (e->tok, t); if (e->op == "<<<") // stats aggregation { if (t == pe_string) invalid (e->tok, t); t = pe_stats; e->left->visit (this); t = pe_long; e->right->visit (this); if (e->type == pe_unknown) { e->type = pe_long; resolved (e->tok, e->type); } } else if (e->op == "+=" || // numeric only e->op == "-=" || e->op == "*=" || e->op == "/=" || e->op == "%=" || e->op == "&=" || e->op == "^=" || e->op == "|=" || e->op == "<<=" || e->op == ">>=" || false) { visit_binary_expression (e); } else if (e->op == ".=" || // string only false) { if (t == pe_long || t == pe_stats) invalid (e->tok, t); t = pe_string; e->left->visit (this); t = pe_string; e->right->visit (this); if (e->type == pe_unknown) { e->type = pe_string; resolved (e->tok, e->type); } } else if (e->op == "=") // overloaded = for string & numeric operands { // logic similar to ternary_expression exp_type sub_type = t; // Infer types across the l/r values if (sub_type == pe_unknown && e->type != pe_unknown) sub_type = e->type; t = (sub_type != pe_unknown) ? sub_type : (e->right->type != pe_unknown) ? e->right->type : pe_unknown; e->left->visit (this); t = (sub_type != pe_unknown) ? sub_type : (e->left->type != pe_unknown) ? e->left->type : pe_unknown; e->right->visit (this); if ((sub_type != pe_unknown) && (e->type == pe_unknown)) { e->type = sub_type; resolved (e->tok, e->type); } if ((sub_type == pe_unknown) && (e->left->type != pe_unknown)) { e->type = e->left->type; resolved (e->tok, e->type); } if (e->left->type != pe_unknown && e->right->type != pe_unknown && e->left->type != e->right->type) mismatch (e->tok, e->left->type, e->right->type); } else throw semantic_error ("unsupported assignment operator " + e->op); } void typeresolution_info::visit_binary_expression (binary_expression* e) { if (t == pe_stats || t == pe_string) invalid (e->tok, t); t = pe_long; e->left->visit (this); t = pe_long; e->right->visit (this); if (e->left->type != pe_unknown && e->right->type != pe_unknown && e->left->type != e->right->type) mismatch (e->tok, e->left->type, e->right->type); if (e->type == pe_unknown) { e->type = pe_long; resolved (e->tok, e->type); } } void typeresolution_info::visit_pre_crement (pre_crement *e) { visit_unary_expression (e); } void typeresolution_info::visit_post_crement (post_crement *e) { visit_unary_expression (e); } void typeresolution_info::visit_unary_expression (unary_expression* e) { if (t == pe_stats || t == pe_string) invalid (e->tok, t); t = pe_long; e->operand->visit (this); if (e->type == pe_unknown) { e->type = pe_long; resolved (e->tok, e->type); } } void typeresolution_info::visit_ternary_expression (ternary_expression* e) { exp_type sub_type = t; t = pe_long; e->cond->visit (this); // Infer types across the true/false arms of the ternary expression. if (sub_type == pe_unknown && e->type != pe_unknown) sub_type = e->type; t = sub_type; e->truevalue->visit (this); t = sub_type; e->falsevalue->visit (this); if ((sub_type == pe_unknown) && (e->type != pe_unknown)) ; // already resolved else if ((sub_type != pe_unknown) && (e->type == pe_unknown)) { e->type = sub_type; resolved (e->tok, e->type); } else if ((sub_type == pe_unknown) && (e->truevalue->type != pe_unknown)) { e->type = e->truevalue->type; resolved (e->tok, e->type); } else if ((sub_type == pe_unknown) && (e->falsevalue->type != pe_unknown)) { e->type = e->falsevalue->type; resolved (e->tok, e->type); } else if (e->type != sub_type) mismatch (e->tok, sub_type, e->type); } template void resolve_2types (Referrer* referrer, Referent* referent, typeresolution_info* r, exp_type t, bool accept_unknown = false) { exp_type& re_type = referrer->type; const token* re_tok = referrer->tok; exp_type& te_type = referent->type; const token* te_tok = referent->tok; if (t != pe_unknown && re_type == t && re_type == te_type) ; // do nothing: all three e->types in agreement else if (t == pe_unknown && re_type != pe_unknown && re_type == te_type) ; // do nothing: two known e->types in agreement else if (re_type != pe_unknown && te_type != pe_unknown && re_type != te_type) r->mismatch (re_tok, re_type, te_type); else if (re_type != pe_unknown && t != pe_unknown && re_type != t) r->mismatch (re_tok, re_type, t); else if (te_type != pe_unknown && t != pe_unknown && te_type != t) r->mismatch (te_tok, te_type, t); else if (re_type == pe_unknown && t != pe_unknown) { // propagate from upstream re_type = t; r->resolved (re_tok, re_type); // catch re_type/te_type mismatch later } else if (re_type == pe_unknown && te_type != pe_unknown) { // propagate from referent re_type = te_type; r->resolved (re_tok, re_type); // catch re_type/t mismatch later } else if (re_type != pe_unknown && te_type == pe_unknown) { // propagate to referent te_type = re_type; r->resolved (te_tok, te_type); // catch re_type/t mismatch later } else if (! accept_unknown) r->unresolved (re_tok); } void typeresolution_info::visit_symbol (symbol* e) { assert (e->referent != 0); if (e->referent->arity > 0) unresolved (e->tok); // symbol resolution should not permit this else resolve_2types (e, e->referent, this, t); } void typeresolution_info::visit_target_symbol (target_symbol* e) { throw semantic_error("unresolved target-symbol expression", e->tok); } void typeresolution_info::visit_arrayindex (arrayindex* e) { assert (e->referent != 0); resolve_2types (e, e->referent, this, t); // now resolve the array indexes // if (e->referent->index_types.size() == 0) // // redesignate referent as array // e->referent->set_arity (e->indexes.size ()); if (e->indexes.size() != e->referent->index_types.size()) unresolved (e->tok); // symbol resolution should prevent this else for (unsigned i=0; iindexes.size(); i++) { expression* ee = e->indexes[i]; exp_type& ft = e->referent->index_types [i]; t = ft; ee->visit (this); exp_type at = ee->type; if ((at == pe_string || at == pe_long) && ft == pe_unknown) { // propagate to formal type ft = at; resolved (e->referent->tok, ft); // uses array decl as there is no token for "formal type" } if (at == pe_stats) invalid (ee->tok, at); if (ft == pe_stats) invalid (ee->tok, ft); if (at != pe_unknown && ft != pe_unknown && ft != at) mismatch (e->tok, at, ft); if (at == pe_unknown) unresolved (ee->tok); } } void typeresolution_info::visit_functioncall (functioncall* e) { assert (e->referent != 0); resolve_2types (e, e->referent, this, t, true); // accept unknown type if (e->type == pe_stats) invalid (e->tok, e->type); // XXX: but what about functions that return no value, // and are used only as an expression-statement for side effects? // now resolve the function parameters if (e->args.size() != e->referent->formal_args.size()) unresolved (e->tok); // symbol resolution should prevent this else for (unsigned i=0; iargs.size(); i++) { expression* ee = e->args[i]; exp_type& ft = e->referent->formal_args[i]->type; const token* fe_tok = e->referent->formal_args[i]->tok; t = ft; ee->visit (this); exp_type at = ee->type; if (((at == pe_string) || (at == pe_long)) && ft == pe_unknown) { // propagate to formal arg ft = at; resolved (e->referent->formal_args[i]->tok, ft); } if (at == pe_stats) invalid (e->tok, at); if (ft == pe_stats) invalid (fe_tok, ft); if (at != pe_unknown && ft != pe_unknown && ft != at) mismatch (e->tok, at, ft); if (at == pe_unknown) unresolved (e->tok); } } void typeresolution_info::visit_block (block* e) { for (unsigned i=0; istatements.size(); i++) { try { t = pe_unknown; e->statements[i]->visit (this); } catch (const semantic_error& e) { session.print_error (e); } } } void typeresolution_info::visit_embeddedcode (embeddedcode* e) { } void typeresolution_info::visit_if_statement (if_statement* e) { t = pe_long; e->condition->visit (this); t = pe_unknown; e->thenblock->visit (this); if (e->elseblock) { t = pe_unknown; e->elseblock->visit (this); } } void typeresolution_info::visit_for_loop (for_loop* e) { t = pe_unknown; e->init->visit (this); t = pe_long; e->cond->visit (this); t = pe_unknown; e->incr->visit (this); t = pe_unknown; e->block->visit (this); } void typeresolution_info::visit_foreach_loop (foreach_loop* e) { // See also visit_arrayindex. // This is different in that, being a statement, we can't assign // a type to the outer array, only propagate to/from the indexes // if (e->referent->index_types.size() == 0) // // redesignate referent as array // e->referent->set_arity (e->indexes.size ()); if (e->indexes.size() != e->base_referent->index_types.size()) unresolved (e->tok); // symbol resolution should prevent this else for (unsigned i=0; iindexes.size(); i++) { expression* ee = e->indexes[i]; exp_type& ft = e->base_referent->index_types [i]; t = ft; ee->visit (this); exp_type at = ee->type; if ((at == pe_string || at == pe_long) && ft == pe_unknown) { // propagate to formal type ft = at; resolved (e->base_referent->tok, ft); // uses array decl as there is no token for "formal type" } if (at == pe_stats) invalid (ee->tok, at); if (ft == pe_stats) invalid (ee->tok, ft); if (at != pe_unknown && ft != pe_unknown && ft != at) mismatch (e->tok, at, ft); if (at == pe_unknown) unresolved (ee->tok); } t = pe_unknown; e->block->visit (this); } void typeresolution_info::visit_null_statement (null_statement* e) { } void typeresolution_info::visit_expr_statement (expr_statement* e) { t = pe_unknown; e->value->visit (this); } struct delete_statement_typeresolution_info: public throwing_visitor { typeresolution_info *parent; delete_statement_typeresolution_info (typeresolution_info *p): throwing_visitor ("invalid operand of delete expression"), parent (p) {} void visit_arrayindex (arrayindex* e) { parent->visit_arrayindex (e); } void visit_symbol (symbol* e) { exp_type ignored = pe_unknown; assert (e->referent != 0); resolve_2types (e, e->referent, parent, ignored); } }; void typeresolution_info::visit_delete_statement (delete_statement* e) { delete_statement_typeresolution_info di (this); t = pe_unknown; e->value->visit (&di); } void typeresolution_info::visit_next_statement (next_statement* s) { } void typeresolution_info::visit_break_statement (break_statement* s) { } void typeresolution_info::visit_continue_statement (continue_statement* s) { } void typeresolution_info::visit_array_in (array_in* e) { // all unary operators only work on numerics exp_type t1 = t; t = pe_unknown; // array value can be anything e->operand->visit (this); if (t1 == pe_unknown && e->type != pe_unknown) ; // already resolved else if (t1 == pe_string || t1 == pe_stats) mismatch (e->tok, t1, pe_long); else if (e->type == pe_unknown) { e->type = pe_long; resolved (e->tok, e->type); } } void typeresolution_info::visit_return_statement (return_statement* e) { // This is like symbol, where the referent is // the return value of the function. // translation pass will print error if (current_function == 0) return; exp_type& e_type = current_function->type; t = current_function->type; e->value->visit (this); if (e_type != pe_unknown && e->value->type != pe_unknown && e_type != e->value->type) mismatch (current_function->tok, e_type, e->value->type); if (e_type == pe_unknown && (e->value->type == pe_long || e->value->type == pe_string)) { // propagate non-statistics from value e_type = e->value->type; resolved (current_function->tok, e->value->type); } if (e->value->type == pe_stats) invalid (e->value->tok, e->value->type); } void typeresolution_info::unresolved (const token* tok) { num_still_unresolved ++; if (assert_resolvability) { cerr << "error: unresolved type for "; if (tok) cerr << *tok; else cerr << "a token"; cerr << endl; } } void typeresolution_info::invalid (const token* tok, exp_type pe) { num_still_unresolved ++; if (assert_resolvability) { cerr << "error: invalid type " << pe << " for "; if (tok) cerr << *tok; else cerr << "a token"; cerr << endl; } } void typeresolution_info::mismatch (const token* tok, exp_type t1, exp_type t2) { num_still_unresolved ++; if (assert_resolvability) { cerr << "error: type mismatch for "; if (tok) cerr << *tok; else cerr << "a token"; cerr << ": " << t1 << " vs. " << t2 << endl; } } void typeresolution_info::resolved (const token* tok, exp_type t) { num_newly_resolved ++; // cerr << "resolved " << *e->tok << " type " << t << endl; }